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Spherical scalar field halo in galaxies
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We study a spherically symmetric fluctuation of scalar dark matter in the cosmos and show that it could be
the dark matter in galaxies, provided that the scalar field has an exponential potential whose overall sign is
negative and whose exponent is constrained observationally by the rotation velocities of galaxies. The local
space-time of the fluctuation contains a three-dimensional spacelike hypersurface with a surplus of angle.

PACS numbd(s): 95.35+d

The existence of dark matter in the Universe has beemhether a spherical scalar field fluctuation can serve as dark
firmly established by astronomical observations at very dif-matter in galaxies. In this Rapid Communication we show
ferent length scales, ranging from single galaxies, to clusterthat this could be the case. We assume that the halo of a
of galaxies, up to a cosmological scésee for examplél]). galaxy is a spherical fluctuation of cosmological scalar dark
A large fraction of the mass needed to produce the observeatter and study the consequences for the space-time back-
dynamical effects in all these very different systems is noground at this scale, in order to restrict the state equation
seen. At the galactic scale, the problem is clearly posed: Theorresponding to the dark matter inside the fluctuation. We
measurements of rotation curvéangential velocities of ob-  start from the general spherically symmetric line element and
jects in spiral galaxies show that the coplanar orbital motionfind out the conditions on the metric in order that the test
of gas in the outer parts of these galaxies keeps a more darticles in the galaxy possess a flat rotation curve in the
less constant velocity up to several luminous r§2ljj form- ~ region where the scalar fielthe dark matter dominates.
ing a radii independent curve in the outer parts of the rotaFinally we show that a spherical fluctuation of the scalar
tional curves profile, a motion which does not correspond tdield could be the dark matter in galaxies.
the one due to the observed matter distribution; hence, there Assuming thus that the dark matter is scalar, we start
must be some type of dark matter present causing the obvith the energy ~momentum tensorT,, =& @ ,
served motion. The flat profile of the rotational curves is—1/29,,®7® ,—g,,V(®), ® being the scalar field and
maybe the main feature observed in many galaxies. It is beV(®) the scalar potential. The Klein-Gordon and Einstein
lieved that the dark matter in galaxies has an almost spherpquations, respectively, are
cal distribution which decays like 1. With this distribution
of some kind of matter it is possible to fit the rotational ” dv
curves of galaxies quite well3]. Nevertheless, the main q):u_ﬁ:o’
qguestion of the dark matter problem remains; which is the
nature of the dark matter in galaxies? The problem is not _
easy to solve, it is not sufficient to find out an exotic particle Ruv= Kol @ u® .+ G, V(P)],
which could exist in galaxies in the low energy regime of . . .
some theory. It is negessary to show, as WeII?)t/hatgthis parwher.eRW is the Ricci tenSO(J—_g the determinant 9f the
ticle (baryonic or exotig distributes in a very similar manner MeUIC, ko=87G, and a semicolon stands for covariant de-

in all these galaxies, and finally, to give some reason for jtdivative according to the background space-time;v

existence in galaxies. :0A1’2'3'. that the halo h herical . d that
In previous works it has been explored, with considerable, /\SSUMING that the halo has spherical symmetry and tha

success, the possibility that scalar fields could be the dargragging effgcts on stars and d.USt are inappreci_able, .e., Fhe
matter in spiral galaxies by assuming that the scalar darRPace-time is static, the following line element is appropri-
matter distributes as an axially symmetric hfg5]. The
idea of these works is to explore whether a scalar field can
fluctuate along the history of the Universe and thus form
concentrations of scalar field density. If, for example, the ) ) .
scalar field evolves with a scalar field potentigld) ~ ®2, where A and B are arbitrary functions of the coordinate
the evolution of this scalar field will be similar to the evolu- Following the analysis made for axisymmetric stationary
tion of a perfect fluid with equation of stage=0, i.e., it SPace-timeg7], we consider the Lagrangian for a test par-

would evolve as cold dark mattfs]. However, it is not clear  ticle travelling on the space-time described by Eg.which
is

ds?=—B(r)dt®+A(r)dr?+r2d6?+r?sir? 6de?, (1)

*Email address: siddh@fis.cinvestav.mx 2L=—Bt?+Ar2+r26%+r2sirf 6¢?, (2)
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where a dot means derivative with respect to the proper time. A—(1+1) 1 T
From Eq.(2) the generalized momenta read —— =~ Ko ECI)’Z—AV(CD) , (11
r I ]
p,=—E=—Bt, ©) _ _

