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Scalar field dark matter, cross section and Planck-scale physics
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Abstract

In recent papers we have proposed that the dark matter of the Universe could be from scalar field origin. In this Letter, we
find that if the scale of renormalization of the model is of order of the Planck mass, then a scalar fieldΦ endowed with the
scalar potentialV = V0[cosh(λ

√
κ0Φ) − 1] can be a reliable model for dark matter in galaxies. The predicted scattering cross

section fits the value required for self-interacting dark matter. 2002 Elsevier Science B.V. All rights reserved.

PACS: 95.35+d; 98.62.Gq; 98.80.Cq

Keywords: Cosmology; Dark matter

1. Introduction

Recent cosmological observations suggest a flat
Universe in a current accelerated expansion but full
with 95% of unknown matter. 25% of the matter in the
Universe, widely known as dark matter, is responsible
of the formation of the large scale structure we
observe in the sky: galaxies, clusters of galaxies, voids,
walls, etc. This model of dark matter has been very
successful [1]. However, at galactic scale, numerical
simulations show some discrepancies between dark
matter predictions and observations [2]. Dark matter
simulations show cuspy halos of galaxies with an
excess of small scale structure, while observations
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suggest a constant halo core density [3] and a small
number of subgalactic objects [4].

In order to solve these discrepancies, there are
some proposals of scalar fields as dark matter in the
literature nowadays [5–10]. All of them have assumed
a polynomial scalar potential up to fourth order. At
the cosmological scale, the main results are cold dark
matter-like behavior, growing linear perturbations, the
existence of a Jeans scale and suppression of the
mass power at small scales, but these results depend
upon initial conditions imposed on the scalar field
(fine-tuning).2 At the galactic scale, where the self-
interaction becomes important, the scattering cross
section is proportional to the quartic coupling square
g2, which is a free parameter of the models. Even if
there is a model-independent result in which a particle

2 Polynomial potentials [10,11] do not have a tracker nor a self-
adjusting behavior as inverse power-law or exponential ones [12].
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with a value for the scattering cross section given
by (10) has, straightforwardly, a mean-free path of
order of 1 Mpc (see Eq. (4) in [8]), the free parameters
of the potential (the mass of the boson particle, the
quartic coupling) are very related, as we can see in
Eq. (6) of Ref. [8]. Depending of the couplingg the
mass of the scalar field could be of order of MeV,
inclusive. But, nobody has yet determined the value
of this coupling.

In this Letter, we continue investigating the hypoth-
esis of a scalar field as dark matter in the Universe with
a cosh scalar potential [13–15]

(1)V (Φ) = V0
[
cosh(λ

√
κ0Φ) − 1

]
with

κ
−1/2
0 = (8πG)−1/2 = MPl/

√
8π = 2.4× 1018 GeV

being the inverse square of the reduced Planck mass.
Using results given in renormalization theory, we cal-
culate the 2→ 2 cross section at the lowest order
for the potential (1). It is found that the result corre-
sponds to an effectiveφ4-theory in which the effective
couplingg is exponentially enhanced by the scale of
renormalizationΛ, which remains as a free parameter
of the model. This result is compared with the value
given for the cross section in self-interacting dark mat-
ter models. We found that if the scale of renormaliza-
tion of potential (1) is of order of the Planck mass,
Λ =O(MPl), the predicted scattering cross section by
mass of the scalar particlesσ2→2/mΦ can fit the value
predicted in numerical simulations of self-interacting
dark matter in order to avoid high-density dark matter
halos.

2. Scalar field dark matter with a cosh potential

We first mention the main results of the model,
more details can be found in [13,14]. The model
neither depends on initial conditions (those imposed
on the scalar field and its perturbations at the end
of inflation) nor has problems with nucleosynthesis
(provided thatλ > 5), and scales as radiation at early
times, because of its exponential behavior [12]. It
scales as cold dark matter once the scalar fieldΦ

oscillates around the minimum of the potential. Its
fluctuations are also the same than those of standard
cold dark matter but it predicts a cut-off in the

Mass Power Spectrum, now due to its quadratic
behavior. This results are enclosed in the following
relations [13,14]

V0 � 1.7

9

(
Ω0 CDM

Ω0γ

)3(
λ2 − 4

)3
ρ0 CDM,

m2
Φ = κ0V0λ

2,

(2)kJ � 1.3λ
√

λ2 − 4
Ω0 CDM√

Ω0γ
H0.

Ω0 CDM andΩ0γ are the current contributions of dark
matter and radiation to the critical energy density
ρcrit = 3H 2

0/κ0 with H0 the current Hubble parameter
and thenρ0 CDM = Ω0 CDMρcrit. mΦ is the mass of
the scalar field andkJ is the Jeans wave number at
which the Mass Power Spectrum has a cut-off, a very
important difference with respect to the standard cold
dark matter model.

