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RESÚMEN

La cosmología actual se encuentra en una etapa de observaciones de alta precisión

capaces de poner a prueba nuestro conocimiento acerca de la formación y evolución de las

galaxias. Gracias a los avances numéricos se pueden simular procesos astrofísicos como

explosiones de supernovas, radiación por vientos estelares, formación estelar entre otros.

Así mismo permiten estudiar la dinámica entre la componente visible de materia y la

presunta materia oscura responsable de mantener estables a las galaxias. Recientemente

las observaciones han revelado algunas discrepancias difíciles de explicar de acuerdo con

lo esperado teoréticamente del modelo estándar de materia oscura fría, esto ha dado en-

trada a reconsiderar nuevas alternativas de materia oscura en busca de una solución a los

problemas del modelo que a su vez sea compatible con los éxitos del modelo estándar, por

ejemplo, la materia oscura con auto interacción o el modelo de materia oscura como un

campo escalar ultra ligero. En esta tesis se abordan las consecuencias sobre los perfiles

de densidad y distribución de materia en galaxias de diferente morfología que resultan de

asumir un campo escalar ultra ligero como materia oscura. Se propone un modelo semi

analitico de formación de halos y se estudia numéricamente los efectos en la evolución

del gas alrededor de galaxias tardías debidos a la naturaleza cuántica del campo escalar

que conforma los halos en los que éstas residen. Se comparan nuestros resultados con

las ultimas observaciones en galaxias y determinamos la validez del modelo de materia

oscura escalar como alternativa, además se estudian algunas soluciones propuestas a las

discrepancias en el contexto de materia oscura auto interactuante. Ante la gran atención

que ha recibido el modelo por reproducir exitosamente las observaciones de estructura a

gran escala, es relevante estudiar y probar la consistencia del modelo en escalas galácticas

así como proveer una descripción de las discrepancias que siguen presentes en el modelo

estándar en donde las soluciones dependen fuertemente de procesos astrofísicos que aun

son fuente de debate, en vista de la gran cantidad de datos de mayor precisión en misiones

futuras enfocadas al estudio de la evolución de galaxias es importante conocer si el mod-

elo de materia oscura escalar ofrece explicaciones a las actuales observaciones y seguir no

solo como un candidato viable de la materia oscura, si no incluso mejorar el conocimiento

actual sobre la formación de nuestro universo.



ABSTRACT

Current cosmology is facing an epoch where high resolution observations and large

data sets can be used to test our actual understanding of galaxy formation and their

evolution. Numerical simulations are now able to track different astrophysical processes

such as feedback from stellar evolution, radiation pressure, star formation among others.

At the same time they serve to study the interplay of visible matter component and the

assumed dark matter required to form galaxies. Recently, some observations have revealed

discrepancies from the expected results found in the standard cold dark matter model, this

has led to reconsider new dark matter alternatives that share the successes of the standard

model and that offer attractive solutions to such discrepancies, for instance, the self-

interacting dark matter and the ultra light scalar field dark matter model. In this thesis we

focus on the consequences of assuming an ultra light scalar field as the dark matter on the

density profiles and matter distribution in galaxies of different morphology. We propose

a semi-analytic model for halo formation and study numerically the effects due to the

quantum nature of the scalar field on the surrounding gas in late type galaxies that reside

in scalar field dark matter halos. We compare our results with recent galaxy observations

and determine the viability of the scalar field model as a dark matter alternative, we

also study some proposed solutions in the context of self-interacting dark matter. Given

the attention that the model has received for the successful description of the large scale

structure, it is relevant to study and test the consistency of the scalar field model in

the galactic scale as well as to provide a description to the problems that persist in the

standard model of cosmology where the solutions are strongly dependent in astrophysical

processes that are still subject to debate. In the advent of high-precision data sets from

several galaxy surveys it is the time to assess the explanations offered by the scalar field

dark matter model if it wants not only to continue as a viable dark matter candidate that

describes our universe.





Chapter 1

Introduction

One of the great mysteries of the universe is how galaxies came to be as we observe

them now. For a long time this question has trigger the curiosity of several scientists,

through time the acquisition of data at different scales became larger and more precise

that now a fair amount of evidence from observations of supernovae, galaxy rotation curves,

gravitational lensing, offset in mass and light distribution, large scale structure, and the

cosmic microwave background (CMB) seem to indicate that there exist other forms of

matter besides the one we can directly observe, one is the dark matter responsible of

galaxy formation, and the second is dark energy believed to drive the current accelerated

expansion of the universe.

The observations support the Cosmological Principle(CP), which states that the universe

is homogeneous and isotropic at sufficiently large scales, from the CMB we observe that

deviations from isotropy are or order 10−5. In order to obtain such degree of homogeneity

we require to assume Inflation, a phase of exponential expansion in the early universe(≈
10−35 seconds after the big bang) that smooths out any previous inhomogeneities. If we

add to these hypotheses the assumption of an initial Gaussian field to generate the initial

primordial perturbations that will expand enough to form the seeds that will lead to the

large-scale structure and galaxies, then we end with the standard model of cosmology

known as cold dark matter1(CDM).

The standard model is complemented with a galaxy formation scenario known as the

hierarchical model. In this model galaxies are assembled by mergers, that is, massive

galaxies accrete less massive galaxies and grow in size and mass, this galactic cannibalism

1The standard model also takes into account the cosmological constant Λ, we will simply denote it as

CDM.

1
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repeats several times in the lifetime of the most massive galaxies, the rate of accretion

and galaxy interactions depend on the environment surrounding a given initial overdensity

region, it is then expected that galaxies in denser regions undergo collisions with galaxies

of different masses more frequently. To get a more realistic description of how galaxies

evolve in time we require getting as much information as possible of the factors that

determine its evolution, for instance, the total mass of gas and stars, stellar supernovae

feedback, its angular momentum etc., in order to account for all these complex processes

we need to have numerical simulations that are able to track the interplay of all these

aspects. It is important to notice that the implementation of algorithms that mimic the

above astrophysical processes are still in development and strongly depend on our current

understanding on the given process. With this in mind, the results of galaxy formation

from numerical simulations should be interpreted with caution.

On the other hand, on large scales the numerical simulations of galaxy formation have

been able to reproduce the observed web-like galaxy distribution when the dark matter is

assumed to be collisionless and with negligible velocity dispersion which gives the name

of “cold” dark matter. Reproducing the large-scale structure is one of the main successes

of CDM (see Figure 1). At scale of ≈ 150 Mpc the Sloan Digital Sky Survey (SDSS) has

found irregularities in the galaxy density on the level of a few percent[Hogg et al. (2005)],

however, the geometry of the universe shows only small deviations from the homogeneous

and isotropic background at the scale of few Mpc, so that large scales2 can be safely

considered as few Mpc. At this scale the baryonic processes do not play a major role

to determine the evolution of the universe, what drives the expansion is the total matter

content, as we will mention below the visible matter doesn’t seem to be the dominant

mass component and for this reason baryons3 are frequently neglected in cosmological

simulations.

Given the importance in cosmology of the CMB and large-scale structure distributions,

they provide a means to test different models. The important statistic for these two cases

is the two-point function, called the power spectrum in Fourier space. If n̄ is the mean

2In cosmology a convenient unit of distance is parsecs with 1 pc = 3.261 light years = 3.085 ×1016m.
3As a convention, baryons, hadrons and charged leptons are all termed baryons, this is a short name

for the known particles of the standard model of elementary particles.
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density of the galaxies, then we can characterize the inhomogeneities with δ(x) = (n−n̄)/n̄

or δ̃(k). The power spectrum P (k) is defined

〈δ̃(k)δ̃(k′)〉 = (2π)3P (k)δ3(k− k′). (1.1)

The angular brackets denote average over the whole distribution, δ3 is the Dirac delta

function which constrains k = k′. Equation (1.1) indicates that the power spectrum is the

spread, or variance, in the distribution, then it will be small if the distribution is smooth,

whereas it is large if there are several extremely under- and overdense regions. It gives

information about the clumpiness on scales k ∝ 1/(length). In Fig. 1.1 we observe that

dark matter is necessary to describe observational data.

§1.1 The Friedmann equations

Our universe can be described by a four-dimensional spacetime (M,g) given by a pseudo-

Riemannian manifold M with metric g. The CP implies that the spacetime admits a

slicing into homogeneous and isotropic, maximally symmetric, 3-spaces. This selection

gives a preferred geodesic time coordinate t, called cosmic or physical time, such that

the 3-spaces of constant time are maximally symmetric spaces, hence spaces of constant

curvature. The metric with these properties is the Robertson-Walker metric

ds2 = −c2 dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sen2θdϕ2)

]
. (1.2)

The function a(t) is called the scale factor and K is the curvature of the 3-space. For a

different sign of K the space is locally isometric to a 3-Sphere(K>0), a three-dimensional

pseudo-sphere (K< 0) or a flat Euclidean space(K=0). We will follow the convention to

normalize the scale factor such that today a0 = 1. Another frequently used time coordinate

is called the conformal time, τ , and it is related to t by a dt=dτ , so that the metric becomes

ds2 = a2(τ)

[
− c2 dt2 +

dr2

1−Kr2
+ r2(dθ2 + sen2θdϕ2)

]
. (1.3)

This metric can be used to describe the observed expanding Universe along with the

Einstein’s equations of general relativity that determine the evolution of the Universe
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Figure 1.1: The galaxy distribution obtained from spectroscopic redshift surveys and from

mock catalogues constructed from cosmological simulations. The top slice shows the im-

mense galaxy filament, one of the largest known superstructures in the observable universe,

known as the “Great Wall” , with the Coma cluster at the center. Also shown is a small

section of the Sloan Digital Sky Survey (SDSS), in which an even larger “Sloan Great

Wall” has been identified, containing over 10,000 galaxies and stretching over more than

1.37 billion light years. On the left it is shown one-half of the Two-degree-Field Galaxy

Redshift Survey (2dFGRS), which determined distances to more than 220,000 galaxies in

the southern sky out to a depth of 2 billion light years. The SDSS has a similar depth but

a larger solid angle and currently includes over 650,000 observed redshifts in the northern

sky. For comparison, the bottom and right panels show mock galaxy surveys from the "Mil-

lennium" simulation constructed using semi-analytic techniques to simulate the formation

and evolution of galaxies within the evolving dark matter distribution, these patches were

selected with matching survey geometries and magnitude limits[Springel et al.(2006)]
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Figure 1.2: Variance ∆2 := k3P (k)/2π2 of the Fourier transform of the galaxy distribution

as a function of scale. The solid line is the theoretical prediction of the standard model

including Λ and perturbations generated by inflation. Dashed line is a theory where no

dark matter is considered. Data are shown with error bars taken from the IRAS Point

Source Catalog Redshift (PSCz) Survey.(Figure taken from [Dodelson (2003)].)
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according to the matter that it contains, we call a solution of this system a Friedmann-

Robertson-Walker(FRW) universe.

Gµν = Rµν −
1

2
gµν R =

8πG

c4
Tµν − gµνΛ, (1.4)

Rµν is the Ricci curvature tensor, gµν is the metric tensor, Λ is the cosmological constant,

G is Newton’s gravitational constant, c is the speed of light in vacuum, R is the scalar

curvature, and Tµν is the energy-momentum tensor that due to the symmetry of space-

time it can only be diagonal with non-zero components T00 = −ρc2g00 and Tij=pgij. It

is not necessary to assume that the matter content of the Universe is an ideal fluid to

get this from of Tµν , it is simply a consequence of the homogeneity and isotropy of the

universe and it is verified for scalar field matter, a viscous fluid or free-streaming particles

in a FRW universe. The energy density ρc2 and the pressure are defined as the time and

space-like eigenvalues of (Tµν).

The Einstein or Friedmann equations for the FRW universe become

H2 :=

(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

a2
+

Λc2

3
(1.5)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
(1.6)

ρ̇ = −3H
(
ρ+

p

c2

)
. (1.7)

Where the last equation is also a consequence of the energy conservation T µν;µ = 0, and

it is a consequence of the contracted Bianchi identities. H is the Hubble “constant” or

Hubble parameter4 We parametrize the Hubble parameter by H = 100h km s−1 Mpc−1,

where observations show that h0 ≈ 0.70 ± 0.1 [Komatsu et al. (2011)].

From equation (1.7) we can obtain simple solutions if w = p/ρc2 = constant. One finds

that

ρ = ρ0(a0/a)3(1+w) (1.8)
4The Hubble parameter in cosmic time is related to the comoving Hubble parameter H(τ) by

H(t)=H(τ)/a−1. A comoving coordinate system is a system of coordinates fixed with respect to the

overall expansion of the universe, so that a given galaxy’s location in comoving coordinates does not

change as the Universe expands. This allows distances, locations, etc. in an expanding homogeneous and

isotropic cosmology to be related solely in terms of the scale factor.
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where ρ0 and a0 denote the values of the energy density and the scale factor at the present

time t0. Unless otherwise stated, the subscript 0 refers to quantities evaluated at present

time.

If the energy density is dominated by one component with w = constant and we neglect

the curvature K, then we different scale factors depending on the dominant component.

For non-relativistic matter, usually refer as dust, pm = 0, for radiation(photons or any kin

of massless particles) pr= ρrc
2/3. A cosmological constant corresponds to pΛ = −ρΛc

2,

inserting these in eq. (1.8) we obtain

ρm ∝ a−3, a ∝ t2/3 ∝ τ 2 w = 0, (dust), (1.9)

ρr ∝ a−4, a ∝ t1/2 ∝ τ w = 1/3, (radiation), (1.10)

ρΛ = const., a ∝ exp(Ht) ∝ 1/|τ | w = −1, (cosmol. const.), (1.11)

One can define the adiabatic sound speed cs as

c2
s =

ṗ

ρ̇
(1.12)

where the derivative is taken respect to cosmic time. From eq. (1.5) we can define a

critical value for the energy density for vanishing curvature and cosmological constant

ρc(t) =
3H2c2

8πG
, (1.13)

where ρc(t) is called the critical density. The ratio ΩX = ρX/ρc is the “density parameter”

of the component X, it indicates the fraction that the component X contributes to the

expansion of the universe. For the different components we get Ωm(t0) = ρm(t0)/ρc(t0),

Ωr(t0) = ρr(t0)/ρc(t0), ΩΛ(t0) = Λc2/3H2
0 , and ΩK(t0) = −Kc2/(a2

0H
2
0 ).

We can separate Ωm = Ωdm +Ωb, where Ωdm is the dark matter component and Ωb is the

baryonic density parameter, for the radiation we can separate in photons and neutrinos

Ωr = Ωγ +Ων . Current constrains for all these cosmological parameters come principally

from the CMB combined with large scale structure data given h2
0Ωm,0 = 0.134, h2

0Ωb,0 ≈
0.023, h2

0Ωdm,0 ≈ 0.111, h2
0ΩΛ,0 ≈ 0.357, h2

0Ωr,0 = 4.15 × 10−5, h2
0Ωγ,0 = 2.47 × 10−5,

h2
0Ων,0 = 1.68×10−5, with the fiducial value h0 = 0.7 [Massimo(2008), Spergel et al.(2007),

Page et al. (2007)] we get Ωm,0 = 0.27, Ωb,0 ≈ 0.046, Ωdm,0 ≈ 0.22, ΩΛ,0 ≈ 0.73 Ωγ,0 ≈
5.04× 10−5, Ων,0 ≈ 3.42× 10−5, Ωr,0 ≈ 8.47× 10−5.
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This suggests that ΩK ≈ 0, therefore the geometry of the universe is remarkably flat and

this parameter will be neglected in calculations. Assuming K=0, the age of the universe

is of 13.69 Gyr. We observe that baryons constitute only ∼ 5% of the total energy density

and that there is strong evidence of an unknown component.

§1.2 Overview of dark matter models

The standard model assumes dark matter behaves as dust, there is no particular informa-

tion on its nature. There are several particle candidates for the dark matter thoroughly

reviewed in [Bertone et al. (2005), Feng (2010), Martin et al.(2008)], depending on its the

general properties they can be classified as cold dark matter, self-interacting dark matter,

warm dark matter, ultra light scalar field dark matter, etc.

One of the preferred candidates of cold dark matter are Weakly Interacting Massive

Particles (WIMP) whose mass range is typically from 10 GeV/c2 to 1 TeV/c2, these

kind of dark particles interact in the weak sector with ordinary matter. These par-

ticles became the default CDM candidates and are studied in great detail given that

their cross section yields a value of Ωdm fairly close to the one observed. Another can-

didate widely discussed as a CDM candidate is the axion with mass in the range 10−3 −
10−6eV/c2[Sikivie & Yang (2009)], this particle originates from the breaking of the Peccei-

Quin symmetry in the early universe[Peccei & Quinn (1977)] which solves the CP prob-

lem of strong interactions. In the context of warm dark matter are the sterile neutrinos,

their mass scale is ∼ keV/c2 and they are thermal relics with a higher velocity disper-

sion that CDM candidates(hence warm dark matter) and they follow Fermi-Dirac statis-

tics. However recent cosmological constraints to the mass of the sterile neutrino seem

to create tension for this candidate[Villaescusa-Navarro & Dalal (2011), Viel et al.(2013),

Souza et al.(2013), Macció et al.(2012)].