; ! 12 , 1+2)|= 1<D'2+Avq> 12
p=AT, I Y S R )
p€=L9=r24'9, (5) 1 AI '1 ]

, —2[1—A—Kr}=—xo Eq>'2+AV(<I>) . (13
p,=L,=r%sirfdgp, (6) r ) ’

E being the total energy of a test particle dndthe compo-  In order to solve Eqs(11)—(13), observe that the combina-
nent of its angular momentum. The Hamiltonian can be detion of the previous equationg2—1) [Eq. (11)]-4 [Eq.

fined H=p*#q,— £ and after rescaling the proper time for (12)]+(2+1) [Eq. (13] ] implies
the Lagrangian to equal 1/2 for timelike geodesics, the geo-

desic equation for material particl¢stars and dustarises: V=— 1 (14)
ko(2—1) r2’
L1 L? E?
re+ A 1+ 2B =0, (7)  This is a very important result, namely the scalar potential
r goes always as 17 for a spherically symmetric metric with

theflat curve conditionlt is remarkable that this behavior of
the squared total angular momentum. We are interested iWe stress tensor coincides with the expected behavior of the
' nergy density of the dark matter in a galaxy. We can go

circular and stable motion of test particles; therefore, th ) X .
. . L . . urther and solve the field equations; the general solution of
following conditions must be satisfied) r=0, circular tra- Egs.(11)—(13) is

jectories; (i) dV(r)/or=0, extreme ones; (iii)

LZ=L5+L%/sir? 6 being the first integral corresponding to

3?V(r)/9r?|e>0, and stable, whereV(r)=[1+L3/r? A(r)=(4—12)/(4+C(4—12)r~(1+2)),
—E?/B]/A. Following [8] it is found that the tangential ve-
locity of the test particle is C being an integration constant, and we can thus integrate
the functiond. Nevertheless, in this Rapid Communication
tangential frB’ we consider the most simple solution of the field equations
U :U‘ﬂD: — (8) . _ . . .
2B’ with C=0. Observe that for this particular solution the stress

tensor goes like tf. The energy momentum tensor is made
where a prime means a derivative with respect tbis easy  essentially of two parts. One is the scalar potential and the
to show that if flat rotation curves are required the followingother one contains products of the derivatives of the scalar
flat curve conditiorarises from Eq(8), that isB=B,r' with  field, both going as tf. Furthermore, asdé,,)2~1/r2, this
| =2(v*)2. With theflat curve conditionmetric(1) becomes means thatb~In(r), implying that the scalar potential is
B . 5 oo o ) exponentiaV ~exp(2«®) such as has been found useful for
ds’=—Bor'dt*+ A(r)dr+r?d6?+r?sin* 6de®. (9)  sructure formation scenarid®,10] and scaling solutions
This rgsult.is not surprising. Remember that the Newtoniar\f\lglt_hl%l iﬁgmgiféaéjﬁ?elzrs E:‘Ir?tligl g]cg;zri%cg? .?.lr?l?s'c?kl} ecgg‘;t_axt
potentialy is defined agoo= —exp(2))=—1-2¢)—---. ON w0120 solution for the systerl0)—(13) that we are consid-
the other side, the observed rotational curve profile in theering is
dark matter dominated region is such that the rotational ve-
locity v¥ of the stars is constant, the force is then given by 4—12
F=—(v®)?r, which respective Newtonian potential is A= 7 (15
=(v®)2In(r). If we now read the Newtonian potential from
the metric(9), we just obtain the same result. Met(i@) is I
b= \/:In(r)+<bo,
Ko

then the metric of the general relativistic version of a matter

distribution, which test particles move in constant rotational

curves. FunctiomA will be determined by the kind of sub-

stance we are supposing the dark matter is made of. Assum- _ | _ /ﬁ B

ing theflat curve conditiorin the scalar dark matter hypoth- V(@)= 21X 2 [ (P=Do)|,
esis, we are in the position to write down the set of field v

equations. Using Eq9), the Klein-Gordon equation reads
where Eqs.(15) and (16) approach asymptoticallyr (- =)

(16)

L1 ! ;1 dV(®) the case wittm=2, n=21/(2—1) in the general study of the
P+ or I+4- N - ZA do =0 (10 global properties of spherically symmetric solutions in di-
mensionally reduced space-timgs4]. Function A corre-
and the Einstein equations are sponds to an exact solution of the Einstein equations of a
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spherically symmetric space-time, in which the matter conwhere decays, which is not the observed case in galaxies.

