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OVERVIEW OF INHOMOGENEOUS COSMOLOGICAL MODELS*

ANDRZEJ KRASINSKI
N. Copernicus Astronomical Center and School of Sciences

Polish Academy qf Sciences, Bartycka 18
02 785 Warszawa, Poland
E-mail: akr@camk.edu.pl

ABSTRACT

The article gives a short overview of those exact solutions of the Einstein
field equations which are generalizations of the Robertson - Walker spacetimes.
The total number of papers in which such solutions were derived or discussed
is approximately 700, but the solutions can be organized into relatively few
families, each containing limiting cases of a single parent solution.

1. Introduction

In Ref. 1 it was shown that a simple generalization of the Friedmann - Lemaitre
dust solutions, found by Lemaitre himself 2 can beautifully explain, within the ex-
act theory, several processes observed in the Universe. This example shows that,
contrary to the prevailing opinion in the astronomical community, searching for
exact solutions to describe structures in the Universe does make sense. Such so-
lutions are neither too difficult to find nor too simplistic. In fact, many of them
were found already (see Refs. 3 and 4) and the challenge is to understand what
they are telling us about the Universe. In this article, a short selection of the most
important examples is presented.

2. The Szekeres - Szafron family of models

The most important contribution to this class was published by Szekeres 5. He
found just all dust solutions of the ‘Einstein equations with the metric:

ds? = dt? — ¥ dz? — 2P (dz? + dy?), (2.1)

where o and 3 are functions of (¢, z,y, z) to be determined from the Einstein equa-
tions and the coordinates of (2.1) are assumed comoving. The Szekeres solutions
were generalized by Szafron ¢ to include nonzero pressure. The metric (2.1) was
originally just a guessed Ansatz. Later, invariant definitions were provided, of which
one, due to Szafron and Collins 7 is this:

*The text of the talk actually given at the School is published elsewhere (Ref. 1). Therefore, with
the permission of the organizers, the author submitted a follow-up study of the same subject.



164

1. The metric obeys the Einstein equations with a perfect fluid source.

2. The flow-lines of the perfect fluid are geodesic and nonrotating,.

3. The hypersurfaces orthogonal to the flow-lines are conformally flat.

4. The Ricci tensor of those hypersurfaces has two of its eigenvalues equal.

5. The shear tensor has two of its eigenvalues equal.

It follows then that the two degenerate eigenspaces coincide, and that coordi-
nates can be chosen so that the metric has the form (2.1).

The Einstein equations have to be solved separately for the case ' := g—f =0,
and separately for 5’ # 0. This is because the limit %g — 0 taken in the second
collection of solutions is singular, although well-defined solutions exist if the as-
sumption ' = 0 is made in the field equations. We shall consider here only the
solutions with B’ # 0 because they seem to be more interesting for physics and
cosmology, but the class with 8’ = 0 is also well investigated (see Ref. 3).

The solutions are given by the following formulae:

ef = ®(t,z)e’ (2, (2.2)

where ®(¢, z) is determined by:

28, /@ + ®,2 /B2 + k(2)/®? + (87G/c*)p(t) = 0, (2.3)

k(z) and p(t)(the pressure) being arbitrary functions, the function e” is given by:

e’ = A(2)(z® + y*) + 2B1(2)z + 2By (2)y + C(2), (2.4)

where A, By, B, and C are arbitrary fﬁnctions, and:

e = h(z)e_"(e.ﬁ),z , (2.5)

where h(z) obeys:

h~%(2) + k(z) = 4(AC — B? — BY). (2.6)

It is seen from (2.5) that the limit gé — 0 is singular indeed. The Robertson -
Walker models are all contained here as the special case:

@(t,z) = zR(t), By = B, =0,C = 4A =1,k = k,2?, (2.7)

where kg is the R-W spatial curvature index and R(t) is the R-W scale factor, the
coordinate z becomes the spherical radius in this limit. (In fact, the R-W limit is
invariantly defined by the assumption that shear is zero, eq. (2.7) then folows by a
specialization of the coordinates). Note that eq. (2.3) is formally the same as the
R-W field equation, only the arbitrary ”constants” depend here on z.

—y
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The solutions (2.1) - (2.7) become spherically symmetric when (e”),, = 0 and
€ := AC — B? — B? > 0. If further (87G/c*)p = const = A, then the Lemaitre
- Tolman model 273 results. With (e”),,= 0 and e < 0, the solutions become
hyperbolically symmetric, with (e”),, = 0 = € they are plane symmetric. All these
subcases were extensively investigated in the literature, see Ref. 3. Here, we shall
briefly comment on the properties of the general case which has no symmetries.