The other contenders that will be treated in more detail in this thesis are the ultra light

scalar fields and self-interacting dark matter, the main motivation to study these models

stems from the accurate descriptions offered to explain some of the problems encounter at

the level of galaxies in the CDM model, in addition to retaining the successful description

at large scales.
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The above list is not limited to the these classes of dark matter and there exists other

models that can agree with current data, but ultimately there is a trend to apply the

Occam’s razor 5, our best bet is to keep acquiring higher resolution observations at all

scales that let us assess our current theoretical models and eventually we get to unravel

some of the mysteries of the universe.

We have provided the bases of the current standard model of cosmology that will be

the benchmark when comparing results in other alternative dark matter models. As we

mentioned, the standard model struggles to solve some issues at the level of galaxies that

will be discussed in the next chapter in more detail, we also present the current status

of the proposed solutions. In Chapter 3 we explore thoroughly the ultra light scalar field

dark matter pay close attention to the expected properties of the dark matter halos that

result from the model and examine their impact on the visible matter in galaxies. Due to

the increasing interest in the self-interacting dark matter model we dedicate Chapter 4 to

expose the status of this model.

Throughout the thesis several quantities are given in solar units and will always be denoted

by a subscript �. We will use units where c = 1, Planck constant h = 1, except in some

cases where they help to make the discussion clearer.

5Occam’s razor is a principle devised by William of Ockham. The principle states that among com-

peting hypotheses, the one with the fewest assumptions should be selected. Other, more complicated

solutions may ultimately prove correct, but in the absence of certainty the fewer assumptions that are

made, the better.
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Chapter 2

Current status of the ΛCDM model

§2.1 Initial fluctuations in the matter-dominated era
We can measure the position of an object in the sky from its angular coordinates, but in

order to know how far away it is from us we can use as the third coordinate the redshift z

experienced by photons emitted from the object. A spectral line with intrinsic wavelength

λ is redshifted due to the expansion of the universe, if it is emitted at some time t an

observer on Earth will see it today with wavelength λ0 = λa0/a(t) = (1 + z)λ, this leads

to the definition of the cosmic redshift

z(t) + 1 =
a0

a(t)
. (2.1)

For small redshifts z <<1 Hubble found that objects at a physical distance d = a0r away

from us, it recedes with speed v = H0d, this is called the Hubble’s law. This law can be

related to redshift z approximately by making a Taylor series expansion to lowest order

in z: a(t0) ≈ a(t) + ȧ(t0− t), if in addition the distance to the object is not too large then

the time interval is simply the distance divided by the speed of light t0− t=d/c, therefore

1 + z ≈ 1 +
ȧ

a
(t0 − t) ≈ 1 +H0

d

c

from where it follows that cz = H0d = v, valid at low redshifts. This is the method usually

applied to measure the Hubble constant. In cosmology it is typical to deal with object far

away from us, this makes the redshift a suitable coordinate to identify the time at which

events take place.

As mentioned in the introduction the deviations from the homogeneous cosmic microwave

background and the large scale structure suggest we need to go beyond the standard model

11
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of elementary particles(normal matter) to explain the structure of the universe, one of the

implications is the addition of a new dark matter(DM) component.

The temperature we see today of the CMB photons is 2.725 K, as photons are massless

and behave as radiation their temperature decreases with the adiabatical expansion of

the universe as T = a0T0/a(t), at the temperature Tdec ∼ 3000 K the mean free path of

the photons grows larger than the Hubble scale, this means that they effectively decouple

from baryonic matter and the universe becomes transparent to them, by eq. (2.1) this

corresponds to zdec ' 1100, at this time the universe was t ' 105 yr old. From this

point, the small perturbations in the density of baryons can grow to form the galaxies we

observe today. Anisotropies in the CMB tell us how the universe looked like when it was

some hundred thousand years old being excellent probes of the perturbations and a good

reference point for numerical studies.

On the other hand, the non-relativistic dark matter will clump and form overdensity

regions, the standard CDM stops interacting with the rest of the particles at an earlier

epoch than zdec, the DM overdensities can start growing before the decoupling of photons

from baryons so that by the time photons travel freely baryons follow the gravitational

potential wells previously generated by the cold dark matter. In fact, from eqs. (1.9),(1.10)

it follows that after a certain time the matter will start dominating over the energy density

of radiation, from the observed values of the density parameters of matter and radiation

this happens at a redshift

1 + zeq =
a0

aeq
=
h2

0Ωm,0

h2
0Ωr,0

= 3228.91

(
h2

0Ωm,0

0.134

)
, (2.2)

that is zeq ' 3000 > zdec, after this time of matter-radiation equality the universe is

effectively dominated by non-relativistic matter until the moment dark energy starts being

dominant (z ≈ 0.7), during this epoch DM fluctuations can grow. Eventually, at relatively

recent times, perturbations in the matter ceased to be small and become the nonlinear

structure we see today. Thus, photons decouple from baryons when the universe is already

well into the matter-dominated era, we have seen that the visible matter contributes a

small fraction to Ωm and it is then reasonable to consider that the main component

that determines the evolution of matter fluctuations will be the dark matter, hence a

first approach to study the evolution of density fluctuations consists on analyzing the dark
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matter growth and its distribution. In order to follow the spatial and time evolution of the

density perturbations up to the time where they collapse to form virialized gravitational

configurations it is necessary to rely on numerical simulations.

In the standard model, dark matter configurations grow and collapse before galaxies as the

latter decouple from photons at a later time, in their evolution DM fluctuations will cluster

and form even larger under- and overdense regions, these large structures strongly attract

more baryons that much later produce stars and form the observed galaxies surrounded

by the large dark matter halos. We can get insight into the galaxy distribution from the

dark matter one as we expect that baryons move according to the underlying dark matter

potentials.

For this reason, a first step that is taken to study the growth of DM perturbations in cold

dark matter simulations consists in neglecting baryons, in order to compare with galaxy

surveys it is required to use semi-analytical models describing the baryonic physics and

use matching techniques to link galaxies with the dark matter background distribution.

Recalling that baryons aren’t the dominant component in Ωm, we see that taking the ap-

proach of first studying only the dark matter evolution, it is possible to get an idea of what

to expect for the galaxy distribution, as seen in Fig 1.1 it is an excellent approximation.

It is important to notice that the DM distribution depends on the dark matter properties

(cold, warm, etc.). Assuming it is cold and collisioness at all scales results in dark matter

halo formation at practically all scales. A direct consequence of these hypotheses is that

DM halos will form accreting other halos several times increasing their masses and their

sizes, as more massive structures are assembled, smaller halos in the neighborhood will

also be accreted turning this merging process quite chaotic. Nevertheless, once the merger

rate slows down, the number of halos that survive and the orbiting subhalos that remain

bounded within a given distance from the final massive host can be compared with obser-

vations applying techniques like abundance matching that relates the galaxy stellar mass

to the halo mass, we should always consider similar environmental conditions as galaxies

that are in more isolated regions present different structural properties.

The above discussion displays the relevance of the CMB in the study of structure formation,

the catch is that it offers a detailed map of the building blocks that will give rise to the

observable universe. A detailed discussion of how the primordial fluctuations arise from
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Figure 2.1: Relation between the halo mass and the stellar mass using the abundance

matching technique for the Millenium Simulation(MS) and Millenium II(MS-II), taken

from [Guo et al(2011)]. The halo mass is taken as the maximum mass that the halo ever

attained in the simulation. Green symbols are for central galaxies, while red symbols are

for satellites. The blue curve is the relation derived directly from the SDSS stellar mass

function and from subhalo abundances in the MS and the MS-II under the assumption

that the two quantities are monotonically related without scatter [Guo et al(2010)].

inflation can be found in [Liddle & Lyth (2000)] and i will not pursue it further because

it would get us sidetracked from our main focus, galaxies and dark matter. Below we

describe how simulations make use of the CMB to evolve linear perturbations up to the

nonlinear regime.

§2.2 Large scale structure in CDM
There is evidence from the CMB that the primordial fluctuations are well described

by an initial random gaussian distribution, there are codes[Hahn & Abel(2011)] in the

literature that allow to generate initial conditions with these characteristics. Evolv-

ing the CMB density field since zdec ∼ 1100 becomes extremely time consuming in
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terms of computing time and memory (although recent technological advances are mak-

ing this goal feasible). Knowing that the fluctuations evolve linearly far later than z ∼
120, it is desirable to begin a simulation much later than zdec but still in the linear

regime, fortunately there are codes like CAMB and CMBFast[Seljak & Zaldarriaga(1996),

Zaldarriaga, Seljak, & Bertschinger(1998), Zaldarriaga & Seljak(2000)] for calculating the

linear cosmic microwave background anisotropy spectra based on integration over the

sources along the photon past light cone. Using these codes allow us to obtain the initial

conditions for the fluctuations for a given set of cosmological parameters compatible with

observations and that can be used in CDM simulations, most of the latter are taken to

start at z = 120 which is still in the linear regime and run until z = 0.

Due to the collisionless nature of the cold dark matter, a successful numerical imple-

mentation to describe this type of dark matter bases on calculating the interactions of

N particles of a given mass, simulations that use a code based on this implementation

are called N-body simulations. One of the most reknown codes of this type is called

GADGET[Springel(2005)], this has been modified and optimized through the years with

the latest version being GADGET-3, the code have been expanded to include hydrody-

namics, it can simulate the gravitational interaction of gas, stars and dark matter as

well as several astrophysical processes that are involved during the galaxy formation pro-

cess(stellar feedback, gas cooling, stellar metallicity, star formation, etc.).

The advantage of simulations is the possibility to study the nonlinear regime, that is, once

the initial fluctuations become massive enough that their gravitational pull counters the

expansion of the universe they stop expanding and start collapsing under its own gravity,

this time is called the turnaround. The study of the collapse of a given CDM halo has

to be followed numerically due to the nonlinear effects that enter during its virialization

process.

One of the great successes of the CDM model is the astonishing parallel of the large

scale structure resulting from simulations and the current observations of galaxies in the

universe. This extraordinary reproduction of the cosmic structure in CDM N-body sim-

ulations is one reason to place it as the benchmark. There has been several cosmological

simulations with different degrees of resolution and all of them find similar results on large

scales, one the most recent ones is The Bolshoi simulation measuring one billion cubic light-
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years compared to the Milky Way that is only about 100,000 light-years long or the Local

Group of just 10 million light-years in diameter. The simulation covered a massive portion

of the universe, and it simulated the interactions of 8.6 billion dark matter particles. Start-

ing from the relatively smooth dark matter distribution of the early universe discerned from

the CMB, the Bolshoi simulation tracked the universe’s evolution to the present epoch as-

suming the CDM model. In similarity to lower resolution simulations, it displays knots of

dark matter, long filaments and clusters of galaxies, all gravitationally dominated by dark

matter. These structures are also found in DM-only simulations, but they do not directly

predict anything about the galaxies themselves, requiring an extra step in order to bridge

the gap with observations. Two dominant approaches have been used to establish the link:

(1) the technique of semi-analytical modeling, whereby baryonic physics are modeled at

the scale of an entire galaxy, and applied in post-processing on top of DM simulations, and

(2) hydrodynamic simulations, whereby the evolution of the gaseous component of the uni-

verse is treated using the methods of computational fluid dynamics. The latter approach

enables the complex interaction of the different baryonic components (gas, stars, black

holes) to be treated at a much smaller scale, ideally yielding a self-consistent and power-

fully predictive calculation. Hydrodynamical cosmological simulations have a high compu-

tational cost and have usually targeted specific problems, only very recently have several

groups started projects following approach (2), one of them is the Illustris simulation. The

technical details of the simulation can be found in the webpage1 and some introductory ar-

ticles are [Vogelsberger et al.(2014), Vogelsberger et al.(2014b), Genel et al.(2014)], given

the massive data sets that it produced the project is still ongoing and much of the analysis

has yet to be done, it is worth pointing out these type of projects may change some of

the previous results that were obtained following approach (1), but in the meantime, it is

worth discussing the known results that were obtained using the link (1).

One useful technique to link the number DM halos and the galaxy population in the

universe assuming they should match is called abundance matching, it essentially links the

observed galaxies in the expected dark matter halo according to semi-analytical models

which imposed a set of rules based on observed properties of gas and stars in galaxies that

are then implemented by hand in simulations[Guo et al(2011)]. A relevant parameter is

1http://www.illustris-project.org/
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the efficiency with which halos are able to condense gas at their centers and form stars

and is called “galaxy efficiency”. Abundance matching models suggest that this galaxy

efficiency depends strongly on halo mass, for systems like the Milky Way(MW) with halo

mass of M200 := M(r = r200) ∼ 1× 1012 M� (r200 is the radius in which the density is 200

times the critical cosmological density ρc), about 20% of the available baryons are turned

to stars. For halos of an order of magnitude smaller this number drops quickly to ∼ 5%,

and plumbers to even less than 1% for dwarf galaxies inhabiting halos with mass M200 <

1×1010 M� (see Fig. 2.1). Dwarf galaxies is a general term for galaxies that are faint, they

can have stellar masses at least two orders of magnitude below the stellar mass of a Milky

Way-like galaxy. There are several dwarfs with luminosities as low as L ∼ 1×103L�. Two

of the most massive dwarfs nearby are the small and large Magellanic Clouds visible by

the naked eye on dark nights from the Southern Hemisphere.

Unfortunately, observing these faint objects is challenging, the galaxy luminosity function2

is only reliably measured for dwarfs with stellar masses log(M∗) ∼ 8.5 and above, not

fainter. Thus, if we are interested on dimmer dwarfs, like dwarf spheroidals or ultra faint

dwarfs, we have to make an extrapolation of the halo mass-galaxy mass relation observed

towards faint dwarfs, assuming that the stellar mass-halo mass relation is correct, then

for all dwarfs with measured stellar mass we know the halo they live in, in fact from Fig.

2.1, we expect that all dwarfs with stellar masses larger than M∗ ∼ 1 × 106 M� live in

halos with virial mass M200 = 1 × 1010 M� and larger. We require more data to confirm

the validity of extrapolating the abundance matching (AM) relation to the faint end of

the luminosity function, the potential candidates that will provide this confirmation are

expected to be dwarf and ultrafaint dwarf galaxies, moreover, if we consider these are

systems that are dominated by dark matter, we would expect baryons to move according

to the underlying potential, therefore it would be reasonable to expect that the kinematics

of the gas and stars are almost completely determined by the DM halo distribution. This

can be checked by comparing the circular velocity profile predicted by such dark halo

with the measured rotation curve of the dwarf, as the baryons are considered to have a

2The luminosity function gives the number of stars or galaxies per luminosity interval. The luminosity

is the total amount of energy emitted by a star, galaxy, or other astronomical object per unit time. It is

related to the brightness, which is the luminosity of an object in a given spectral region.
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minor contribution to the total mass, hence acting as tracers of the much more dominant

dark matter potential, the observed profiles should be remarkably similar to the DM only

profile. Despite the accuracy of AM for MW like galaxies or larger, it was found that its

extrapolating to lower masses breaks, meaning that there exist more scatter for the low

mass dwarfs.

There has been a great deal of work trying to explain why most of the dwarfs of log(M∗/M�)

=106-107 are inconsistent with the expected M200 > 1 × 1010 M� and seem to be better

described with lower mass halos. Unfortunately, lowering the mass also translates into

a lower stellar mass leading to a characteristic density divergent profile that is in ten-

sion with the flatter profiles found in observed dwarfs. The success of AM in galaxies of

log(M∗) ≥ 8.5 is undeniable, what remains fuzzy is the cause of the discrepancy of CDM

predictions and the low mass galaxies. This conundrum is just one of the cornerstones

that motivates exploring other dark matter models.

§2.3 Testing CDM with dwarf galaxies

2.3.1 Cusp-core problem

Analyzing a statistical sample of CDM halos from the high resolution simulations, there

exists some common structural properties in the DM distribution of such collapsed struc-

tures despite the chaotic history associated to the formation of each halo. One such

property is the universal density profile known as Navarro-Frenk-White (NFW) profile

[Navarro et al.(1996)]. The NFW profile emerges from numerical simulations that use only

CDM and are based on the ΛCDM model [Navarro et al.(1996), Navarro et al.(1997)]. Its

density profile is

ρNFW (r) =
ρi

(r/Rs)(1 + r/Rs)2
(2.3)

ρi is related to the density of the universe at the moment the halo collapsed and R2
s is a

characteristic radius. We notice that in collissionless CDM the inner region of DM halos

show a density distribution described by a power law ρ ∼ rα with α ≈ −1, such behaviour



19

Figure 2.2: The inner slope of the dark matter density profile plotted against the radius of

the innermost point. The inner density slope α is measured by a least squares fit to the in-

ner data point as described in the small figure. The inner-slopes of the mass density profiles

of the 7 THINGS dwarf galaxies are overplotted with earlier papers and they are consistent

with previous measurements of LSB galaxies. The pseudo-isothermal model with its char-

acteristic core seems to provide a better fit to the data than the NFW model. Gray sym-

bols: open circles [de Blok et al.(2001)]; triangles [de Blok & Bosma(2002)]; open stars

[Swaters et al.(2003)].
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Figure 2.3: Observed galaxies in the Local Group shown in proportion to their measured

distances. The most massive galaxies in th group are our Milky Way and M31(Andromeda

galaxy).Image by Andrew Z. Colvin“5 Local Galactic Group (ELitU)”.
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is what is called a “cusp”. The associated rotation curve3 (RC) for a NFW halo is

VNFW = V200

√
ln(1 + cx)− cx/(1 + cx)

x[ln(1 + c)− c/(1 + c)]
(2.4)

where x = r
r200

, the concentration parameter is c = r200/Rs, and is related to the circular

velocity V200, measured at a radius r200, the usage of this radius stems from the similarity

to the virial radius. V200 and c are related by

logV200 = 3.22− log[g(c)]− log(
h

2
) (2.5)

where

g(c) =
c2

ln(1 + c)− c/(1 + c)
(2.6)

and h0 = H0/100kms−1Mpc−1.