We recall that the model, at this level, has only one
free parameter:λ. Nevertheless, if we expect a cut-off
in the Mass Power Spectrum about the wave number
k � 4.5h Mpc−1 [16], we can use the last of Eq. (2) to
determineλ. It turns out thatλ � 20.28, then, we also
obtain thatV0 � (3.0 × 10−27MPl � 36.5 eV)4 and
the corresponding ultra-light mass of the scalar field
is mΦ � 9.1 × 10−52MPl � 1.1 × 10−23 eV [14]. In
other words, the expected cut-off of the Mass Power
Spectrum in the Universe fixes the last free parameter
of the model. Up to this point, all parameters in
potential (1) are completely determined, we recover
the success of standard cold dark matter model at large
scales and we have in addition a cut-off in the Mass
Power Spectrum, alleviating problems of the standard
model at subgalactic level.

Some differences with respect to other scalar field
models appear because of the nonpolynomial behav-
ior of (1) in certain regimes. For instance, at cosmo-
logical scale, the exponential-like behavior provokes
no problem with initial conditions either forρΦ or the
fluctuations (no fine-tuning). Also, the Jeans scale is
related to the time at which the scalar field changes its
behavior as radiation-like to cold dark matter-like, i.e.,
related to the intrinsic parameters of the potential [14],
not to the time of cosmological radiation-matter equal-
ity as occurs for polynomial potentials [7].

Moreover, because of the presence of a scalar
field potential (1), there must be an important self-
interaction among the scalar particles. For example,
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even if scalar particles are lighter than neutrinos, the
former can cluster due to the presence of the scalar
potential. That means that this scalar field dark mat-
ter model belongs to the so-called group of self-
interacting dark matter models which are character-
ized by a 2→ 2 scattering cross section [2,17].

3. Renormalization and 2 → 2 scattering cross
section

The scalar potential (1) can be written as a series of
even powers inΦ,

V =
∞∑
n=1

V0λ
2nκn

0Φ
2n.

Working on 4 dimensions, it is commonly believed
that onlyΦ4 and lower order theories are renormal-
izable. But, following the important work [18], if we
consider that there is only one intrinsic scaleΛ in
the theory, we conclude that there is a momentum
cut-off and that we can have an effectiveΦ4 theory
which depends upon all couplings in the theory. In ad-
dition, it was recently demonstrated [19] that scalar
exponential-like potentials of the form (we have used
the notation of potential (1) and for example, parame-
terµ in Eqs. (7), (8) in Ref. [19] isµ−1 = λ

√
κ0 )

(3)UΛ(Φ) = M4 exp

(
−λ2κ0Λ

2

32π2

)
exp(±λ

√
κ0Φ)

are nonperturbative solutions of the exact renormal-
ization group equation in the Local Potential Approx-
imation (LPA) (we have taken a massless Gaussian
fixed point potential, i.e., parameterm2 = 0 in Eq. (5)
of [19]). The LPA is an approximation for the exact
renormalization group equations, in fact a nonpertur-
bative truncation, by considering only a potential term
UΛ(Φ). This allows us to consider all powers ofΦ.
Much more details can be found in [20].

HereM andλ are free parameters of the potential
and Λ is the scale of renormalization. Being our
potential a cosh-like potential (non-polynomial), it is
then a solution to the renormalization group equations
in the (LPA), too. Comparing Eqs. (1), (3), we can
identify V0 = M4τ with

(4)τ = exp

(
−λ2κ0Λ

2

32π2

)

and we see that an additional free parameter appears,
the scale of renormalizationΛ. From this, we can
assume that potential (1) is renormalizable with only
one intrinsic scaleΛ. Even though the parameters in
the scalar potential (1) were fixed by cosmological
observations, the scaleΛ remains free.

We now proceed to calculate the 2→ 2 scattering
cross section for the scalar particles following the
procedure shown in [21]. For a potential with even
powers of the dimensionless scalar fieldφ,

U(φ) =
∞∑
n=1

u2nφ
2n,

the scattering amplitudes are given by

(5)A2n =
∞∑

m=n

u2m

(
I

2

)m−n
(2m)!

(m − n)! ,

where, in our case, the dimensionlessu2m are

(6)u2m =
(
M

Λ

)4
τλ2m(Λ2κ0)

m

(2m)! ,

and the internal contractionI reads

I ≡
1∫

0

d4k

(2π)4

1

k2 + 2u2

(7)= 1

16π2

(
1+ 2u2 ln

2u2

1+ 2u2

)
.

Summing the series (5) we find

(8)A2n =
(
M

Λ

)4

λ2n(Λ2κ0
)n

τ exp

(
Iλ2κ0Λ

2

2

)
.