tents is a scalar field with an exponential potential. Let usNevertheless, the energy density in the halo of the galaxy

perform the rescaling?—4r2/(4—12). In this case the decays as

three-dimensional space corresponds tsugplus of angle

(analogous to the deficit of anglene; the metric reads 1012 10—12|-|52
p~ =

Kor2 312 Pecrit

4
ds’= —Bor'dt?+dr?+ ——r?[d6?+sir® od¢?],
4-1 (18 yvhereH.g.1= J§/h1_06 Kpc is the; Hubble p_arameter apg,it
is the critical density of the Universe. This means that after a
for which the two-dimensional hypersurface area isrd  relatively small distance~ v3/h“~3 Kpc the effective
X 4)(4—12)=4xr2/(1— (v?)*). Observe that if the rota- density of the halo is similar to the critical density of the
tional velocity of the test particles were the speed of lightUniverse. One expects, of course, that the matter density
v¥—1, this area would grow very fast. Nevertheless, for adround a galaxy is smaller than the critical denfit], say
typical galaxy, the rotational velocites arev®  Paround™ 0-Ofdcir, thenre,~14 Kpc. Observe also that
~10"2 (300 kmk): in this case the rate of the difference Metric (18) has an almost flat three-dimensional spacelike
of this hypersurface area and a flat oned€)¢/(1— (v#)?) hypersgrface. The difference between a flat _ three-
~10~12 "which is too small to be measured. but sufficient todimensional hypersurface area and thf three-dimensional hy-
L 1 D . 71 . . .
give the right behavior of the motion of stars in a galaxy. Persurface area of metrid8) is ~10""< this is the reason
Let us consider the components of the scalar field as thos#hy the space-time of a galaxy seems to be so flat. We think
of a perfect fluid; it is found that the components of the that these results show that it is possible that the scalar field
stress-energy tensor have the following form: could be the missing mattéthe dark matterof galaxies and
maybe of the Universe.
Possibly the greatest problem with the present model is

—p=T0%= (19 the physical origin of the exponential potential’). First, its

(4—12) kor?’ sign is necessarily opposite to that of the exponential poten-
tials that have been considered in quintessence cosmologies
I(1+4) 1 [9-11,13. Second, although exponential scalar potentials
P=T=- —, (200  with an overall negative sign do arise from dimensional re-
(4=1%) Kor? duction of higher-dimensional gravity with the extra dimen-

sions forming a compact Einstein space of dimensien?2
[14], such models also constrain the paraméter2n/(n
+2) to take valued=1, which are inconsistent with its
interpretation a$=2(v*)? for velocitiesv® of the order of
magnitude of the rotation velocity of galaxies. Similar con-
siderations apply to the exponent of a single exponential po-
. . 4 : tential obtained by the dimensional reduction of a theor
XU(kgr?), while the effective radial pressure ifP| with a higher-dimeynsional cosmological constant and Ricci)i

=(v9)%((v?)2+2)/(L— (v9)?) X U(kor )~10" X 1(or?), : . :
i.e., six orders of magnitude greater than the scalar field de fl_at internal spac¢16]. Nonetheless, exponential potentials

i, This i e reason ufy i s ot posil o undersiand g e, ' ATEY 1Y Stingy gray. ooy vie
galaxy W.'th N_evvtonlan dynamlcs..Newton theory is _the limit hopeful that a natural origin can be found for potentials of
of the Einstein theory for weak fields, small velocities but,[he ¢ idered h
. i . L ype considered here.

also for small pressure@n comparison with densitigs A
galaxy fulfills the first two conditions, but it has pressures six We want to thank L. Arturo UréemlLopez, Michael
orders of magnitude bigger than the dark matter densityReisenberger, Daniel Sudarsky, and Ulises Nucamendi for
which is the dominating density in a galaxy. This effective many helpful discussions. We also want to express our ac-
pressure is responsible for the behavior of the flat rotatiorknowledgment to the relativity group in Jena for its kind
curves in the dark matter dominated part of the galaxies. hospitality. This work is also partially supported by

Metric (18) is not asymptotically flat, it could not be so. CONACyT Mexico, by grants 94890F.S.G) and by the
An asymptotically flat metric behaves necessarily like aDGAPA-UNAM IN121298 (D.N.), and by a cooperations
Newtonian potential providing that the velocity profile some-grant DFG-CONACyT.

while the angular pressures dPg=P = —p. The analysis
of an axially symmetric perfect fluid in general is given in
[7], where a similar result was four(dee alsd4]).

The effective density19) depends on the velocities of the
stars in the galaxyp=(v?)*(1—(v¥®)*) X 1/(kor?) which
for the typical velocities in a galaxy isp~10 12
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