Observations in the central region of luminous galaxies often lack the resolution to ac-

curately determine the density slope, specially as the visible matter also contributes to

the mass budget in a non negligible way for small radii. On the other hand, the cusp or

divergent behavior of the density profile is always maintained is DM-only simulations, in

fact, for halos that accrete smaller halos with steeper slopes in their density profiles, the

final merged halo will reform its cusp[Binney & Tremaine (2008)]. This property is found

at all scales, from scales of massive galaxy clusters with halo masses Mh ∼ 1014−15M� to

the less massive dwarf halos with Mh ∼ 1010M�.

Given the omission of baryons in the above simulations, it is sensible to compare the results

with galaxies where baryons are not dominant, the suitable candidates that satisfy this

condition are dwarf and low surface brightness(LSB) galaxies. Startlingly, high resolution

observations in nearby galaxies seem to be better described by a profile with a shallower

central density going as ρ ∼ r0 within r ≤ 1 kpc(see figure 2.2). This discrepancy between

observation and the CDMmodel received the name of cusp-core problem. It is worth noting

that even in state-of-the-art N-body simulations with much higher resolution adequate to

3The rotation(velocity) curve of a galaxy is a plot of the magnitude of the orbital velocities of the

particles that move in that galaxy versus their radial distance from that galaxy’s centre. As galaxies are

inside dark matter halos, in general the total rotation curve is the result of the dark matter component

and the baryonic matter rotation curve.
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resolve the inner kpc the resulting density profile is still cuspy. Adding baryons may reduce

the problem, but as we see below this is not the only issue that seems to required baryons

to agree with observations.

2.3.2 Missing satellite problem

In the hierarchical galaxy formation scenario a large number of halos are consumed by

more massive ones, however, there are still many dark matter substructrures that are not

disrupted and that remain orbtting a massive halo, these surrounding structures are called

subhalos and the central massive one is called the host halo. The number of subhalos can

be predicted by CDM simulations, in particular, it is found that the low mass halos are

always more numerous, given the apparent universal NFW profile these halos don’t suffer

strong tidal stripping so as to be completely destroyed, resulting in host with a large

population of low mass subhalos. This picture also appears at larger scales, in galaxy

clusters the gravitational potential is stronger and can capture more subhalos, given the

above properties of CDM halos there will be also a great abundance of dwarfs halos,

some are associated to a particular host but some others are not, the latter are called

halos(galaxies) in the field, simply representing that they are somewhat isolated and are

not satellites that belong to a specific host.

It is straightforward to compare the number of observed satellites to the predicted subhalos

using AM. As the more precise observations are in our local neighborhood, an obvious

candidate is our own Milky Way or the Andromeda galaxy(M31) and their respective

satellite galaxies. One way to proceed is to choose a MW mass halo from a cosmological

simulation that resembles as close as possible our environmental conditions, it is frequent

to have more than a Milky Way analogue in these simulations, this suggests that we have

to count the subhalos of all these MWs and give a statistical result. Another way is

to simulate with a much higher resolution an isolated MW like system with much more

detailed so that it can have a closer resemblance to our observed Via Lactea, such systems

are choosen from large simulated boxes that allow the formation of at least one halo of

Mh ∼ 1012M�. Among the most famous simulations that study MW halos is the Aquarius

project[Navarro et al.(2010), Springel et al.(2008)]. The Aquarius simulations study an
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isolated halo similar in mass to that of the Milky Way at various resolutions, about 200

million particles at r200 and one at even higher resolution with almost 1.5 billion particles

within this radius. These simulations are being used to understand the fine-scale structure

predicted around the Milky Way by the standard structure formation model.

A problems emerged when the abundance of satellites expected from CDM simulations

was found to be overpredicting the number of dwarf satellite galaxies in the MW and

M31, this mismatch was initially of an order of magnitude larger[Klypin et al.(1999)]

and called the “missing satellite problem” (MSP), nowadays, the discovery of more ul-

tra faint dwarfs (UFD) within the MW halo has reduced the missing satellite problem

(e.g.[Simon & Geha(2007)]),The problem can be rephrased by saying that there are more

subhalos with circular velocities Vcirc < 30 km/s than observed satellites around MW and

M31.

There are solutions to this problem that based on redefining the MSP, for instance, con-

sidering only the mass within 600 pc M0.6[Strigari et al.(2007)], doing this it was found

that models where the brightest satellites correspond to the earliest forming subhalos or

the most massive accreted objects both reproduce the observed mass function.

Another possibility is that despite the existence of DM subhalos, most of them will not

host galaxies, hence, aren’t observed. This solution relies on the efficiency of star forma-

tion, which requires baryons to be included forcing us to use hydrodynamical simulations.

It is likely that dwarfs are the most affected by reoinization, the epoch where the neu-

tral hydrogen get ionized, at early times the smallest galaxies first dominate but given

their small gravitational potentials their own star formation blows out their primordial

gas through their own supernovae and heating of their environment. Therefore, they stop

forming stars for not much longer after reionization and if the star formation was very in-

efficient at that time, only the DM halo will remain today and no galaxy will be observed.

Three year WMAP data found that reionization began at z = 11 and the Universe ionized

by z=7.[Spergel et al.(2007)]. Assuming the unrealistic case of an instantaneous reioniza-

tion, the combination of results from the Planck mission, WMAP polarization, CMB and

BAO measurements yield a redshift of zreio = 11.3 ± 1.1.[Ade et al. (2007)]. Although a

value of 7 is in much better agreement with the quasar data. In view of the uncertainty

of zreio the baryonic solution to the MSP is still uncertain. Moreover, if dwarf galaxies
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are the primary source of ionizing photons during the epoch of reionization they will be

star forming, but this continual star formation will again overproduce the abundance of

the Via Lactea’s satellites at z=0[Boylan-Kolchin et al. (2014)].

Incorporating baryons in current simulations seems to be mandatory, but the required

fraction of baryons to dark matter has to be carefully controlled, as pointed in Peñarrubia

et al. (2012), solving the cusp-core problem with strong stellar feedback may result in

luminosities at odds with those of MW satellites. Before jumping to result from hydrody-

namic simulations let us see a more recent issue related to the above discrepancies.

2.3.3 The Local Group: Too-Big-to-Fail

Our galaxy resides in a group of galaxies that spans a diameter of 3 Mpc termed the Local

Group (LG). The group’s most massive members are the Milky Way and M31(Andromeda)

galaxies, these two spiral galaxies have a system of satellite galaxies. The LG comprises

around 78 galaxies[Pawlowski et al.(2013)]. The group itself is a part of the larger Virgo

Supercluster (i.e. the Local Supercluster[Tully (1982)]). In fig. 2.3 we see the distribution

of most of the galaxies in the LG.

In the spirit of abundance matching, it is prudent to expect that the most massive satellites

of the MW reside in the most most massive subhalos that are found in simulations, a

similar situation is natural for other hosts with their respective galaxies. As mentioned,

observations of nearby dwarfs suggest high mass-to-light ratios(10-1000M�/L�) so the

kinematics of stars are good tracers of the DM halo distribution.

By carefully studying the results of CDM simulations that emulate the MW, it was found

that the central densities of MW dSph galaxies are required to be significantly lower

than the densities of the largest subhalos found in collisionless DM simulations to agree

with the observed data(Boylan-Kolchin et al. 2011; Garrison-Kimmel et al. 2014). CDM

simulations of the Aquarius Project suggest that the MW-size halos should inhabit at least

eight subhalos with maximum circular velocities exceeding 30 km/s, while observations

indicate that only three satellite galaxies of the MW posses halos with maximum circular

velocities > 30 km/s. This discrepancy is not particular of the MW, it is expected for

M31 and even in galaxies outside the LG. This issue differs from the MSP in that there
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are multiple subhalos that have no visible counterpart, from the above results, out of the

8 subhalos with similar masses, only 3 have a visible pair even though the remaining 5

are just as massive to cool hydrogen, form stars and eventually host a galaxy, so why

do we observe only three galaxies when we should see eight? These subhalos would be

massive“failures” because they fail to form galaxies, and this issue is known as the Too-

big-to-fail(TBTF) problem.

In virtue of the hierarchical model, we could expect that the presence of our close com-

panion M31 may change our results since it is as massive as the MW and at a distance

of 775 kpc. If we are more strict we should consider the Large Magellanic Cloud (LMC)

that is ∼ 41kpc from us. In the search of a fair comparison a first approach was to

analyze pair of galaxies resembling the MW and M31. This was done in the ELVIS4

suite[Garrison-Kimmel et al. (2014a)].

The analyses reveal that the TBTF persists within the virial radius of each host, in fact,

it is also present at the scale of the LG (see fig. 2.4). In their study the authors found

that within 300 kpc of the Milky Way, the number of unaccounted-for massive halos

ranges from 2 - 25 over their full sample. Moreover, this “too big to fail” count grows as

the comparison is extended to the outer regions of the Local Group: within 1.2 Mpc of

either giant(the MW and M31) they find that there are 12-40 unaccounted-for massive

halos. This count excludes volumes within 300 kpc of both the MW and M31, and thus

they conclude that these systems should be largely unaffected by any baryonically-induced

environmental processes. According to abundance matching, all of these missing massive

systems should have been quite bright, with M∗>106M�. This outcome was to be expected

as more massive hosts will attract more dark matter that can also end as DM subhalos.

An evident solution would be to consider tidal stripping, although this seems plausible

for galaxies that are in orbits with close pericenter distance to their host it is unclear

that this mechanism is the main reason to reach agreement with current data, principally

because several studies have shown that tidal stripping of CDM halos with cuspy profiles

4ELVIS is a suite of high-resolution, cosmological zoom-in simulations. The suite contains 48 halos, each

with up to 15 million particles within the virial radius and 53 million particles within an uncontaminated

sphere centered on each halo. Half of these halos exist in Local Group-like configurations, chosen to mimic

the Milky Way and Andromeda in mass and phase space configuration.
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is not effective enough to destroy the subhalos, however, we need to include baryons in

the studies to assess this solution, in the end what we observe are galaxies. Notice that

the TBTF problem remains for galaxies in the field where tidal stripping is subdominant.

2.3.4 Alignment of satellite galaxies in MW and M31

Until very recently, the peculiar distribution of satellites around the MW and M31 caught

the attention of several astronomers. Dark matter simulations predict the accretion of var-

ious subhalos around massive hosts, but statistically its distribution tends to be isotropic.

Unexpectedly, the observed nearby satellites of our galaxy and those in M31 show a certain

degree of spatial arrangement. Both galaxies of the Local Group are surrounded by thin

planes of mostly co-orbiting satellite galaxies, the vast polar structure (VPOS) around the

Milky Way and the Great Plane of Andromeda (GPoA) around M31[Ibata et al.(2013)].

This issue is further review in [Pawlowski et al.(2013)].

Some of the proposed scenarios trying to explain the LG galaxy structures as either orig-

inating from cosmological structures or from tidal debris of a past galaxy encounter. On

large scales, the cosmic web consists of massive clusters that are connected with dark

matter “filaments”, these filaments serve as fountains of particles that feed dark matter to

massive concentrations of halo clusters and superclusters, it is quite similar to networks

of neurons in our brain, in fact, it is outstanding that the large scale structure of the

universe presents such similarity to the micro scale in our brains, whether this appar-

ent coincidence hides a deeper meaning is an interesting question that may deserve to

be subject to further scrutiny, for now i will leave it as a side comment. Getting back

to the satellites, one of the scenarios concentrates on how the satellite distribution is

correlated to the direction of filaments, mainly in intersections of the filamentary struc-

ture. During the formation of a MW-mass host, part of the dark matter flows along

the filament so that as DM clumps and halos form in such filament, their peculiar ve-

locities can share a preferential direction, as a result, when they become bounded to a

massive host they can possess a particular orientation that today give the pattern of

a plane[Pawlowski et al.(2013), Ibata et al.(2013), Pawlowski & McGaugh (2014)]. This

scenario can explain the orientation of the satellites in one host galaxy, under the same
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framework we would expect that the satellites in M31 and our galaxy, both being relatively

close and part of the LG, share a particular direction in one plane, what is observed is that

each set of satellites has its own plane implying that they don’t originated in the same

filament. Looking at the vast cosmic structure in principle it should be possible to find

two host with the desired satellite distribution, in contrast, it has proven difficult to find

pairs of hosts whose satellites are in planes with the observed inclinations. There exist the

uncertainty that the MW and M31 are cosmologically rare, it may be that the criteria to

look for akin systems in simulations needs to be redefine or simply that there is a different

formation mechanism tied to the halo shape that is not fully understood. Also explored

is that they are tidal debris of a past galaxy encounter, the details and feasibility of this

solution requires a more convoluted study. Although it is worth noting that because of the

proximity of M31 and MW to us, it is possible to obtain accurate measurements of these

systems, however this doesn’t imply that such pairs are statistically significant of the.

There currently exists no full detailed model which satisfactorily explains the existence of

the thin symmetric LG planes.

§2.4 Baryons to the rescue, or not?

The above issues led to much effort in improving the resolution of simulations so that

regions of order kpc could be resolve and the results are not biased by numerical errors

due to a lack of convergence. The problem that attracted most of the attention is the

cusp-core issue. This results undoubtedly change when astrophysics are involved, due to

the large concentration of DM particles in the center of subhalos, we need to identify an

energetic process capable of efficiently expelling the DM and disperse to a more uniform

distribution to form a core. This naturally points to supernova feedback, each supernova

type II comes along a massive explosion injecting ∼ 1051ergs to the surrounding gas, after

several of these events the dark matter which interacts gravitationally will be modified

and in the best scenario a core will be formed. Under this picture most hydrodynamical

simulations have focused on modeling supernovae feedback(FB) to accurately implement

it into numerical simulations.

Reproducing the general properties of dwarfs in a cosmological setting has been quite chal-
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Figure 2.4: Plotted are the rotation curves for all halos identified as massive failures

around one of the simulated ELVIS pairs, both within 300 kpc (black lines) and in the

Local Field surrounding it (light blue lines), along with constraints on the dwarf galaxies

in each region (black squares denote MW satellites and open light blue squares indicate

field galaxies (sizes are proportional to M∗). Not shown are halos with Vpeak < 30 km s−1.

Image from [Garrison-Kimmel et al. (2014b)].
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lenging. So far the relation of stellar mass and halo mass inferred from local galaxy counts

implies a suppression of galaxy formation by a factor of∼ 103[Garrison-Kimmel et al. (2014b),

Brook et al.(2014)], if stellar feedback is the main ingredient to achieve the desired effect

we need to get a physically realistic model that so far has proven difficult.

As for a feedback-driven core formation, there is still debate. One of the most success-

ful simulations at producing cores in dwarf galaxies with supernova feedback have sug-

gested a transition mass of M ∼ 107 M� below which core formation becomes difficult

[Governato et al.(2012)]. Using a slightly different approach, [Di Cintio et al.(2013)] find

similar results, where the cusp-core transition should be most effective when the ratio of

stellar mass to dark matter halo mass is relatively high, they find cores in massive dwarfs

with M ∼ 108 M� and Mvir ∼ 3 ×1010.5 M�. It may be that at some mass scale, galaxy

formation becomes stochastic (e.g., [Boylan-Kolchin et al.(2011), Power et al.(2014)]). Re-

cent work by [?], however, suggests that stochasticity may appear at lower mass scales

(Mvir ∼ 109 − 109.5 M�). The results of Di Cintio et al. (2013) and Governato et al.

(2012) agree reasonably well, in contrast, results from a different set of high resolution

simulations with a simpler implementation of stellar feedback have not produced cores

in dwarf galaxy halos at any mass ([Vogelsberger et al.(2014)]), even though a number of

other observables are well matched. One caveat of these simulations is that the sub-grid

inter stellar medium (ISM) and star formation (SF) model leads to SF histories smoothed

in time, compared to the bursty star formation found in the above models or in the highly

resolve explicit feedback models ([Hopkins et al.(2014)]).

Until now, feedback has needed ad-hoc approximations due to the lack of resolution of

molecular clouds where star formation takes place, for instance, turning off cooling for

material heated by SNe. It is then unclear that the sub-grid feedback recipes capture

the expectations from stellar evolution models and end forming large cores. To this end,

[Oñorbe et al.(2015)] simulated two typical isolated dwarfs with M ∼ 1010 M� using a

more realistic explicit implementation of feedback using the code GIZMO[Hopkins (2014)].

