Theoretical Astrophysics
and Dark Matter
In the last
years, the quest concerning the nature of the dark matter in the Universe
has received much attention and has become of great importance for understanding
the structure formation in the Universe. Some candidates for dark matter
have been discarded and some others have recently appeared. The standard
candidates of the Cold Dark Matter (CDM) model are axions and WIMP'S (Weakly
Interacting Massive Particles), which are themselves not free of problems.
Axions are massive scalar particles with no self interaction. In order for
axions to be an essential component of the dark matter content of the Universe,
their mass should be m ~ 10^{-5}eV. With this axion mass, the scalar field
collapses forming compact objects with masses of order of M_{crit} ~ 0.6
m_Pl^{2}/m ~ 10^{-6}Mo \cite{seidel91,seidel94}, which corresponds to objects
with the mass of a planet. Since the dark matter mass in galaxies is ten
times higher than the luminous matter, we would need tenths of millions
of such objects around the solar system, which is clearly not the case.
On the other hand, there are many viable particles with nice features in
super-symmetric theories, such as WIMP'S, which behave just like standard
CDM. However, a central debate nowadays is whether CDM can explain the observed
scarcity of dwarf galaxies and the smoothness of the galactic-core matter
densities, since high resolution numerical simulations with standard CDM
predict an excess of dwarf galaxies and density profiles with cusps \cite{firmani}.
Even when there are some intents to give a solution to these problems inside
the CDM paradigm, \cite{dalal,primack}, the debate is still open because
new obsevations in galaxie centers of dwarf galaxies do not show a real
correspondence with CDM predictions \cite{binney,blok}. This is the reason
why we need to look for alternative candidates that can explain both the
structure formation at cosmological level, the observed amount of dwarf
galaxies, and the dark matter density profile in the core of galaxies. However,
since these candidates behave just like standard CDM, they can not explain
the observed scarcity of dwarf galaxies and the smoothness of the galactic-core
matter densities, since high resolution numerical simulations with standard
CDM predict an excess of dwarf galaxies and density profiles with cusps
\cite{firmani}.
References
{seidel91}E. Seidel and W. Suen, Phys. Rev.
Lett. 66, 1659 (1991).
{seidel94}E. Seidel and W. Suen, Phys. Rev. Lett. 72, 2516 (1994).
{firmani} B. Moore, F. Governato, T. Quinn,
J. Stadel and G. Lake,
ApJ {\bf 499}, L15 (1998). Y. P. Jing and Y. Suto, ApJ {\bf 529}, L69
(2000).
{dalal} N. Dalal and C. S. Kochanek, ApJ in press. E-print astro-ph/0111456.
See also:
Class. Quant. Grav.17 (2000)1455-1466
Rev. Mex. A.A 37(2001)63-72. Available at:
astro-ph/9811143
Class. Quant. Grav.18,(2001)2015-2024.
Class. Quant. Grav18(2001)5055-5064. Available at:
gr-qc/0108027.
Gen. Rel. Grav.34 (2002) 283-306. Available at: astro-ph/0005528
Class. Quant. Grav.19 (2002) 3603-3615. Available at:
gr-qc/0112044
{QSDMCQG}TT. Matos and L. A. Ureña-López, Class. Quantum Grav.
17, L75 (2000).
{COSPRD}T. Matos and L. A. Ureña-López, Phys. Rev. D63, 63506
(2001).
{DMCQG}F. S. Guzmán and T. Matos, Class. Quantum Grav. 17, L9
(2000).
T. Matos and F. S. Guzmán, Ann. Phys. (Leipzig) 9, SI-133 (2000).
{SPHPRD}T. Matos, F. S. Guzmán and D. Núñez, Phys.
Rev. D62, 061301 (2000).
{vladimir}V. Avila-Reese, C. Firmani, A. Klypin and A. V. Kravtsov, MNRAS
309, 507 (1999).
{CROSS}T. Matos and L. A. Ureña-López, Phys. Lett. B538, (2002),
246-250. Preprint astro-ph/0010226.
{apj}L. Ferrarese and D. Merritt, ApJL, 539} L9 (2000). K. Gebhardt et al,
Astrophys. J. Lett. 539 L13 (2000).
{diego}D. F. Torres, S. Capozziello and G. Lambiase, Phys. Rev. D 62, 104012
(2000).
{luis}L. A. Ureña-López. Class. Quantum Grav. 19, 2617
(2002)..
{tkachev}A. Riotto and I. Tkachev, Phys. Lett. B 484, 177 (2000).
{jeremy}J. Goodman, preprint astro-ph/0003018.
{peebles}P.J.E. Peebles, preprint astro-ph/0002495.
{salbur}Paolo Salucci and Andreas Burkert. Preprint astro-ph/0004397.
{seidel90}E. Seidel and W. Suen, Phys. Rev. D 42, 384 (1990).
{seidel98}J. Balakrishna, E. Seidel and W. Suen, Phys. Rev. D 58, 104004
(1998).
{choptuik}S.H. Hawley and M.W. Choptuik, Phys. Rev. D 62, 104024 (2000).
{futuro}Miguel
Alcubierre, F. Siddhartha Guzmán, Tonatiuh Matos,
Darío Núñez, Luis A. Ureña and Petra Wiederhold.
Galactic Collapse of Scalar Field Dark Matter. Class. Quant. Grav.
19, (2002), 5017-5024.
Available at: gr-qc
/0110102. Highlight
paper at the period 2001-2002 nominated
by the Editorial Board of the Journal Classical and Quantum Gravity.
{ma}T. Matos, Ann. Phys. (Leipzig) 46, 462 (1989). T. Matos, J. Math. Phys.
35, 1302 (1994).
T. Matos, Math. Notes 58, 1178 (1995). Available here.
{halzen}F. Halzen and A. D. Matin, ``Quarks and Leptons:
an Introductory Course in Modern Particle Physics''. John Wiley & Sons,
1984.
{chale}M. Visser, Science 276, 88 (1997).