The solutions defined by (2.1) - (2.7) are called ”perfect fluid solutions” just
because their energy-momentum tensor has the appropriate algebraic form. This
does not automatically imply that the source obeys the thermodynamics of a single-
component perfect fluid; it does so only if the conserved particle-number and the
entropy can be defined and obey the appropriate equations. Consequences of these
requirements for the Szafron models were investigated only recently, see Ref. 8. It
turned out that for the solutions with ' # 0 considered here a self-consistent ther-
modynamical interpretation in terms of a single-component perfect fluid is possible
only if (e¥),,= 0, i.e. only if the spacetime acquires a 3-dimensional symmetry
group acting on 2-dimensional orbits. (For the other collection of solutions, with
B' = 0, the consequences of the thermodynamical interpretation are less severe:
there exist subcases with no symmetry).

Most of the work on physical interpretation was done for the Szekeres subcase
p = 0. Eq. (2.1) then has the first integral:

3,2 = —k(2) + 2M(2)/%, (2.8)

where M(z) is another arbitrary function (it becomes Myz® in the R-W limit, where
M, is the Friedmann mass integral), and the matter density p is:

B o= AM),c [P0 ). (2.9)

Note that the integral of (2.8) (which is elementary and of the same form as in the
Friedmann - Lemaitre models) contains an additional arbitrary function o(z) such
that the solution has the Big Bang singularity at t = to(z). In a special case, to(2)
may be constant, but if it is not, then the Big Bang is not simultaneous in the
comoving time: it is a process extended in time rather than a single event. Thus,
the Szekeres model is a good example for studying more general kinds of singularity.

Other more important properties are these:

The Szekeres solution contains no gravitational waves. This was shown by Bon-
nor ° by demonstrating that the Szekeres spacetime, in spite of lack of symmetry,
can be matched to the Schwarzschild spacetime which evidently has no gravitational
waves in it, and also by Covarrubias 1 by the classical method of Einstein.
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The Szekeres solution can be reparametrized in such a way that it has the explicit
form of an inhomogeneous perturbation superimposed on the Friedmann - Lemaitre
background '!. This Goode - Wainwright representation allows for very interesting
insights, but is somewhat complicated, so it will not be presented here (see Ref. 3).
For example, the perturbation obeys an equation that has the same analytic form as
the equation governing the dust perturbation of density in the linear approximation.
The growing and the decaying mode of perturbation are readily indentified, the
former is generated by inhomogeneities in the initial density distribution, the latter
by nonsimultaneities in the Big Bang.

The perturbation of the F-L background represented by the Szekeres solution
with € > 0 was interpreted by Szekeres !? and de Souza '3 as generated by mass
dipoles placed on each sphere z = const, the axis of the dipole is in general different
on each sphere. ‘

Several subcases of the 8 # 0 collection of Szafron were separately derived as
solutions of the Einstein and Einstein - Maxwell equations, see Ref. 3 for their
detailed description and classification. A few examples are described below.

Ellis * found the plane- and hyperbolically symmetric counterparts of the Le-
maitre - Tolman solution from Ref. 2, all with nonzero cosmological constant.
Bronnikov and Pavlov '° and Bronnikov !¢ found the generalizations of all the
solutions of Ellis to the case when the dust carries an electric and a magnetic
charge, and the charges obey the Maxwell equations. The spherically symmetric
subcase of this was found by Markov and Frolov 17 for A = 0 and generalized by
Vickers 8 to the case A # 0.

As a curiosity, let us note that the plane symmetric counterpart of the Lemaitre -
Tolman solution with A = 0 was rediscovered in 5 papers. The A = 0 subcase of the
Lemaitre - Tolman model was derived from the Einstein equations in 20 papers and
books, all of them later than the paper by Lemaitre 2. The ”self-similar” subcase
of the L-T model was rediscovered in 11 papers. See Ref. 3 for details.

3. The Stephani - Barnes family of models

This is the family of perfect fluid solutions with zero shear, zero rotation and
nonzero expansion. It consists of two collections of solutions:

I. The conformally flat solution

The most general solution here is:

ds*> = D*dt* — V=2(t,z,y, 2)(dz? + dy? + dz?), (3.1)
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where:
D=Ft)V,:/V, (3.2)

V=R11+ ik(t)[(w —zo(t))* + (y — 9o (1)* + (2 — 2(®))’]},  (3.3)

F(t), R(t), k(t), zo(t),yo(t) and zo(t) are arbitrary functions of time, F' is related to
the expansion scalar § by § = 3/F. The matter denstity and pressure are given by:

(87G/c*)p = 3kR? + 3/ F? := 3C?(t), (3.4)
(87G/c*)p = —3C*(t) +2CC, V]V, . (3.5)

This solution was found by Stephani !°; it is the most general conformally flat
solution with a perfect fluid source and nonzero expansion. As seen from (3.4), the
matter density in it depends only on the comoving time, while the pressure depends
on all the coordinates. In general, the solution has no symmetry. In Ref. 8 it
was shown that the source has the thermodynamics of a single-component perfect
fluid only if the metric (3.1) - (3.3) is specialized so that it acquires an at least
3-dimensional symmetry group acting on at least 2-dimensional orbits.