They found that their simulated dwarfs present bursty star formation, in the event that

it continues until late times a core of ∼ 1 kpc can form and at the same time the dwarf

galaxy can sit on the M∗ vs Mvir relation to mathc the LG stellar mass function via

abundance matching. The success depends strongly on the star formation histories, indeed,
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they conclude that the presence of cores in galaxies with M∗= ∼ 106 − 107 M� requires

substantial late time star formation. It is also questionable if subsequent accretions could

reform the cusp.

Although the cusp-core issue remains an open question, we can conclude that in hydrody-

namical CDM simulations transforming a cusp into a core seem to be strongly dependent on

bursty periods of star formation and a steady supernovae feedback to avoid the cusp regen-

eration. Recently [Trujillo-Gomez et al.(2015)] found in their simulations that radiation

pressure from massive stars is the most important source of core formation, not thermal

feedback from supernova, which has been the primary mode used by other groups that have

produced cores. This approach may seem promising, but from the experience with feedback

models, forming a core may result in a mismatch with other galaxy properties, it remains

to be seen whether the radiation pressure model is consistent with other observables such

as the stellar metallicity-stellar mass correlation [Gallazzi et al.(2005), Kirby et al.(2013)].

Regarding the MSP and the TBTF, many attempts to decrease the subhalo population

focus on the interaction of the satellites with the galactic disk. In general, the closer

the subhalos are to the disk, the larger the influence and their destruction. Simulations

studying the dynamics of several dwarf subhalos in different orbits with and without the

presence of a disk component in the host show that halos that are accreted possessing an

initial cuspy profile will always leave a remnant, they are not fully destroyed even if its

outer envelope is heavily dispersed. For subhalos in orbits whose pericenters are smaller

than the disk length, the effects are enhanced such that only a compact structure remains

loosing almost 90% of its initial mass [Peñarrubia et al.(2010), Łokas et al.(2012)]. CDM

simulations don’t predict cores naturally and baryons must be taken into account, but

for comparison, the tidal stripping effects where also studied assuming a CDM halo with

an empirical core profile, it was found that subhalos with initial core profiles that fully

dive inside the disk several times are completely torn down, whereas they can survive if

their pericenter distances are larger than the disk’s size albeit with more mass lost than

their cuspy analogues. These simulations have considered controlled orbits, the results

look promising to get a lower abundance of satellites even though some subhalos may still

be present after the mass lost from the disk they will be devoid of stars, it remains to be

seen that orbits that come from cosmological simulations fall into the same regime of close
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disk-subhalo interactions as these idealized simulations.

The potential success of tidal stripping in dwarfs led to consider a combined model of

feedback and tidal stripping in the hope that the circular velocities are reduced and alle-

viate the tension suggested in the TBTF issue. This combination of effects was studied

in high resolution cosmological hydrodynamical simulations of Milky Way-massed disk

galaxies[Zolotov et al.(2012), Brooks & Zolotov (2014)], they found that supernovae feed-

back and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite

galaxies, the bursty star formation can reduce dark matter densities forming shallower

inner density profiles in the massive satellite progenitors (Mvir ≥ 109 M� , M ≥ 107 M�
) compared to DM-only simulations. In the progenitors of the lower mass satellites are

unable to maintain bursty star formation histories, due to both heating at reionization

and gas loss from initial star forming events, preserving the steep inner density profile pre-

dicted by DM-only simulations. After infall (when galaxies enter the virial radius of the

host galaxy), tidal stripping further reduces the central densities of the luminous satellites,

particularly those that enter with cored dark matter halos, consistent with the expected

results where each effect is treated separately. It seems that an over simplification of the

MW potential where the disk is not taken into account may be the source of the discrep-

ancies in DM-only simulations, even taking this solution at face value, it would imply that

if cores are indeed present in galaxies in the field, where interactions with the disk are of

minor importance, supernovae feedback will be left as the most efficient agent contributing

to core formation, as mentioned in the cusp-core issue, forming cores in CDM simulations

is often correlated to late bursty star formation but at the same time we require a strong

suppression of star formation in low-mass haloes in order to explain the small number of

visible satellites, unifying the solutions may require some tuning or a better understanding

of the dark-baryons coupling as well as the galaxy formation process itself.

We have seen that including hydrodynamics into CDM simulations has provided different

scenarios that could explain the long standing problems of DM-only simulations. Up until

now there is not unanimity in the cause of these conflicts, it may seem that supernova

feedback seen as the main mechanism to form cores in dwarfs requires detailed modeling

so as not to aggravate the fit to other observations. Curiously, the few cases that have sim-

ulated DM halos with pre assumed flat inner profiles seem to lead to simpler descriptions,
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specially since no fine tuning of stellar feedback is needed, although cores are not natu-

rally produce in CDM they can arise in alternative dark matter models, this in turn leads

to study in more detail the explanations that these other models offer. Unquestionably,

dwarf galaxies will be a key factor to unravel the properties of dark matter.

The list of issues that I have presented in this chapter forms just part of other puz-

zling observations, such as the how statistically significant is the “Bullet cluster” in sim-

ulations [Hayes et al.(2006), Lee & Lim(2010)], the details of the relation between the

specific angular momentum distribution of DM halos and the one observed in the gas

component[Bullock et al. (2001), van den Bosch et al. (2001)], why there are less observed

galaxies in the local void than in simulations[Peebles & Nusser (2010)], the formation of

rings and shells in early type elliptical galaxies in non interacting environments, etc.

[Hau & Forbes (2006), Taehyun et al. (2012), Koprolin & Zeilinger (2000)].

All these observations are intriguing enough to explore the outcome from modifications to

the CDM model, mainly at small scales given its extraordinary success at large scales, as it

appears that the non appearance of core profiles in CDM halos is tightly related to all the

problems, in the next chapter we will then explore one model in which the core formation

is simply a natural consequence of the dark matter properties, this type of solution is

usually preferable to invoking poorly understood astrophysical processes
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Scalar field dark matter

§3.1 The quantum dark matter paradigm

In CDM there are several dark matter candidates, many of them proposed from extensions

of the standard model of particles, among which the most popular ones at present are in the

form of weakly interacting massive particles (WIMPs), see [Goodman & Witten (1985),

Scherrer & Turner(1986), Drukier et al. (1986)]. The main characteristics that identify

the WIMPs are being collisionless and massive (> GeV).

Furthermore, current dark matter detection experiments, both direct and indirect ones,

have not yet discovered any compelling signals of WIMPs [Bauer et al. (2013)]. As a mat-

ter of fact, while WIMPs are mostly expected to be the lightest supersymmetric particle in

the Minimal Supersymmetric Standard Model(MSSM), [Griest & Kamionkowski (2000)],

recent data from the Large Hadron Collider has found no evidence of a deviation from

the standard model of particles on GeV scales, significantly restricting the allowed region

of MSSM parameters [Aad et al.(2013)]. It is clear that the microscopic nature of dark

matter is sufficiently unsettled as to justify the consideration of alternative candidates for

the CDM paradigm.

One of these assumptions is to assume that the dark matter particles are described by a

spin-0 scalar field(SF) with a possible self-interaction and a very small mass. There are

several scalar fields that have been predicted by a variety of unification theories, e.g., string

theories and other multi dimensional theories [Carroll (1998), Arkani et al. (1999)]. The

bosonic particles we are envisaging are typically ultralight, with masses down to the order

of 10−33eV/c2. This small mass suggests the possibility of formation of a Bose-Einstein

33
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condensate (BEC), i.e., a macroscopic occupancy of the many-body ground state. In

principle, for a fixed number of (locally) thermalized identical bosons, a BEC will form

if nλ3
deB » 1, where n is the number density and λdeB is the de Broglie wavelength. This

is also equivalent to the existence of a critical temperature Tc , below which a BEC can

form.

Recently the idea of the scalar field has gained interest, given the uncertainty in the pa-

rameters the model has adopted different names in the literature depending on the regime

that is under discussion, for instance, if the interactions are not present and the mass is

∼ 10−22eV/c2 this limit was called fuzzy dark matter[Hu, Barkana & Gruzinov(2000)] or

more recently wave dark matter[Schive et al.(2014)], another limit is when the SF self-

interactions are described with a quartic term in the scalar field potential and dominate

over the mass(quadratic) term, this was studied in [Goodman (2000), Slepian &Goodman]

and called repulsive dark matter or fluid dark matter by[Peebles(2000)].

Notice that for a scalar field mass of ∼ 10−22eV/c2 that is non-relativistic the critical

temperature of condensation for the field is Tcrit ∼ m−5/3 ∼TeV, which is very high, if

the temperature of the field is below its critical temperature it can form a cosmological

Bose Einstein condensate, if it condenses it is called Bose-Einstein condensed(BEC) dark

matter[Colpi,Shapiro,& Wasserman(1986), Guzmán & Matos(2000), Matos & Ureña(2001),

Bernal et al.(2010), Harko(2011), Chavanis & Harko (2012), Robles & Matos(2013)]. One

type of bosonic particle suggested as a major candidate for dark matter is the QCD axion.

It is the pseudo-Nambu-Goldstone boson in the Peccei-Quinn mechanism, proposed as a

dynamical solution to the strong CP-problem in QCD. For the axion to be CDM, it has

to be very light, m ∼ 10−5 eV/c2 ([Sikivie(2012)]). More recently [Sikivie & Yang (2009)]

mentioned that axions could also form Bose-Einstein condensates, however, the result was

contested in [Davidson & Elmer(2013)], this suggest that the condensation process should

be study in more detail to confirm it can remain as BEC dark matter.

In [Ureña-Lopez(2009)], it was found that complex scalar field with m<10−14eV/c2 that

decoupled being still relativistic will always form a cosmological Bose-Einstein conden-

sate described by the ground state wavefunction, this does not preclude the existence

of bosons with higher energy, particularly in dark matter halos. A fully relativistic

treatment(kBT >> mc2) of Bose-Einstein(BE) condensation was given by [Kapusta (1981),



35

Haber & Weldon (1982)], including the relationship between BE condensation and sym-

metry breaking of a scalar field. Those authors showed that, for an ultra relativistic ideal

charged boson gas, described by a complex scalar field,

Tc =
(~3c)1/2

kB

(
3q

m

)1/2

(3.1)

where q is the charge per unit proper volume. This does not take self-interactions into

account. In [Haber & Weldon (1982)] it was shown that, in the case of an adiabatically

expanding boson gas, if the scalar field has a generic quartic self-interaction, then the

bosons must either be condensed at all temperatures (i.e. at all times) or else never form

a BEC. In this case, the charge per unit comoving volume, Q (Q = qa3), and entropy per

unit comoving volume, S, are both conserved. In their work they establish the condition

for the formation of a BEC
Q

S
=

5

4πkB

(
λ̂

4

)1/2

(3.2)

where λ̂ is the dimensionless coupling strength of the quartic self-interaction, in natural

units. The SF is assumed to have has essentially zero entropy per unit comoving volume

and for the typical boson masses we are interested,m<10−14eV/c2, the conserved charge

density in the comoving frame, Q, is extremely high, given the observed dark matter energy

density today ρdm,0, for Q ≈ ρdm,0/(mc
2). Therefore, inequality (3.2) would be satisfied

and thus almost all of the bosons occupy the lowest available energy state. It is important

to notice, that the condensation process requires Bose-Einstein statistics in the first place,

i.e., local thermalization [Sikivie & Yang (2009), Erken et al.(2012)], it has been argued

that thermal decoupling within the bosonic dark matter can occur when the expansion rate

exceeds its thermalization rate, without disturbing the condensate, however, just like with

QCD axions the thermalization might break with the expansion of the universe, although

a large number of dark matter bosons would stay in the ground state and the classical

field remains a good description, it will no longer be completely BEC dark matter, this is

still something that remains to be seen.

From the above discussion we see that the smallness of the boson mass is its characteristic

property and cosmological condensation is a likely consequence. The preferred mass of the

scalar field dark matter(SFDM) lies close to ∼ 10−22eV/c2 satisfying the above constraint,
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although there are still uncertainties on the mass parameter, in order to avoid confusion

with the already known axion and help with the identification in future works, we find it

useful and appropriate to name the scalar field dark matter candidate, given the above

characteristics we can define it as a particle with mass m<10−14eV/c2, being commonly

described by its wavefunction, we have named this DM candidate psyon.

It is worth emphasizing that despite the variety of names given to the model the main

idea mentioned above remains the same, it is the quantum properties that arise due to

the small mass of the boson that characterize and distinguishes this paradigm, analogous

to the standard cosmological model represented by the CDM paradigm whose preferred

dark matter candidates are the WIMPs(weakly interacting massive particles), we see that

all the above regimes SFDM, Repulsive DM, Axion DM, or any other model assuming an

ultra light bosonic particle comprise a single class of paradigm, which we call Quantum

Dark Matter(QDM) paradigm.

As pointed before, in the QDM paradigm the small mass of the dark matter boson leads

to the possibility of forming cosmological condensates, even for axions which are non-

thermally produced and have masses in 10−3−10−6eV/c2[Sikivie & Yang (2009)], from here

we can obtain a characteristic property that distinguishes these dark matter candidates

from WIMPs or neutrinos, namely, the existence of bosons in the condensed state, or

simply BICS, from our above discussion the axion and psyon are included in the BICS.

Now that we have given a classification of the variants and regimes of QDM it is of particu-

lar interest for us the SFDM alternative with psyons of typical mass m ∼ 10−22eV/c2 such

that its de Broglie wavelength is of order ∼ kpc, relevant for galactic scales and cosmo-

logical scales. Indeed, the quantum behavior of the field has created much interest in the

model due to its success to account for some CDM discrepancies with dark matter proper-

ties only, for example, the small mass keeps the central density from increasing indefinitely

due to the uncertainty principle in contrast to CDM simulations where supernova feedback

is required[Governato et al.(2010), Governato et al.(2012), Pontzen & Governato(2012),

Scannapieco et al.(2012)].

§3.2 Cosmology in SFDM
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The study of scalar fields in cosmology has been widely explored in the context of inflation,

dark energy and dark matter. As it is known from quantum mechanics one intrinsic

property of particles is its spin, in particular scalar fields correspond to the spin-0 fields.

If the SF is complex it has a corresponding particle and antiparticle, whereas for a real

scalar field there is only one particle associated to the field, being itself its own antiparticle.

Remembering that at large scale our universe satisfies the cosmological principle, we begin

the study of the cosmological expansion of the different components(radiation, matter,

cosmological constant, etc.) by first deriving the Friedmann equations in the context of

SFDM. In the following we use c=1.

The Lagrangian density of a real scalar field Φ minimally coupled to gravity1 is

LΦ = −1

2
gµν∂µΦ∂νΦ− V (Φ), (3.3)

where gµν is the space-time metric. The kinetic energy term is KΦ := −1
2
gµν∂µΦ∂νΦ,

V = V (Φ) is the potential of the SF that encompass all the information about the mass and

self-interaction. Thus, the gravitational interaction with the field is accounted for through

the metric gµν , and the Lagrangian density for the metric is given by the Einstein-Hilbert

form

LEH =
R

2κ2
(3.4)

where κ2 = 8πG and R is the Ricci scalar which is obtained by the contraction of the

Ricci tensor (Rµν) as R = Rµ
µ. The total Lagrangian is then

L = LEH + LΦ (3.5)

The action to derive the equations of motion is then

S =

∫
M

L
√
−gdx4 (3.6)

where M is the four-dimensional manifold and g := det(gµν) is the determinant of the

metric, we are using the (-,+, +, +) metric signature, applying the principle of least action

δS = 0 yields the Einstein field equations varying respect to gµν and when the variation

1The field is not coupled to other fields or to the scalar curvature or Ricci scalar R, e.g., there are no

terms of the form ΦR or similar products.
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is respect to the SF Φ it yields the evolution equation for the scalar field, specifically :

Gµν := Rµν −
1

2
gµνR = κ2Tµν(Φ), (3.7)

where Gµν is called the Einstein tensor and Tµν(Φ) is the energy-momentum tensor for the

SF defined as

Tµν(Φ) := −2
δLΦ

δgµν
+ gµνLΦ = ∂µΦ∂νΦ− gµν

[
1

2
gαβ∂αΦ∂βΦ + V (Φ)

]
. (3.8)

In case a cosmological constant is included the right hand side(rhs) of (3.7) is modified as

in (1.4). For the scalar field equation,

�Φ + V,Φ = 0, (3.9)

� = gαβ∇α∇β is d’Alembertian operator, with

∇α∇βΦ = ∂α∂βΦ− Γσαβ∂σΦ

where the connection coefficients of an affine connection in a coordinate basis are the

Christoffel symbol Γσαβ defined

Γαβγ =
1

2
gαβ
(
∂gργ
∂xβ

+
∂gβρ
∂xγ

− ∂gβγ
∂xρ

)
. (3.10)

The comma in V,Φ is the derivative respect to the scalar field and

�Φ = − 1√
−g

∂µ
[√
−g gµν∂νΦ

]
. (3.11)

As noted in the introduction the Tµν(Φ) is diagonal and can be written

Tµν(Φ) = (ρΦ + pΦ)uµuν + pgµν (3.12)

if we make the analogy with a perfect fluid we can define the 4-velocity uµ, from (3.8) we

get

ρφ = −1

2
∂µΦ∂µΦ + V (Φ), (3.13)

pΦ = −1

2
∂µΦ∂µΦ− V (Φ), (3.14)

uµ = − ∂µΦ√
−∂µΦ∂µΦ

. (3.15)
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For a cosmological SF that evolves in a FRW universe u0=1 and ui=0 and we have2

ρφ =
1

2
Φ̇2 + V (Φ), (3.16)

pφ =
1

2
Φ̇2 − V (Φ), (3.17)

the field has no dependence on the spatial coordinates x, indeed, as a consequence of the

cosmological principle Φ(t,x) = Φ(t). The Klein-Gordon equation for the scalar field in

a FRW universe reads

Φ̈ + 3HΦ̇ + V,Φ = 0. (3.18)

or in conformal time

Φ′′ + 2H(η)Φ′ + V,Φ = 0. (3.19)

Following the standard notation of an equation of state, we can relate the pressure and

density of the SF defining p = ωΦρ with

ωΦ =
1
2
Φ̇2 − V (Φ)

1
2
Φ̇2 + V (Φ)

. (3.20)

From (3.20) we notice that

1. if Φ̇2 >> V , then p ' ρ: in this regime the scalar field behaves as a stiff fluid;

2. if V >> Φ̇2, then ω ' −1: in this regime the scalar field is an inflation candidate.