Since the only scale that appears naturally in gravi-
tation is the Planck mass inκ0, we can expect that
Λ ∼ O(MPl) and then 2u2 = (m2

Φ/Λ2) � 1. In con-
sequence,I � 1/(16π2). Then, the cross section for
2 → 2 scattering in the center-of-mass frame is

(9)σ2→2 = g2

16πE2 exp

(
λ2κ0Λ

2

16π2

)
,

whereE is the total energy. At this point, we can
notice the nonperturbative nature of potential (1).
Had we taken perturbatively the scalar potential (1)
with a coupling g = 4!u4 � 2 × 10−97, the self-
interaction would have appeared as extremely weak.
But, surprisingly, we can observe from Eqs. (4), (8)
that the contribution of higher-order couplings points
to an effective couplinggeff = gτ−1.
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4. Planck-scale physics and galactic consequences

An interesting dark matter model is that of a self-
interacting dark matter [2,17]. This proposal consid-
ers that dark matter particles have an interaction char-
acterized by a scattering cross section by mass of the
particles given by [2,3]

(10)
σ2→2

m
= 10−25 − 10−23 cm2 GeV−1.

This self-interaction provides shallow cores of galax-
ies and a minimum scale of structure formation, that
it must also be noticed as a cut-off in the Mass Power
Spectrum [4,16]. The cosh-potential (1) directly pro-
vides this cut-off, but the self-interaction among scalar
particles would be important for other aspects of
galaxy evolution.

We can guess the value of the scaleΛ by con-
sidering the expected result (10). Near the threshold
E � 4m2 and taking the values ofλ, mΦ , we find that

(11)Λ � (1.93± 0.01)MPl � 2.3× 1019 GeV.

The range ofΛ is very narrow because of the expo-
nential behavior. Observe that the scale of renormal-
ization is of order of the Planck mass. Recalling that
V0τ

−1 = M4, we also find that

M = (6.7± 1.9)× 102 TeV.

All parameters are completely fixed now.
An intriguing point is the appearance of two dif-

ferent energy scales, one inΛ and another one inM
in (3), and it could be not only a coincidence that the
former is ofO(MPl) and the latter is ofO(100 TeV).
It should be noted that it is the combination of these
scales which determines the observable value of pa-
rametersV0 andmΦ , at the cosmological scale, and
the value ofσ at the galactic one. This could be the
first case in which the relevant scales are hidden into
the effective theory at low-energies, as it was claimed
that the solution (3) is a solution of the renormal-
ization group equations “irrespectively of the high
energy theory” [19]. This suggests that the cosh poten-
tial could be of some importance also in the early Uni-
verse. For instance, we have explored the idea of in-
flationary scalar field dark matter within the so-called
braneworld cosmology [22].

5. Concluding remarks

The potential (1) is not motivated by particle
physics. In principle, the model should be seen as com-
pletely phenomenological, but we have assumed the
simplest hypothesis: a single minimally coupled real
scalar field with a cosh potential. In fact, the results
of the LPA presented above give theoretical support to
the model. Furthermore, potential (1) has been widely
studied in nonperturbative field theory in 1+ 1 di-
mensions where it is known as the sinh-Gordon model
(see [23] and references therein), a close relative of the
sine-Gordon model studied in theory of solitons.

We would like to mention that a realistic model
for dark matter should provide the right picture at
both cosmological and galactic scales. Most of the
models presented in the literature partially face the
whole problem, focusing only on one aspect of dark
matter [5,6,8,9,15,24]. This leads us to a wide range
of models, but our opinion is that this degeneracy
can only be broken by imposing on the models to fit
observations at all scales.

Our first motivation was to investigate the hypothe-
sis of scalar dark matter in galaxies, from a pure gen-
eral relativistic point of view [25]. At the same time,
we proved that a scalar field dark matter model with
a cosh potential indeed provides a very simple model
for dark matter at cosmological scales. In addition, the
results presented in this Letter show, for the first time,
that we can relate the cosmological model to galax-
ies, through the idea of self-interacting dark matter.
Moreover, it is known that the formation of galaxies
from dark matter involves nonlinear phenomena. We
have begun to analyze that regime by evolving nu-
merically the full Einstein–Klein–Gordon equations
finding good agreement with observations using the
same values (as suggested by thecosmological obser-
vations) of the free parameters in potential (1) [26].

But, even if the evolution of a galaxy could be
described by self-interacting dark matter models [17],
the scalar nature of dark matter can provide us with a
more interesting picture: Bose condensation [6,9]. For
instance, the relaxation time for the condensate would
be smaller than the age of the Universe if [9]

(12)geff > 6× 10−15(mΦ/eV)7/2.

We find thatΛ > 1.72MPl. Again, Λ should be of
order of the Planck mass. From this, it is clear that,
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at galactic scales, the scalar field dark matter model
with the scalar potential (1) must be studied both in
general relativity and quantum mechanics. More to the
point, this would imply the study of objects in which
quantum and gravitational interactions are at the same
level, a first approximation to quantum gravity [27].
This is beyond the purpose of this paper and is left for
future work.

Summarizing, a scalar field endowed with the
scalar potential (1) is a reliable model as dark matter in
the Universe, not only at cosmological level, but also
at galactic level because of its self-interaction. Even if
we are dealing with a nonperturbative case, the scalar
potential is renormalizable at a energy scale of order of
the Planck mass. Also, all relevant scales are hidden
into the parameters of the effective theory, but they
might be very important when performing quantum
calculations.
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