The Robertson - Walker limit follows when the functions %, z¢,yo and 2o are all
constant. The function k then becomes the spatial curvature index. As can be seen
from (3.3), in the Stephani solution % is not constant and can change its sign during
the evolution (see Ref. 3).

The arbitrary functions of time cause that the evolution of the spacetime is not
determined. This is because no equation of state was imposed on (3.1) - (3.3). Un-
fortunately, the two types of equations of state that are most often used in cosmology
and astrophysics (dust, p = 0, and a barotropic equation of state, f(p, p) = 0) both
reduce (3.1) - (3.5) to a Robertson - Walker model. Other than these, no equation
of state seems realistic enough. It is fair to say that, apart from being an interesting
geometric example, the Stephani solution found no application in cosmology.

II. The type D solutions

Egs. (3.1) and (3.2) still apply here, but now V(¢,z,y, z) is determined by the
following equation (resulting from the Einstein equations):
Wy Jw? = f(u), (3.6)

where f(u) is an arbitrary function. The variable u and the function w are related
to the coordinates z,y, z, and to the function V(t,z,y, z) differently for each of the
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following cases:

IIA. The spherieally symmetric models
u=z’+y’ + 22 =r’wt,u)=V. (3.7)
IIB. The plane symmetric models
u=zw(tz) =V (3.8)

IIC. The hyperbolically symmetric models

u=gz/y,w(t,u) =V/y. (3.9)

The formulae for matter density and pressure are, of course, known (see Ref.3), but
are somewhat complicated, so we will not quote them.

These three classes of models were found by Barnes 29, but the spherically sym-
metric case was known much earlier. The first attempt that would have lead to it
if properly finished was undertaken by Dingle 2!, and the Einstein equations were
reduced to the form (3.6) - (3.7) by Kustaanheimo and Qvist 2. With f(u) = 0,
the Barnes models all become conformally flat and thus are then subcases of the
Stephani solution (3.1) - (3.3). In general, the solutions of eq. (3.6) are not elemen-
tary functions (they may be, for example, the elliptic functions, see many examples
in Ref. 3). However, with some forms of f(u), elementary solutions do exist, and a
great number of them was discussed in the literature. The case discussed most often
is f(u) = (au? 4 bu + ¢)~5/2, where a,b and c are constants. All these particular
solutions form a complicated interconnected network, see Ref. 3.

The Barnes models suffer from the same defect as the Stephani solution: with
p = 0 they reduce to the Friedmann solutions, and with the barotropic equation of
state f(p, p) = 0 they become either the Robertson - Walker metrics or the very spe-
cial and not very well understood solutions found by Wyman 22 in the spherically
symmetric case, and by Collins and Wainwright 2¢ in the plane symmetric case.
Therefore, they were not very often exploited as cosmological models, and their
cosmological interpretation is not yet satisfactorily worked out. Instead, particular
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solutions of the spherical case (3.7) were often interpreted as models of stellar col-
lapse (see Ref. 3). The three cases (3.7) -(3.8) - (3.9) are coordinate transforms of
various subcases of the single family of solutions in which:

"= %(wz 4P 422 —a)/(z 4 b),w(t,u) = V/(z +b), (3.10)

where a and b are arbitrary constants. The correspondence is then this:

When a < b%, the solution is spherically symmetric and reducible, by coordinate
transformations, to (3.7).

When a = b%, it is plane symmetric and reducible to (3.8).

When a > b2, it is hyperbolically symmetric and reducible to (3.9).

All these transformations are given in Ref. 25.

Many papers were published in which the source in the Einstein equations was
generalized for electric charge on the fluid particles or for heat-flow, see Ref. 3.
Again, several of the solutions were multiply rediscovered. The extreme cases were
the Kustaanheimo - Qvist models (3.6) - (3.7) and the spherically symmetric subcase
of the Stephani solution (3.1) - (3.3) (resulting when zg,yo and z are constant).
The first was derived in 18 papers (including one by this author, who shamefully
confesses to this), the second one - in 23 papers (see Ref. 3).