From the conservation of the energy-momentum tensor T µνΦ;ν = 0, we get for µ = 0

ρ̇Φ + 3H(ρΦ + pΦ) = 0. (3.21)

The above equation describes the cosmological evolution of the field which is assumed

to describe the dark matter. Baryons, photons,neutrinos and the cosmological constant if

included, may be treated as perfect fluids with a barotropic equation of state pθ = (θ−1)ρ,

for baryons θb = 1, for photons and neutrinos θγ = θν = 4/3, and θΛ = 0. Thus the system

2Notice that (1.3) can also be written as ds2 = a2(η)[−dη2 + δij(x
k)dxidxj ] with δij the Kronecker

delta, spatial indices denoted by latin letters run from 1 to 3, while greek letters run from 0 to 4.
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Figure 3.1: Left: Cosmological evolution of the density parameter Ω of all the components

in CDM. Right: Cosmological evolution of Ω for all components but now the dark matter

is a psyon(scalar field) with a mass m = 1× 10−23eV/c2.

that describes the expansion of the universe with a scalar field as the dark matter in a

FRW universe is called the Eintein-Klein-Gordon (EKG) given by

H2 =
κ2

3
(ρΦ + ρb + ργ + ρν + ρΛ), (3.22)

Φ̈ + 3HΦ̇ + V,Φ = 0, (3.23)

ρ̇b + 3HρB = 0, (3.24)

ρ̇γ + 4Hργ = 0, (3.25)

ρ̇ν + 4Hρν = 0, (3.26)

ρ̇Λ = 0. (3.27)

3.2.1 Cosmological evolution of a scalar field with V (Φ) = m2Φ2/2

The above system of equations can be solved for a specific potential V (Φ). One of the

potentials of much interest is

V (Φ) =
1

2
m2Φ2, (3.28)

this potential specifies the mass of the scalar field V,ΦΦ = m2, we are concerned with BICS,

in particular with psyons(very low mass bosons) whose mass is ∼ 10−22eV, henceforth we
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will omit the subscript Φ for the SF quantities. Clearly the pressure and density will be

ρ =
1

2
Φ̇2 +

1

2
m2Φ2, (3.29)

p =
1

2
Φ̇2 − 1

2
m2Φ2, (3.30)

with

ω =
1
2
Φ̇2 − 1

2
m2Φ2,

1
2
Φ̇2 + 1

2
m2Φ2,

. (3.31)

A numerical solution of the EKG system was given in [Magaña et al.(2012)], in Figure (3.1)

we show the background evolution of all the components for the potential V (φ) = m2Φ2/2

using a mass of 1 × 10−23eV from a = 10−6 until today a = 1. For comparison we also

show the evolution in the standard model (CDM) where the fluid is pressureless p=0.

We observe that results using a psyon with potential (3.28) are completely equivalent to

those in CDM, this is a major success of the model. For the SFDM we have the early

phase where photons and neutrinos(radiation) are dominant, later on as the universe keeps

expanding the matter and radiation energy densities are equal at aeq ∼ 1.6 × 10−4(using

data from WMAP-73), from this point the matter is the dominant component and small

DM fluctuations can start growing as we will see below. The time in which the photon’s

energy is small enough that electron can start combining with protons to form atomic

nuclei, the decoupling time, happens at a ∼ 10−3 (z ∼ 1000) similar to CDM. We see that

as expected, the cosmological constant will dominate the late time dynamics at zΛ ∼ 0.7.

But what causes the SFDM to behave as a CDM cosmologically? The answers lies in the

fact that despite the rapid oscillation of the field arond the minimum of V (Φ), the time

average of the pressure is 〈p〉 ≈ 0, this in turn makes 〈ωΦ〉 ≈ 0, hence the equation of

state for the psyons tends to zero and the field behaves effectively as a pressureless fluid

(dust) implying ρ ∼ a−3[Matos et al.(2009)] and hence mimics the CDM model.

Before jumping to the study of linear fluctuations, we will discuss the case where the

two-body interactions of the SF are included in the potential.

3In this calculation Ωdm,0 = 0.226, Ωb,0 = 0.0455, Ωγ,0 = 4× 10−5, Ων,0 = 2.7× 10−5, ΩbΛ,0 = 0.728,

TCMB,0 = 2.702K and h = 0.704.
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3.2.2 Cosmological evolution of a SF with self-interactions.

As this case is of particular importance in our future study of galaxies in the SFDM, we

get back to physical units (c 6= 1 6= ~) to make the discussion more clearly in the hope

that the upcoming results are easily followed.

When self-interactions are included in a real scalar field the Lagrangian density for the

field is

LΦ = −1

2
gµν∂µΦ∂νΦ− V (Φ), (3.32)

with

V (Φ) =
1

2

m2c2

~2
Φ2 +

λ̂

4~2c2
Φ4, (3.33)

where the dimensionless self-interaction parameter is λ̂. This same scalar field model

has been studied considering it to be complex [Pitaevskii & Stringari(2003), Woo & Chi-

hue(2009)] It is this latter case that will occupy our attention in this subsection, we will

follow the approach of [Li et al.(2014)]. We write then the Lagrangian for the complex

scalar field as

LΨ = − ~2

2m
gµν∂µΨ∂νΨ− V (Ψ), (3.34)

and

V (Ψ) =
1

2
m|Ψ|2 +

λ

4
|Ψ|4. (3.35)

We choose to denoted the complex scalar field by Ψ. We recall that any two Lagrangians

that differ by a constant yield the same equations of motion, therefore if Φ is complex in

(3.32) we can relate (3.33) and (3.35) by

LΦ →
1

~c
LΦ := LΨ (3.36)

Φ→
(
~3c

m

)1/2

Ψ (3.37)

noting that λ = λ̂
2

~3
m2c

. The units are then [LΨ]=J/m3, [Ψ]=m−3/2, [λ]=Jm3, [Φ]= J,

[λ̂]=1. For example, for the QCD axion with decay constant f ' 1012 GeV we have a

dimensionless coupling λ̂ ≈ 10−53[Sikivie & Yang (2009)]. It is a good approximation to

ignore higher order interactions when the bosonic gas is dilute, i.e. when the particle self-

interaction range is much smaller than the mean inter particle distance, as the cosmological
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expansion dilutes the field, it is sufficient to consider only two-body s-wave scatterings,

then the coupling coefficient λ is a constant and related to the s-wave scattering length

as as λ = 4π~2as/m, which is the first Born approximation. An interesting property of

the Lagragian for a complex field is the global U(1) symmetry (Ψ → eiθΨ), by Noether’s

theorem this leads to a conserved charge density Q in real space, or equivalently, the

conservation of the comoving charge density Qa3, this conserved charge corresponds to

the particle number and it should not be confused with the electrical charged of a particle,

in our case the scalar field is not electrically charged. Moreover, the charge is defined

as the total number of bosons and the total number of anti-bosons, in particular, the

formation of a BEC the charge is essentially equal to the total number of bosons. The

conservation of particle number is an inherent property of complex scalar fields minimally

coupled to gravity and is not present for a real scalar field, as the latter does not possess

a U(1) symmetry, in fact, we already mentioned that in this case the boson is its own

anti-boson.

The cosmological evolution is determined by the Friedmann equation

H2 =

(
da/dt

a

)2

=
8πG

3c2
(ρΦ + ρb + ργ + ρν + ρΛ), (3.38)

and the energy conservation equation

∂ρ

∂t
+

3da/dt

a
(ρ+ p) = 0. (3.39)

Where now the density and pressure are

ρ =
~2

2mc2
|∂tΨ|2 +

1

2
mc2|Ψ|2 +

1

2
λ|Ψ|4 (3.40)

p =
~2

2mc2
|∂tΨ|2 −

1

2
mc2|Ψ|2 − 1

2
λ|Ψ|4 (3.41)

and (3.23) becomes

~2

2mc2
∂2
t Ψ +

~2

2mc2

3da/dt

a
∂tΨ +

1

2
mc2Ψ + λ|Ψ|2Ψ = 0. (3.42)

Due to the oscillations of the field over time, it is convenient to define the oscillation angular

frequency as ω = ∂tθ. This system of equations is solved numerically in [Li et al.(2014)].
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There are certain limits in which the behavior of the field changes, we first get an expression

for ω in the limit when the SF oscillates faster than the Hubble expansion (ω/H >> 1).

By rewriting the complex function in terms of its amplitude and phase as Ψ = |Ψ|eiθ and
plugging it back into (3.42) we get

~2

2mc2
(∂2
t |Ψ| − |Ψ|(∂tθ)2) +

~2

2mc2

3da/dt

a
∂t|Ψ|+

1

2
mc2|Ψ|+ λ|Ψ|3 = 0, (3.43)

~2

2mc2
(2∂t|Ψ|∂tθ + |Ψ|(∂2

t θ) +
~2

2mc2

3da/dt

a
|Ψ|∂tθ = 0. (3.44)

It is the phase θ that carries the oscillation behavior of Ψ, the time dependence of the

amplitude is smooth, hence it is safe to assume ∂t|Ψ|/|Ψ| << ∂tθ. Assuming also that

ω := ∂tθ >> H = (da/dt)/a , then we can neglect the terms ∂t|Ψ| and H in (3.43) and it

results

− ~2

2mc2
|Ψ|(∂tθ)2 +

1

2
mc2|Ψ|+ λ|Ψ|3 = 0, (3.45)

using ω := ∂tθ the above equation becomes

ω =
mc2

~

√
1 +

2λ

mc2
|Ψ|2, (3.46)

valid only when ω >> H. In the free field case (λ=0) we get ω = mc2/~, from here it is

easy to see that small values of the mass translates into high oscillation frequencies.

Integrating (3.44) we get

∂t(a
3|Ψ|2∂tθ) = 0⇐⇒ |Ψ|2∂tθ =

const.

a3
. (3.47)

where a3|Ψ|2∂tθ is the conserved charge, in fact it is the conservation of the comoving

charge density Qa3.

Given the fast oscillation of the field we can follow the cosmological evolution of the time-

average values of ρ and p, a similar situation is found for the non-interacting case, although

in that case the equivalence of the exact and time-average evolution of the scalar field has

been worked out[Magaña et al.(2012)].

If we now multiply (3.42) by Ψ∗ and average over a time interval much longer that the field

oscillation period (∝ 1/ω) but shorter than the Hubble time results in[Woo & Chihue(2009),

Dutta & Scherrer (2010)]

~2

2mc2
〈|Ψ|2〉 =

1

2
mc2〈|Ψ|2〉+ λ〈|Ψ|4〉 = 0. (3.48)



45

Now it is possible to combine this equation with the expressions for ρ and p and obtain

〈ρ〉 = mc2〈|Ψ|2〉+
3

2
λ〈|Ψ|4〉 ≈ mc2〈|Ψ|2〉+

3

2
λ〈|Ψ|2〉2, (3.49)

〈p〉 =
1

2
λ〈|Ψ|4〉 ≈ 1

2
λ〈|Ψ|2〉2 (3.50)

with the equation of sate

〈p〉 =
m2c4

18λ

(√
1 +

6λ〈ρ〉
m2c4

− 1

)2

(3.51)

or equivalently

〈ω〉 =
〈p〉
〈ρ〉

=
1

3

[
1

1 + 2mc2

3λ〈|Ψ|2〉

]
(3.52)

this equation is also found for a real scalar field [Steigman (2012)], this is interesting

as the cosmological evolution for a real and complex field depends on ω that defines

the equation of state, hence the complex and real give equivalent descriptions to the

cosmological evolution.

We now have the EOS and can identify the phases:

1. Non-relativistic(CDM-like) phase: 〈ω〉 = 0.

Here the rest-mass energy density dominates the total SFDM energy density, this

means that 3
2
λ〈|Ψ|2〉2 << mc2〈|Ψ|2〉, and (3.51) reads

〈p〉 ≈ λ

2m2c4
〈ρ〉 ≈ 0, (3.53)

the last equality is due to the scalar field behaving as dust (that is p << ρ) to mimic

CDM. Therefore we get ρ ∼ a−3. This phase also occurs in the non-interacting

case(λ = 0).

2. Relativistic(radiation-like) phase: 〈ω〉 = 1/3. At early times the SFDM will be

so dense that the self-interaction term dominates, (3
2
λ〈|Ψ|2〉2 >> mc2〈|Ψ|2〉), and

(3.51) reduces to

〈p〉 ≈ 1

3
≈ λ

2
〈|Ψ|〉2, (3.54)

which is the EOS of radiation, thus in this limit the field behaves like radiation, and

its energy density ρ ∼ a−4 and a ∼ t1/2. This extra phase is a notable difference

with the λ = 0 case.



46 CHAPTER 3. SCALAR FIELD DARK MATTER

3. Stiff phase: 〈ω〉 = 1. Before the radiation-like phase, when the expansion rate of the

universe is much greater than the oscillation frequency,ω << H, the kinetic term

dominates over the potential and ~2
2mc2
|∂tΨ|2 ∝ H2. Then

p ≈ ρ ≈ ~2

2mc2
|∂tΨ|2. (3.55)

In this case ρ ∼ a−6 and a ∼ t1/3. This phase was expected from (3.20), in this case

the field cannot complete even one oscillation, instead it rolls down the potential

well.

From the CMB we know there was a time in which the universe is dominated by radiation,

when the photons and elemental particles are in thermal equilibrium. As the universe ex-

pands and the temperature decreases some particles will no longer be produced and fall out

of equilibrium, this time is called freeze-out, there is a time then when light elements can

form leaving the primordial abundances, this epoch is the big bang nucleosynthesis(BBN),

in the standard model this epoch extends from the beginning of the neutron-proton ratio

freeze-out at Tn/p=1.293 MeV(an/p ∼ 10−10)(the difference between the neutron and pro-

ton mass) to the epoch of nuclei production around Tnuc ≈ 0.085Mev[Durrer (2008)]. The

observations of the primordial element’s abundance are in good agreement with theoretical

calculations in CDM, the stiff phase found above is an epoch when the SFDM dominates,

in order to prevent conflicts with BBN the universe should be dominated by radiation at

that epoch, this implies that the stiff phase should end at a ∼ 10−10 at the latest should

the BBN remain unaffected by the SF. On the other hand, the radiation-like phase of the

SF shall end at zeq ∼ 3000 so that it can become non-relativistic and behave as cold dark

matter.

Solving numerically the cosmological evolution and taking into consideration the above

constrains for the scalar field, the evolution of the energy density that results is shown in

figure 3.2 obtained in [Li et al.(2014)]. They manage to place and upper bound on the

parameters by demanding that the SFDM be fully non-relativistic at zeq requiring that at

this time ω = 0.001 yielding

λ

(mc2)2
≤ 4× 10−17eV −1cm3, (3.56)
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while imposing that the SFDM changes from the stiff to the radiation-like phase by the

end of BBN (anuc) and that the number of relativistic degrees of freedom Neff during the

BBN be all the time within 1σ of the measured value

Neff = 3.71+0.47
−0.45 (3.57)

taken from [Arbey et al.(2002)], results in

9.5× 10−19eV −1cm3 ≤ λ/(mc2)2 ≤ 1.5× 10−16eV −1cm3. (3.58)

It is important to notice that (3.58) is rather arbitrary, in principle the radiation phase

can also be reached before anuc and this bound will no longer hold. Instead, if we want the

scalar field to be the dark matter that forms the large scale structure of the universe the

radiation-CDM transition should take place before decoupling (zdec)which makes (3.56) a

strong bound for a large class of models whose particle candidate is BICS.

The stiff phase is also present in the free field case (V (Φ) = 1
2
m2Φ2), we expect a similar

situation but the transition would be from the stiff to the non-relativistic phase, however,

temperature corrections of the field, insofar neglected, could lead to the appearance of a

relativistic phase, this interesting fact is of relevance mainly in the non-interacting case of

the scalar field and we are currently studying.

It is also relevant to note that when self interactions are considered in the potential, the

cosmological constraints are on λ
(mc2)2

, hence we require independent tests to constraint

the mass or the interaction given that they appear in the above combination and are

degenerated.

§3.3 Density perturbations
In the study of perturbations we require to specify the coordinates. A choice of coordinates

defines a threading of space-time into lines (corresponding to fixed x) and a slicing into

hypersurfaces (corresponding to fixed t). The lines of fixed x are chosen to be timelike,

so they are world lines of possible observes, and the slices are chose to be spacelike. As

a reminder to the reader, unless otherwise specified(like in the previous section), we keep

using natural units.
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Figure 3.2: Evolution of the the different density parameters Ωi for each component i with

SFDM of mass m = 3 × 10−21 eV/c2 and self-interaction λ/(mc2)2eV cm−3 represented

by the black curve. The solid vertical line corresponds to aeq. On the lower left part of

the figure, the thin curves represent the constraint from BBN. The solid one refers to a

universe with a constant Neff of the central value of (3.57) and the two dash-dotted ones

refer to such universes with Neff of the 1σ limits there. The dotted vertical lines indicate

the beginning of the neutron-proton ratio freeze-out an/p and the epoch of light-element

production anuc, respectively.
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Consider for instance the case of the unperturbed universe (in our case the FRW universe).

In this case there are preferred coordinates. The threading corresponds to the motion of

comoving observers, defines as those who see zero momentum density at their own position.

The comoving observers are free-falling and the expansion defined by them is isotropic,

The slicing is orthogonal to the threading, and on each slice, the universe is homogeneous.

The time coordinate is chosen to correspond to proper time along each worldline. In the

case that slices are flat( zero spatial curvature), the space coordinates can be chosen to

be Cartesian. This array of properties makes this preferred coordinate so valuable that

no others are considered. This is the slicing and threading that we have been using in all

this work for the cosmological description.

When we deal with perturbations, it is impossible to find coordinates satisfying all these

properties, and there is no uniquely preferred choice. The way people have deal with this

issue is by requiring that the coordinates must reduce to the standard ones in the limit

where the perturbations vanish. A choice of coordinates satisfying this constrain is called

a gauge, and there is no unique preferred gauge.

As we see, the only function of a gauge choice in cosmological perturbation theory is to

define a slicing and threading of space-time. The slicing and threading in turn define the

perturbations. For a perturbation g(x, t), the space-time coordinates can be regarded as

those of unperturbed space-time because to include their perturbation would be a second

order effect. Hence, the perturbation live in the unperturbed space-time.

As we will be concerned with scalar perturbations we will choose a suitable gauge to

isolate them from the vector and tensor perturbations. Notice that a slicing is needed to

specify perturbations in quantities such as the energy density, which have nonzero(and

time-varying) values in the unperturbed universe. Take for instance the energy density ,

given a slicing, we write

ρ(x, t) = ρ(t) + δρ(x, t). (3.59)

The first term is the unperturbed part, the one we have been calling the background

density in the FRW universe, and as mentioned, once δρ(x, t) is defined the coordinates x

and t can be identify to the standard ones in the unperturbed space-time. The slicing that

we will use to make use of the unperturbed (or background) space-time is the comoving
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slicing, orthogonal to the worldlines of comoving observers. Also, it can be shown that

the perturbation in a scalar quantity is independent of the threading, the only effect of

a change in threading is to change the values of the space coordinates of each point, the

measured scalar perturbation by one observer will differ only by an amount of order v2,

with v the relative velocity of the other observer [Liddle & Lyth (2000)].

When the scalar field perturbations are small, we can study them with linear perturbation

theory. We consider the real scalar field. We then write

gµν = g0
µν + δgµν (3.60)

here g0
µν is the unperturbed FRW metric. In conformal time η the most general form of

the linearly perturbed FRW metric is ([Malik(2001)])

ds2 = a2(η)[−(1 + 2ψ)dη2 + 2B,i dηdx
i + [(1− 2φ)δij + 2E,ij ]dxidxj]. (3.61)

where the perturbations are given in terms of four scalar functions: ψ the lapse function,

φ gravitational potential, B the shift, and E the anisotropic potential. The perturbed

component are

δg00 = −a2(η)2ψ, (3.62)

δg0i = δgi0 = a2(η)B,i (3.63)

δgij = −2a2(η)(φδij − E,ij ). (3.64)

Additionally, Φ(η,x) = Φ0(η) + δΦ(η,x), in the linear regime δΦ << Φ0 so we can

approximate V (Φ) ≈ V (Φ0). We define the density contrast by

δ :=
δρ

ρ0

, (3.65)

the density contrast δ gives information about the amplitude of the perturbations as they

evolve in the expanding homogeneous background, according the CMB observations this

are δ ∼ 10−5. We can use the freedom in the gauge choice to set two of the four scalar

metric perturbations to zero, we choose the Newtonian gauge where B = 0 = E leaving

only the Bardeen potentials, the metric reads

ds2 = a2(η)[−(1 + 2ψ)dη2 + [(1− 2φ)δijdx
idxj]. (3.66)
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In this gauge, the physics appears rather simple since the hypersurfaces of constant time

are orthogonal to the worldlines of observers at rest in the coordinates (since B = 0) and

the induced geometry of the constant-time hypersurfaces is isotropic (since E = 0). In the

absence of anisotropic stress the metric is diagonal and ψ = φ. Note the similarity of the

metric to the usual weak-field limit of general relativity about Minkowski space; then φ

can be identified with the gravitational potential. The Newtonian gauge is our preferred

gauge for studying the formation of large-scale structures.

For the perturbed energy momentum tensor we have

T = T0 + δT, (3.67)

with T0 = T0(t) and δT = δT (xµ) with xµ = (t,x). Explicitly the perturbed density δρ

and the perturbed pressure δp in comoving time t (d/dη = a(d/dt)) are defined in terms

of the perturbed energy momentum tensor as

δT 0
0 = −δρ = −(Φ̇0

˙δΦ− Φ̇2
0ψ + V,Φ δΦ),

δT 0
i = −1

a
(Φ̇0δΦ,i ),

δT ij = δp = (Φ̇0
˙δΦ− Φ̇2

0ψ − V,Φ δΦ)δij. (3.68)

δρ is the perturbed energy density of the scalar field, δp is the perturbed pressure and δΦ

the scalar field fluctuation.

The perturbed EKG system in the Newtonian gauge δGi
j = κ2δT ij is

−8πGδρ = 6H(φ̇+Hφ)− 2

a2
∇2φ,

8πGΦ̇0δΦ,i = 2(φ̇+Hφ),i ,

8πGδp = 2[φ̈+ 4Hφ̇+ (2Ḣ + 3H2)φ] (3.69)

with ˙ = ∂/∂t and H = d(ln a)/dt.

The above system of equations describe the evolution of the scalar perturbations(Malik(2001),

Ma & Bertschinger(1995)). Summing the first and third equations in (3.69) and from (3.68)

we get δp− δρ=−2V,Φ and we get an equation for the gravitational potential

δ̈φ+ 7H ˙δφ− 1

a2
∇2δφ+ 2(Ḣ + 3H2)φ+ 8πGV,Φ Φ = 0. (3.70)
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To study the evolution of the SF perturbations we use the perturbed Klein-Gordon equa-

tion

δ̈Φ + 3H ˙δΦ− 1

a2
∇2δΦ + V,ΦΦ δΦ + 2V,Φ φ− 4Φ̇0φ̇ = 0. (3.71)

Equation (3.71) can be rewritten as:

�δΦ +
d2V

dΦ2

∣∣∣∣
Φ0

δΦ + 2
dV

dΦ

∣∣∣∣
Φ0

φ− 4Φ̇0φ̇ = 0, (3.72)

where the D’Alambertian operator is defined as

� :=
∂2

∂t2
+ 3H

∂

∂t
− 1

a2
∇2. (3.73)

The equations can be studied in the Fourier space, this approach is usually convenient

because in the linear regime each Fourier model evolves independently. The Fourier trans-

form at first order is readily obtain

δΦ(t,x) =

∫
d3kδΦ(t,k)exp(i k · x) =

∫
d3kδΦkexp(i k · x) (3.74)

k is the wave number defined by k = 2π/λk, where λk denotes the size of the scalar field

perturbation. The perturbed EKG system can be transform to its Fourier equivalent by

changing δΦ→ δΦk, ∇2 → −k2 with k2 = kik
i and ∂i → −iki. The system transforms to

8πG(3HΦ̇0δΦk) +
2k2

a2
φk = −8πG(Φ̇0

˙δΦ− Φ̇2
0φk + V,Φ δΦ),

2(φ̇k +Hφk) = 8πGΦ̇0δΦk,

2[φ̈k + 4Hφ̇k + (2Ḣ + 3H2)φk] = 8πG(Φ̇0
˙δΦ− Φ̇2

0φk − V,Φ δΦ) (3.75)

and
¨δφk + 7H ˙δφk + (

k2

a2
+ 2Ḣ + 6H2)φk + 8πGV,Φ Φk = 0. (3.76)

¨δΦk + 3H ˙δΦk + (
k2

a2
+ V,ΦΦ )δΦk + 2φkV,Φ−4Φ̇0φ̇k = 0. (3.77)

The system (3.75), (3.76) and (3.77) describe the cosmological evolution in the linear

regime for a scalar field perturbation with wave number k. Essentially, equation (3.77)

represents a harmonic oscillator with a damping 3H ˙δΦK and an extra force −2φkV,Φ. The

damping term in (3.76) goes as 6Hφ̇k, the term 2Ḣ < 0 and the gravitational fluctuations

can grow provided (k
2

a2
+2Ḣ+6H2)<0. Equation (3.77) has oscillatory solutions if (V,ΦΦ +
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k2

a2
) < 0. This equation contains growing solutions if this term is negative, that is, if V,ΦΦ<0

and k2

a2
is small enough. From here we see an important feature. These perturbations grow

only if V has a maximum, even if it is a local one. Here, the potential is unstable and during

the time when the scalar field remains in the maximum, the scalar field fluctuations grow

until they reach a new stable point where the gravitational structures can keep growing

until they collapse and form the dark matter halos. Therefore, the term (V,ΦΦ + k2

a2
)

defines a wave number below which the fluctuations don’t grow and keep oscillating, this

is equivalent to the Jeans length in CDM,

kefJ :=
√
a2V,ΦΦ. (3.78)

Only fluctuations with k < kefJ can grow. We can define an associated Jeans length

[Ma et al. (1999), Hwang& Noh (2001)]

λefJ =
2π

a
√
V,ΦΦ

= 2π/ma. (3.79)

From this relation we see that the mass of the boson(V,ΦΦ = m2) determines a minimum

scale for the growing modes, thus fixing the mass naturally implies a cut-off in the mass

power spectrum, this particular feature is of extreme importance because it implies a

supresion of dark matter substructure below a certain scale kefJ , which helps to reduce

the satellite overabundance and serve to solve the missing satellite problem present in

CDM[Hu, Barkana & Gruzinov(2000), Matos & Ureña(2001), Marsh & Silk(2014)]. For

instance, if m ∼ 10−23eV we have λefJ ∼ 4 kpc at the epoch or recombination a ∼ 10−3.

§3.4 Linear growth of scalar field perturbations
Although it is possible to obtain the complete evolution of the psyon perturbations by solv-

ing the perturbed EKG system[Magaña et al.(2012)], it is nevertheless useful to have an

equation for the linear evolution of the density contrast δ. The equation follows after doing

a lengthy but otherwise straightforward algebra in complete analogy to the calculation for

CDM perturbations[Suárez & Matos (2011), Suárez & Chavanis (2015)].

For the cold dark matter model the equation for the evolution of the density contrast is

given by
d2δ

dt2
+ 2H

dδ

dt
+
(
c2
s

k2

a2
− 4πGρ0

)
δ = 0, (3.80)
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where cs is defined as the sound velocity. For cold and pressureless dark matter the

equation of state ω = 0 and the sound speed cs = δp/δρ = 0, then at a ≥ aeq the

interesting fluctuation modes (galactic-size) are well within the horizon, we have a ∼ t2/3

and ρ ∼ a−3, thus
d2δ

dt2
+

4

3t

dδ

dt
− 2

3t2
δ = 0, (3.81)

The solutions to this equation are of the form

t→ t2/3C1 +
C2

t
(3.82)

where C1 and C2 are integration constants, from this solution we can see that we have

modes that will disappear as time goes by, and modes that grow proportionally to the

expansion of the Universe δ ∼ a. The matter fluctuations that enter the horizon in the

radiation era(a < aeq) have a logarithmic growth δ ∼ ln(a), had there been no loga-

rithmic growth these fluctuations would have experience no growth from horizon entry

until the epoch of equality, their amplitude relative to large scale modes (small k) would

be suppressed. A more detailed analysis will not be treated here, but can be found in

[Dodelson (2003)].

Now, in the case of a free scalar field V (Ψ) = m2Φ2/2, the relevant scale is the Hub-

ble scale, H. The (time average) equation of state (EOS) transitions from ω = −1

to ω = 0 when the psyon mass overcomes the Hubble friction in the Klein-Gordon

equation, also the structure is suppressed on scales of order the horizon when H ∼
m[Marsh & Silk(2014), Hu, Barkana & Gruzinov(2000), Marsh & Ferreira(2010)]. When

the field is oscillating about the potential minimum at times t > tosc, where H(tosc) ∼ m,

the EOS and sound speed in the effective fluid description averaged over periods t > 1/m

are given by ([Hu, Barkana & Gruzinov(2000), Park et al. (2012)])

ω = 0, (3.83)

c2
s =

v2
q

1 + v2
q

. (3.84)

where we define

v2
q :=

k2

4m2a2
. (3.85)
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Notice that cs is now scale-dependent, the term v2
q comes from the oscillation frequency

of the field. The equation for the density contrast takes the form

d2δ

dt2
+ 2H

dδ

dt
+
(
c2
s

k2

a2
− 4πGρ0

)
δ = 0, (3.86)

or in conformal time

d2δ

dη2
+ 2H(η)

dδ

dη
+
(
c2
sk

2 − 4πGρ0a
2
)
δ = 0, (3.87)

where H(η)= aH(t) is the conformal Hubble rate as usual.

For the large scale perturbations with k2 << a2m2 we have c2
s ≈ v2

q << 1 and the sound

speed goes to zero, here we recover the scale-independent linear growth with δ ∼ a on

large scales. For large k, or k2 >> a2m2, the sound speed c2
s ≈ 1 and the overdensity

oscillates rather than grows. This is consistent with the discussion in the last section, the

transition between growth and oscillation occurs at the Jeans scale

kJ = a(16πGρ0)1/4m1/2. (3.88)

For k > kJ there is no growth of structure. There is scale-dependent growth as k decreases

from kJ , continuously interpolating to the standard scale-independent linear growth on

the largest scales, k << kJ .

When self-interactions are included as in (3.33) , (3.86) turns

d2δ

dt2
+ 2H

dδ

dt
+
(
(c2
s + ωλρ0)

k2

a2
− 4πGρ0

)
δ = 0, (3.89)

with ωλ = 9λ/2m2[Suárez & Matos (2011)]. Therefore λ 6= 0 changes the Jeans scale in

the free-field case.

The evolution of the linear growth of psyon perturbations when c2
s ≈ v2

q was obtained in

(Suarez & Matos 2011), as shown in figure (3.4) linear growth after aeq ∼ 10−4 proceeds

just like CDM (δ ∼ a), the case self-interacting field however, shows an earlier amplitude

growth. These results can impact the large scale structure, a faster growth implies that

the structures can become non-linear faster and the dark matter potential wells that will

host galaxies are formed before CDM, after decoupling the gas will follow the potential

wells and can condense earlier forming stars and hence galaxies at high redshift, this can
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Figure 3.3: Left: Evolution of the perturbations for the CDM model (dots) and SFDM

model with λ = 0(lines) for k = 1× 103h Mpc−1. After the epoch of equality (aeq ∼ 10−4)

the evolution of both perturbations is nearly identical, normalized to a(z = 0) = 1. Right:

Evolution of the perturbations for the CDM model (dots) and SFDM model (lines) for k =

1×10−2 h Mpc−1 and λ 6= 0 and negative. In this case we see that the SFDM fluctuations

grow earlier than in the CDM model.

be tested by the abundance of galaxies at high redshift placing better constraints as more

observations become available.