One solution in the Kustaanheimo - Qvist family is important for historical
reasons. It was found by McVittie 26 already in 1933 and represents a simple
superposition of the Schwarzschild and Robertson - Walker solutions. In a slightly
modified notation it is:

d.52 — [1 —”(t,r)]zdtz _ Rz(t)[_l_Mi[drz —|—T‘2(Cl’l92 -FSiIlZ ﬂdgﬂz)], (311)

1+ p(t,r) (1+ kr2)?

where:

1
u(t,r) = %(1 + k), (3.12)

m and k being arbitrary constants and R(t) being an arbitrary function. The
Robertson - Walker metric results when m = 0, the Schwarzschild solution in the
isotropic coordinates results when & = 0 and R = 1. Because of these limiting cases,
the Mc Vittie solution invites physical considerations, but it was not really exploited
for cosmology, the reason being the same problem with the equation of state that
was mentioned above (see Ref. 3).

In contrast to the Szekeres - Szafron models, not much is known about the
physical interpretation of the Stephani - Barnes models. Research in this direction
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should be encouraged. However, it is not productive to try to find new explicit
solutions of (3.6). So many are known already that the probability of yet another
rediscovery is just too high.

4. Other models

The two families presented so far are the largest and the most clearly connected
to the physics of the real world. In addition, many more solutions were derived
whose physical interpretation is unknown or not as well worked out. They are
listed and classified in Ref. 3; their known properties are also described there. The
short overview below should give the reader an idea about the wealth of existing
material.

4.1. Models with null radiation

These are superpositions of the Robertson - Walker models with the most im-
portant vacuum solutions, like those of Schwarzschild, Kerr, Kerr - Newman, etc.
The superpositions are not perfect fluid solutions, and their energy-momentum ten-
sors were interpreted ex post as mixtures of perfect fluid with null radiation (whose
energy-momentum tensor is T}, = 7k,k, with k*k, = 0), sometimes also with the
electromagnetic field. The solutions were in fact guessed in the course of exercises
in metric-building and interpreting. As a result, the different contributions to the
source are coupled through common constants so that, for example, the null ra-
diation can in some cases vanish only if either the perfect fluid component or the
inhomogeneity on the R-W background goes away. In particular, the superposition
of the Schwarzschild and R-W solutions in this family is different from the McVittie
solution of Ref. 26. Still, the composites reached an impressive sophistication. This
activity was started by Vaidya %7 who found a superposition of the Kerr and R-W
solutions, and the probably most sophisticated composite was found by Patel and
Koppar 2?%; it is an infinite sequence of perturbations of the flat R-W background
whose first-order term is the Kerr solution.

4.2. The 7stiff-flurd” models

These are solutions of the Einstein equations in which the perfect fluid source
obeys the ”stiff equation of state”, energy density = pressure (it can be alter-
natively interpreted as a massless scalar field). All the solutions found have a
two-dimensional Abelian symmetry group with spacelike orbits, and in the limit
of homogeneous matter distribution reproduce the Robertson - Walker ”stiff fluid”
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models. Participants in this research program claim that the models apply to the
early Universe, but the real reason behind the popularity of this activity is that such
solutions can be relatively simply generated from vacuum solutions with the same
symmetry, of which many are known. Also, the interpretation in terms of soliton
waves is carried over from the vacuum case to this case. This activity began with
the paper by Tabensky and Taub 2°, and the probably most sophisticated example
of an explicit solution was given by Belinskii **. In addition, many papers were
written about the algorithms to integrate the Einstein equations with this kind of
source, see Ref. 3 for a review. .

4.8. Perfect fluid solutions with a 2-dimensional Abelian symmetry group

Several solutions, unrelated to each other, were published. The ones most ex-
tensively discussed are those by Ruiz and Senovilla 3!. They are described in the
contribution by J. M. M. Senovilla to this volume.

4.4. Other solutions

Examples of several other kinds of solutions are known:

1. The Petrov type N perfect fluid solutions of Oleson 32.

2. The type D solution with a 1-dimensional symmetry group by Martin and
Senovilla 33. | ,

3. A few simple examples of spherically symmetric perfect fluid solutions with
shear, expansion and acceleration being all nonzero (see Ref. 3).

4. Examples of algebraically special solutions defined by special properties im-
posed on the degenerate principal null congruence of the Weyl tensor (see Ref. 3).

5. Soliton-like anisotropic perturbations propagating on the flat R-W back-
ground. They are anisotropic in the sense that pressure in the energy-momentum
tensor has different values for different directions. The most elaborate example of
an explicit solution was given by Diaz, Gleiser and Pullin **.
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