§3.5 Halo Mass function and Power Spectrum

Early on, of the modes (short, medium and large-wavelength modes) are outside the hori-

zon (kη << 1) and the gravitational potential φ is constant. At intermediate times, the

wavelengths fall within the horizon and the universe evolves from radiation domination

(a << aeq) to matter domination (a >> aeq). Large scale modes enter k ∼ 0.001hMpc−1

the horizon well after aeq, evolves much differently than the small-scale(k = 2hMpc−1

modes which enter the horizon before equality. At late times the evolve identically again,

it is in this late stage that we can observe the distribution of matter. In order to re-

late the potential during these times to the primordial set up during inflation, we write

schematically

φ(k, a) = φp(k) × [TransferFunction(k)] × [GrowthFunction(a)]. (3.90)
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where φp is the primordial value of the potential, set during inflation. The transfer func-

tion describes the evolution of perturbations through the epochs of horizon crossing and

radiation/mater transition, while the growth factor describes the wavelength-independent

growth at late times. There are two conventions, one is to set the transfer function equal

to on large scales, therefore the transfer function is defined as

T (k) :=
φ(k, alate)

φLarge−scale(k, alate)
(3.91)

where alate denotes an epoch well after the transfer function regime and the Large-scale

solution is the primordial φ decreased by a small amount, in CDM this factor is equal to

(9/10) neglecting anisotropic stresses [Dodelson (2003)]. The second convention concerns

the growth function. The ratio of the potential to its value right after the transfer function

regime is defined to be

φ(a)

φ(alate)
:=

D(a)

a
(a > alate) (3.92)

where D is called the growth function. When the potential is constant D(a) = a. With

these conventions we have

φ(k, a) =
9

10
φp(k)T (k)

D(a)

a
(a > alate) (3.93)

From the above section we saw that when the potential is constant and all the modes are

within the horizon, the overdensity grows as δ ∼ a, D describes the growth of the matter

perturbations at late times, for this reason D is called the growth function despite the

potential remains constant. This picture is consistent with the intuitive idea that as time

evolves, overdense regions attract more matter, thereby becoming more overdense.

Let us first the case of the standard model. The simplest way to relate the matter over-

density to the potential at late times is to use Poisson’s equation in Fourier space (for the

large-k and no-radiation limit)

φ =
4πGρma

2δ

k2
(3.94)

where the background density of matter ρm = Ωmρcrit/a
3, and 4πGρcrit = (3/2)H2

0 , so

δ(k, a) =
k2φ(k, a)a

(3/2)ΩmH2
0

(a > alate), (3.95)
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substituting the expression for φ(k, a) allow us to relate the overdensity today to the

primordial potential

δ(k, a) =
3

5

k2

ΩmH2
0

φp(k)T (k)D(a) (a > alate), (3.96)

this equation holds regardless of how the initial perturbation φp was generated. In the

context of inflation φp(k) is drawn from a Gaussian distribution with mean zero and

variance

Pφ =
50π2

9k3

(
k

H0

)n−1

δ2
H

(
Ωm

D(a = 1)

)2

(3.97)

so the power spectrum of matter at late times is

P (k, a) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a = 1)

)2

(a > alate). (3.98)

The power spectrum has dimensions of (length)3, to convert it into a dimensionless quan-

tity one often associates dk3P (k)/(2π)3 with the excess power in a bin of width k centered

at k, after integrating over all orientations of k this becomes (dk/k)∆2(k), with

∆2(k) :=
k3P (k)

2π2
(3.99)

Small ∆ then corresponds to small inhomogeneities, while a large value indicates nonlinear

perturbations. With the conventions used, for a Harrison-Zel’dovich-Peebles spectrum(n =

1) today we have ∆2 = δ2
H on a horizon-sized scale(k = H0).

On large scales the transfer function is unity and P ∝ k corresponding to the simplest

inflationary model, wherein n = 1. There is a turn over over in the power spectrum at a

scale corresponding to the one which enters the horizon at matter/radiation equality. We

can see why this happens with an example. A small-scale mode with k = 2hMpc−1 enters

the horizon well before matter/radiation equality, during the radiation era the potential

decays, so T (k) is much smaller than unity. The effect on matter perturbations will be to

retard the growth of δ after the mode has entered the horizon until the universe is matter

dominated. Modes that enter the horizon earlier undergo more suppression, thus the

power spectrum is a decreasing function of k on small scales. This turnover is important

as it can restricts the number of small scale modes that remain at z=0. One scale that

is also important is in which nonlinearities cannot be ignored, this is set by ∆(knl ' 1),

corresponding in CDM usually to knl ' 0.2hMpc−1.
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Now, in a cosmology where the pysons are the dark matter, or in general a fraction of it

fp = Ωp/Ωd, the suppression scale occurs for modes that enter the horizon when the sound

speed was large,we will neglect self-interactions. The suppression is centered around km,

which depends on the mass, and the fraction Ωp.

In [Marsh & Silk(2014)], they compute the transfer function and matter power spectrum

in cosmologies containing CDM plus SFDM using a modified version of the code CAMB.

They define the transfer function of the SFDM

Tsfdm(k) =

(
Psfdm
PΛCDM

)1/2

. (3.100)

A well defined characteristic scale to assign to any such step-like transfer function is the

’half mode’

T (km) = 0.5(1− T (k →∞)), (3.101)

where T (k → ∞) ≥ 0 is the constant value of the transfer function on small scales. For

comparison we include the warm dark matter(WDM) model transfer function [Bode et

al.(2001)]

TWDM(k) = (1 + (αk)2µ)−5/µ, (3.102)

where µ = 1.12 and α ≈ 0.065h−1Mpc chosen to give the same km than in SFDM. This

selection of km in SFDM is not the Jeans scale where all structure is suppressed, but it is

useful when comparing different dark matter models because it is well-defined. Taking a

typical mass of the psyon m ∼ 10−22eV, it is found km(10−22) = 6.7hMpc−2.

One popular way to characterize power on a particular scale is to compute the expected

root-mean-squared overdensity in a sphere of radius R,

σ2
R := 〈δ2

R(x)〉 (3.103)

Here

δR(x) :=

∫
d3x′δ(x)WR(x - x′) (3.104)

where WR(x) is the top-hat window function, equal to 1 for x < R and 0 otherwise; the

angular brackets denote the average over all space. The variance of the power spectrum,

can be rewritten as

σ2
R :=

∫ ∞
0

dk

k
∆2(k)W̃ 2

R(k) (3.105)
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Figure 3.4: Variance σ(M) for ΛCDM, and SFDM with various Ωph
2 at a fixed total

Ωph
2 =0.112 and psyon mass m = 10−22eV [Marsh & Silk(2014)].

where W̃ = 3
(kR)3

(sin(kR)−kRcos(kR)) is the Fourier transform ofWR(x), ∆2 = dσ2/dln(k)

is the contribution to the variance per ln(k).

The variance computed for the ΛCDM, WDM, and the SFDM model for different fractions

of psyon to cold dark matter are shown in figure 3.5. When the psyons comprise the total

DM Ωp/Ωd = 1 the reduce in power is the highest.

This send us back to the Missing-Satellite problem, the discrepancy with observations in

the expected number of satellite galaxies in the Local Group. In the absence of simulations,

to quantify the problem it is possible to adopt the Press-Schechter approach(Press &

Schechter (1974)]) to compute the abundance of halos of a given mass; this is called the

halo mass function (HMF). In the usual formalism this reads

dn

dlnM
= −1

2

ρ0

M
f(ν)

d lnσ2

dlnM
(3.106)

where ν := δc/σ, dn = n(M)dM is the abundance of halos within a mass interval dM .

The function f(ν) can be obtained form the model of [Sheth & Tormen (1999)]:

f(ν) = A

√
2

π

√
qν(1 + (

√
qν)−2p)exp

[
− qν2

2

]
(3.107)

with parameters A = 0.3222, p = 0.3, q = 0.707. This approach was followed in Marsh &

Silk(2014), in the HMF one can use the variance of the matter power spectrum, computed

at redshift z=0 if the barrier for collapse, δc , is given by the Einstein-de Sitter value at
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Figure 3.5: The mass dependent critical overdensity for two benchmark models in which

some or all of the dark matter is in the form of SFDM, shown for each redshift in the

range 0≤ z ≤ 14. Left Panel: m = 10−22 eV, Ωp/Ωc = 0.5. Right Panel: m = 10−22 eV,

Ωp/Ωc = 1.

z = 0, δc,EdS ≈ 1.686, scaled by the linear growth: δc(z) = δc,EdS/D(z). Marsh & Silk

(2013) proposed that one could account for scale-dependent growth by simply replacing

D(z)→ D(k, z) and then using the enclosed mean mass to define a halo-mass dependent

barrier for collapse, δc(M, z).

In figure 3.5 is plotted δ(M, z) computed in the above manner for two SFDM cosmologies.

They each take m = 10−22 eV while varying the fractional energy density in psyons, Ωp=

ρp/ρcrit, and CDM, Ωc, and holding the total DM density, Ωd = Ωp + Ωc , fixed. The

first model takes Ωp/Ωc = 0.5, so that half of the DM is in SFDM, and the second takes

Ωp/Ωc = 1. As may be seen in the figure, the barrier for collapse becomes large for low

mass objects due to the vanishing growth on scales below the Jeans scale.

The mass-dependent barrier for collapse can simply be substituted into the Sheth-Tormen

mass function along with the correct variance to find dn/dlnM , the number-density

of halos per logarithmic mass bin. The HMFs for the two cosmologies of Fig. 3.5 are

shown in Fig. 3.5. The rising value of δc(M) for low M is seen to suppress the HMF

relative to CDM in both cosmologies, particularly at high-z. The existence of this sharp

suppression due to scale-dependent growth is a key prediction of SFDM. At high redshift

we should expect many fewer objects to have formed when the DM contains a ultra light
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Figure 3.6: Sheth-Tormen mass function for SFDM including scale-dependent growth,

shown for each redshift in the range 0≤ z ≤ 14[Bozek et al.(2015)]. The result for CDM

is shown for reference. Left Panel: m = 10−22 eV, Ωp/Ωc = 0.5. Right Panel: m = 10−22

eV, Ωp/Ωc = 1.

boson compared to a pure CDM universe, even when these bosons are only a fractional

component of the DM.

The cut off in the HMF at z = 13 in Fig 3.5 (Right Panel) occurs at M ≈ 109h−1M�,

and the HMF peaks near this value. This cut off is what causes the reduction in the MSP,

in fact, the number of halos decreases sharply not by tidal stripping or by astrophysical

mechanisms, but by the smallness of the mass of the psyon. This solution to the MSP seems

to be preferable to invoking unknown stellar feedback and poorly understood baryonic

physics, especially as a high suppression due to stellar feedback may be in conflict with

the observations of local dwarfs as we discussed in chapter 2.

Quite recently, the first high-resolution simulations of the formation of structure in a

universe dominated by psyon DM with m = 8.1×10−23 eV and no self-interactions carried

out by [Schive et al.(2014)], found that the large scale structure is remarkably similar to

CDM, as desired, but differs radically inside galaxies where quantum interference forms

solitonic cores surrounded by extended halos of fluctuating density granules, denser more

massive solitons are predicted for Milky Way sized galaxies, providing a substantial seed to

help explain early spheroid formation. They report a first object of massM = 109M� at z

= 13. This is consistent with the above semi-analytic model, so far the full HMF from their
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simulations has not been reported which makes difficult addressing more quantitatively

either the Too-Big-To-Fail or the satellite problem.

Although the self interactions do change the linear structure, it is uncertain how different

the cosmological nonlinear evolution will be from the free field case, mainly due to the

small coupling parameter for a m ∼ 10−22eV and the fact that after adec the equation

of state for the field p ≈ 0 cosmologically just as in the CDM model, this would be an

interesting study for the future.

§3.6 Spontaneous symmetry break

We have exploited the smallness of the psyon mass to show that the large scale structure is

well reproduced in the SFDM model. So far we have considered a scalar field to be at zero

temperature and use the classical description, as we mentioned the BICS candidates have

a large fraction of bosons in the ground state which may lead to BEC condensation, this

implies that a large number of bosons are in single state justifying the classical approach.

But how do we include the effects of a non zero temperature?

Given the similarity with a flat FRW space-time, let us first remember the situation in

flat four-dimensional Minkowski’s space.

The equation of motion for a real scalar field Φ of mass m is the Klein-Gordon equation

(�+m2)Φ := Φ̈−∇Φ +m2Φ = 0. (3.108)

where the dot denotes differentiation with respect to time. The general solution of this

equation is expressible as a superposition of plane waves, corresponding to the propagation

of particles of mass m and momentum k[Bogolyubov & Shirkov (1980)]

Φ(x) = (2π)−3/2

∫
d4kδ(k2 −m2)[eikxΦ+(k) + e−ikxΦ−(k)]

= (2π)−3/2

∫
d3k√
2k0

[eikxa+(k) + e−ikxa−(k)], (3.109)

where a±(k)= 1√
2k0

Φ±(k), k0=
√

k + m2, kx = k0t−k ·x. According to (??), the field will

oscillate about the point Φ = 0, the reason being that the minimum of the potential energy

density for the field occurs at this value. The functions a±(k) can be put in correspondence
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with the creation and annihilation operators a±k for particles with momentum k. The

commutation relations take the form[Bogolyubov & Shirkov (1980)]

1

2k0

[Φ−k ,Φ
+
k ] := [a−k , a

+
k ] = δ(k− q), (3.110)

where the operator a−k acting on the vacuum gives zero:

a−k |0〉 = 0; 〈0|a+
k = 0. (3.111)

The operator a+
k creates a particle with momentum k and a−k annihilates it,

a+
k |Φ〉 = |Φ,k〉 (3.112)

a−k |Φ,k〉 = |Φ〉. (3.113)

The Green’s function for the scalar field

G(x) = 〈0|T [Φ(x)Φ(0)]|0〉 =
1

(2π)4

∫
e−ikx

m2 − k2 − iε
d4k. (3.114)

Here T denotes the time-ordering operator, and ε shows how to perform the integration

near the singularity at k2=m2. Calculating G(0) one obtains (after transforming to Eu-

clidean space by a Wick rotation k0 → −ik4)

G(0) = 〈0|Φ2|0〉 =
1

(2π)4

∫
d4k

k2 +m2
=

1

(2π)3

∫
d3k

2
√
k2 +m2

(3.115)

or if the average is carried out over a state containing particles other than the conventional

vacuum state, representing 〈Φ2〉 := 〈0|Φ2|0〉 we get

〈Φ2〉 =
1

(2π)3

∫
d3k√
k2 +m2

(
1

2
+ nk

)
(3.116)

where nk=〈a+
k a
−
k 〉 is the number density of particles with momentum k. For a Bose gas

at nonzero temperature

nk =
1

exp
(√

k2+m2

T

)
− 1

. (3.117)

An important case is the Bose Einstein condensate Φ0 of non-interacting particles of the

field Φ, with mass m and vanishing momentum (k) for which

nk = (2π)3Φ2
0mδ(k), (3.118)
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or a coherent wave of particles of momentum p:

nk = (2π)3Φ2
p

√
p +m2δ(k− p). (3.119)

in both cases, nk »1 at some value k, this means that we the fact that the operators a±k
do not commute can be ignored in (3.116) and the field can be treated as classical.

Let us now consider the following Lagrangian

L =
1

2
(∂µΦ)2 +

µ

2
Φ2 − λ

4
Φ4. (3.120)

with potential

V (Φ) = −µ
2

Φ2 +
λ

4
Φ4 (3.121)

Instead of oscillations about Φ = 0, the solution corresponding to (3.109) gives modes

that grow exponentially near Φ = 0 when k < µ2:

δΦ(k) ∼ exp(±
√
µ2 − k2t) · exp(±ik · x). (3.122)

This means that the minimum of the potential will now occur at Φc = ±µ/
√
λ. Thus

even if the field is zero initially, it soon undergoes a transition (after a time of order

µ−1) to a stable state with the classical field Φc = ±µ/
√
λ, this phenomenon is known as

spontaneous symmetry breaking(SB).

After spontaneous SB, excitations of the field Φ near Φc can also be described by a solution

like (3.109), we require a change of variables to do it

Φ→ Φ + Φ0 (3.123)

Then (3.120) takes the form

L(Φ + Φ0) =
1

2
(∂µ(Φ + Φ0))2 +

µ

2
(Φ + Φ0)2 − λ

4
(Φ + Φ0)4,

=
1

2
(∂µΦ)2 − 3λΦ0 − µ2

2
Φ2 − λΦ0Φ3 − λ

4
Φ4 (3.124)

+
µ2

2
Φ2

0 −
λ

4
Φ4

0 − Φ(λΦ2
0 − µ)Φ0.

from here we see that when Φ 6= 0, the effective mass squared of the field φ is not −µ2,

but becomes

m2 = 3λΦ2
0 − µ2, (3.125)
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and when Φ0 = ±µ/
√
λ, at the minimum of the potential V (Φ) we have

m2 = 2λΦ2
0 = 2µ2 > 0; (3.126)

this is the mass of the field. Reverting to the original variables, we can write the solution

for Φ in the form

Φ(x) = Φ0 + (2π)−3/2

∫
d3k√
2k0

[eikxa+(k) + e−ikxa−(k)]. (3.127)

the integral in (3.127) corresponds to particles (quanta) of the field Φ with mass given

by (3.126), propagating against the background of the constant classical field Φ0. The

presence of Φ0 over all space will not give rise to any preferred reference frame associated

with that field: the Lagrangian (3.124) is covariant, irrespective of the magnitude of Φ0.

3.6.1 Quantum and thermal corrections in Minkowski space-time

Quantum corrections to the classical expression for the potential are given by a set of

all one-particle irreducible vacuum diagrams (diagrams that do not dissociate into two

when a single line is cut) in a theory with the Lagrangian L(Φ + Φ0) without the terms

linear in Φ[Coleman & Weinberg(1973), Jackiw (1973)]. In the case of (3.121) expansion

in the number of loops corresponds to expansion in the small coupling constant λ. In the

one-loop approximation

V (Φ) = −µ
2

Φ2 +
λ

4
Φ4 +

1

2(2π)4

∫
d4k ln[k2 +m2(Φ)]. (3.128)

Here k2 = k2
4 + k2 (resulting after a Wick rotation k0 → −ik4 and integrating over

Euclidean momentum space), and the effective mass of the field m = 3λΦ2 − µ2 (we omit

the subscript 0 from the classical field Φ). The integral in (3.128) diverges at large k.

To supplement the definition counter terms must be added in order to renormalize the

wave function, mass, coupling constant, and vacuum energy [Slavnov & Faddeev (1980),

Taylor(1976), ’t Hooft(1971)]. The counter terms for L(Φ + Φ0) in (3.120) are C1∂µ(Φ +

Φ0)∂µ(Φ + Φ0), C2(Φ + Φ0)2,C3(Φ + Φ0)4 and C4. Integrating (3.128) over k4, the result

(up to an infinite constant that is eliminated by renormalization of the vacuum energy,

i.e. by the addition of C4 to L(Φ + Φ0)) is

V (Φ) = −µ
2

Φ2 +
λ

4
Φ4 +

1

(2π)3

∫
d3k
√
k2 +m2(Φ). (3.129)
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thus in the one-loop approximation the effective potential V (Φ) is given by the sum of

the classical expression for the potential energy of the field Φ and a Φ-dependent vac-

uum energy shift due to quantum fluctuations of the field. To determine the quantities

Ci, we require to impose normalization conditions on the potential, these can be chosen

[Linde (1976)]

dV

dΦ
|Φ=µ/

√
λ = 0,

d2V

dΦ2
|Φ=µ/

√
λ = 2µ2. (3.130)

These conditions ensure that the location of the minimum of V (Φ) for Φ = µ/
√
λ and the

curvature of V (Φ) at the minimum (which is the same to lowest order in λ as the mass

squared of the scalar field Φ) remain the same as in the classical theory. This conditions

are suitable to study theories that have spontaneous symmetry breaking. Applying this

conditions, the potential takes the form

V (Φ) = −µ
2

Φ2 +
λ

4
Φ4 +

(3λΦ2 − µ2)2

64π2
ln

(
3λΦ2 − µ2

2µ2

)
+

21λµ2

64π2
Φ2 − 27λ2

128π2
Φ4. (3.131)

For λ << 1, quantum corrections only become important for asympototically large Φ

(when λ ln(Φ/µ) >> 1, where higher order corrections need to be taken into account,

however, for λ > 0, it becomes extremely difficult to sum all higher-order corrections to

the expression for V (Φ) at large Φ. Based on this calculation, given that in the SFDM we

have λ << 1, to first approximation the quantum corrections can then be neglected.

Having discussed the basic features of spontaneous SB, we can now turn to a consideration

of symmetry behavior in systems of particles in thermodynamic equilibrium. For scalar

particles Φ with Lagrangian (3.120), they carry no charge, nor their number is a conserved

quantity, the chemical potential therefore vanishes for such particles and their density in

momentum space is

nk =
1

exp
(
k0/T

)
− 1

(3.132)

where k0 =
√

k2 + m2 is the energy of a particle with momentum k and mass m. In this

case, at finite temperatures, the symmetry breaking parameter is the classical scalar field

and depends on the temperature. A theory of phase transitions involving the disappear-

ance of the classical field Φ is discussed in [Linde (1979)]. The idea is that the equilibrium



68 CHAPTER 3. SCALAR FIELD DARK MATTER

value of the field at fixed temperature T 6= 0 is governed not by the location of the mini-

mum of the potential energy density V (Φ), but by the location of the minimum of the free

energy density F (Φ, T ):=V (Φ, T ), which equals V (Φ) at T=0. The temperature dependent

contribution to the free energy F from ultra relativistic scalar particles of mass m at tem-

perature T »m was given in [Landau & Lifshitz (1968)], see also[Linde (1990)]. We briefly

summarize the process. To calculate V (Φ, T ), it suffices to recall that at T 6= 0, quantum

statistics is equivalent to Euclidean quantum field theory in a space which is periodic, with

period 1/T along the “imaginary time” axis[Weinberg (1974), Dolan & Jackiw (1974)]. To

go from V (Φ, 0) to V (Φ, T ) one should replace all boson momenta k4 in the Euclidean

integrals by 2πnT for bosons and (2n + 1)πT for fermions, and sum over n instead of

integrating over k4: ∫
d4k → 2πT

∞∑
n=−∞

. For example, at T 6= 0, equation (3.128) for V (Φ) in the theory (3.120) transforms into

V (Φ, T ) = −µ
2

2
Φ2 +

λ

4
Φ4 +

T

2(2π)3

∞∑
n=∞

∫
d3kln[(2πnT )2 + k2 +m2(Φ)], (3.133)

where m2(Φ) = 3λΦ2 − µ2. This expression can be normalized using the same counter

terms as for T=0. The potential for T >> m then reads

V (Φ, T ) = −µ
2

2
Φ2 +

λ

4
Φ4 +

λT 2

8
Φ2 − π2

90
T 4 + · · · , (3.134)

where the other terms do not depend on Φ and are of lower order in (m/T ), in fact

as derived in [Landau & Lifshitz (1968)] the temperature-dependent contribution in this

limit is

∆F = ∆V (Φ, T ) = −π
2

90
T 4 +

m2

24
T 2

(
1 +O

(
m

T

))
. (3.135)

with m2(Φ) = 3λΦ2 − µ2. The equation that determines the minimum dV/dΦ = 0 is

Φ(T )[λΦ2(T )− µ2 +
λ

4
T 2] = 0, (3.136)

at sufficiently low temperature, this equation has two solutions,

Φ0(T ) = 0 (3.137)

Φ0(T ) =

√
µ

λ
− T 2

4
. (3.138)
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The second of these vanishes above a critical temperature Tc

Tc =
2µ√
λ
. (3.139)

The excitation spectrum (perturbations of the background) can be computed carrying out

the shift Φ → Φ + δΦ. We determine the mass of the scalar field with d2V/dΦ2, when

Φ = 0 the mass is

m2 = −µ2 +
λ

4
T 2 (3.140)

which is positive when T>Tc. For the second solution (3.138) Φc :=
√

µ
λ
− T 2

4
, the mass,

corresponding to the normalization conditions (3.130) that we will use for the potential,

takes the value

m2(Φ) = 3λΦ2 − µ2 +
λ

4
T 2 = 2λΦ2

c(T ). (3.141)

This solution is stable T<Tc, and vanishes for T>Tc at the instant when the solution

Φ = 0 becomes stable. This means that a phase transition with restoration of symmetry

takes place at a temperature T = Tc[Kirzhnits (1972), Kirzhnits & Linde (1972)]. From

(3.133) it follows that as T rises, the equilibrium value of Φ at the minimum of V (Φ, T )

decreases continuously to zero with increasing temperature, above Tc the only minimum

is the one at Φ = 0 and symmetry is restored, the restoration of symmetry corresponds to

a second-order phase transition. Finally it is interesting to note that when λ«1 and T»m

(Φ ≤ Φc) the high-temperature expansion of V (Φ, T ) in powers of m/T is justified.

3.6.2 Thermal corrections in FRW universe

Here we return to our notation where Φ0 denotes the background cosmological scalar field.

We will use the results of the previous subsection in the spirit that the potential energy

density of a scalar field is (up to quantum corrections that we will neglect) takes the form

of its classical description.

Additionally, in the flat FRW universe, the preferred slicing that we are using and the

Newtonian gauge make the surfaces of constant time spatially flat, in fact the FRW metric

in conformal time is (see (1.13)) conformally flat (to Minkowski’s metric). This semi-

classical approach seems to be reasonable when the system we are dealing is composed of

a large number of bosons because we are interested in the collective behavior of all of the
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particles, as an order of magnitude estimate if we assume that psyons comprise all the dark

matter today, then ρdm,0 ≈ 23% ρcrit, where ρcrit ≈ 4.19 × 10−11eV4, thus the number of

bosons will be n ≈ (ρdm/m) ≈ 1012eV3, moreover, for a mass of m ∼ 10−23eV this estimate

implies according to (3.1) a critical temperature of condensation of TBEC ≈ 1.7× 1017eV

∼ 1021K, suggesting that cosmologically mostly all bosons would be in the form of a BEC,

the study of BE condensation in a relativistic boson gas was given in [Ureña-López (2009)].

We now consider the potential energy density with thermal correction given by

V (Φ) = −µ
2

2
Φ2 +

λ

4
Φ4 +

λT 2

8
Φ2 − π2

90
T 4. (3.142)

notice that in the FRW universe the d’Alambertian operator is given by (3.73). If we plug

this potential in (3.71) we obtain

�δΦ +
λ

4
[(T 2 − T 2

C) + 12Φ2
0]δΦ− 4Φ̇0φ̇+

λ

2
[(T 2 − T 2

C) + 4Φ2
0]Φ0φ = 0. (3.143)

The numerical evolution of this equation has been solved in [Magaña et al.(2012)]. They

have analyzed with some detail the evolution of a perturbation with wavelength 2 Mpc

and density contrast δ = 1 × 10−7 after the SB, they took as initial condition a=10−6

and evolve it until a=10−3. They also analyzed the case T∼Tc and show that as the

temperature decreases and goes below Tc, Φ0 converges rapidly to a new minimum where

it remains oscillating with small amplitudes, whereas the SF fluctuation grows quickly as

Φ0 approaches the new minimum.

It is always desirable and useful to obtain analytical solutions when possible as they are

frequently easier to handle. In order to get such solution we have to restrict ourselves to

a simple limit which is given in the following section.

3.6.3 Analytical solution for SFDM halos

We are concerned with DM halos after their formation, thus, we constrain ourselves to solve

the weak field limit of equation (3.143) when Φ is near the minimum of the SF potential

and after the SB, where we expect it to be stable as suggested by the numerical result

showing small amplitude oscillations around the minimum. In this limit, the gravitational

potential may be locally homogeneous in the beginning of its collapse, thus, φ̇ ≈ 0. For

clarity, we stop using units in which c=1.
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Assuming the SF is at the minimum of the potential (V ′(Φ)|Φ0 = 0), i.e., whenΦ2
0=Φ2

min=

k2
B(T2

c−T2
Φ)/4 and TΦ <Tc (neglecting the expansion H = 0), eq. (3.143) reads

δ̈Φ−∇2δΦ +
λk2

B

2~2
(T 2

c − T 2
Φ)δΦ = 0. (3.144)

Equation (3.144) describes a SF fluctuation which formed in the regime where the sym-

metry is broken. We mentioned that after the SB, the perturbations can grow until they

reach their new minimum, thus, each perturbation has a temperature at which it forms

and separates from the background field following its own evolution, we denote this tem-

perature of formation by TΦ. We can regard equation (3.144) as a first approximation to

DM halos of early isolated galaxies or those not heavily influenced by their neighbors, for

instance, systems that were born in low density regions.

Taking the ansatz

δΦ = δΦ0
sin(kr)

kr
cos(ωt) (3.145)

we found that it is an exact solution to equation (3.144) provided

ω2 = k2c2 +
λk2

B

2~2
(T 2

c − T 2
Φ). (3.146)

Here δΦ0 is the amplitude of the fluctuation. It is convenient to write the latter equation

using the standard definition of number density n(x , t)=κ(δΦ)2, where κ is a constant

that gives us the necessary units so that we can interpret n(x , t) as the number density

of DM particles, as in our treatment Φ has units of energy. With this in mind, we can

define an effective mass density of the SF fluctuation by ρ = mn and a central density by

ρ0 = mκ(δΦ0)2. The value of ρ0 is a more familiar quantity and can be obtained fitting

rotation curves.

For the static solution of a SFDM halo the analytical approximation has the following

mass density profile [Robles & Matos (2013)]

ρ(r) = ρ0
sin2(kr)

(kr)2
, (3.147)

provided Φ2
0 = Φ2

min, here k and ρ0=ρ0 are parameters to be constrained by observations.

Equation (3.147) results in a mass and rotation curve profiles given by

M(r) =
4πGρ0

k2

r

2

(
1− sin(2kr)

2kr

)
, (3.148)

V 2(r) =
4πGρ0

2k2

(
1− sin(2kr)

2kr

)
. (3.149)
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respectively. Considering the SFDM distribution to be localized in a given spherical region

of space of radius R, we get a cut-off radius set by the condition ρ(R) = 0. This in turn

results in the appearance of excited states (identified by the number of nodes, n, in their

density profile), as solutions of equation (3.144), in fact, they provide the relation

kjR = jπ, j = 1, 2, 3, ... (3.150)

where j := 1+n serves to index the state of the halo, usually being the minimum state to fit

a galaxy RC up to the last measured point. In general, there can be halos in combination

of excited states in which the total density ρtot is the sum of the densities in the different

states, given by

ρtot =
∑
j

ρj0
sin2(jπr/R)

(jπr/R)2
, (3.151)

with ρj0 the central density of the state j. The number of states that compose one DM halo

depends of each halo and can vary, on the other hand, it would be reasonable to expect

that the smallest structures are those that are in the ground state, although there might

be some contribution from other states, we will explore this issues in the next chapter.

An additional feature of equation (3.147) is the presence of “wiggles,” these oscillations

characteristic of SF configurations in excited states were also seen in [Sin (1994)]. Also,

if we define the distance where the first peak (maximum) in the RC is reached as r1
max,

this determines the first local maximum of the RC velocity, which can be obtained from

equation (3.152)
cos(2πjy)

2(πj)2y

[tan(2πjy)

2πjy
− 1
]

= 0, (3.152)

where we used equation (3.150) and y := (r1
max/R).

As galaxies are thought to form inside DM halos, we can get a rough estimate for j, taken

as the minimum excited state necessary to agree with the data up to the outermost regions,

for some galaxies where the rotation curves(RCs) allow to resolve the first maximum in

the profile, we can identify the last measured point in a RC as R and the innermost visible

peak in the RC as r1
max, then, we look for the closest value of j associated with this y in

Figure 3.6.3 (the values of Figure 3.6.3 are determined by equation (3.152)). This provides

us roughly with the dominant state in the center of the galaxy and at the same time with

the minimum state required to fit current observations. This estimate is in fact a lower
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Figure 3.7: We plot the relation between y and j obtained by solving equation (3.152).

Notice that for halos with large excited states (large j), the first maximum is attained at

a smaller y for a fixed radius. A more compact structure would imply a higher excited

state.[Robles & Matos (2013)]

bound because upcoming observations in the outskirts of galaxies might increase R, in

such case y will decrease implying larger values of j, although we should point out that

our analytical approximation is not intended to give a detailed fit of all galaxies, if this is

desired the full numerical solutions would be more accurate.

As we will see in the next chapter this solution represents a good approximation to galaxies,

and despite the limitations the qualitative properties inferred using this profile are consis-

tent with previous works that have used numerical solutions [Ureña-López & Bernal(2010),

Ureña-López ,Valdez-Alvarado, & Becerril(2012), Arbey et al.(2003), Bernal et al.(2010),

Kaup (1968), Balakrishna, Seidel, & Suen(1998), Ji & Sin (1994), Glesier (1988), Fried-

beg (1987), Rufffini & Bonazzola (1969)] keeping this in mind we may proceed with the

comparison our model and observations in galaxies.
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Chapter 4

Consequences of SFDM in galaxies

In this chapter we will apply the results that have been widely discussed in the literature

regarding equilibrium configurations of self gravitating scalar field dark matter in the

weak field limit, including our approximate solution given in the previous chapter. It is

not my aim to redo all the calculations, but for the sake of completeness i provide a brief

background on the Schrödinger-Poisson analysis including references for the interested

reader.

§4.1 SFDM halos in equilibrium

There has been considerable work to find numerical solutions to the non-interacting

SFDM in the non-relativistic regime to model spherically symmetric halos [Guzmán &

Matos(2000), Guzmán & Ureña-López(2004), Ureña-López & Bernal(2010), Bernal et

al.(2010), Bray(2012), Rufffini & Bonazzola (1969), Kaup (1968), Seidel & Suen(1991),

Lee & Koh(1996), Lee & Lim(2010)] and also for the self-interacting SFDM [Böhmer &

Harko(2007), Robles & Matos(2012), Colpi,Shapiro,& Wasserman(1986), Rindler-Daller

& Shapiro(2012), Balakrishna, Seidel, & Suen(1998), Goodman (2000), Rindler-Daller &

Shapiro(2014)], the equation that describes a dilute gas of bosons in the non relativis-

tic limit with two-body point-like interactions of the form V (~r′ − ~r) = gδ(~r′ − ~r) is the

non-linear equation

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∇2 +mφ+ g|ψ(~r, t)|2

)
ψ(~r, t). (4.1)

Where g|ψ(~r, t)|2 is the interaction term. The scattering cross-section of indistinguishable

bosons becomes constant in the low-energy limit, σs =8πa2
s ,with the s-wave scattering

75
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length being as. The coupling constant of the effective interaction is then simply propor-

tional to as
g =

4π~2as
m

, (4.2)

which is the (first) Born approximation. As before φ is the gravitational potential that

satisfies the Poisson equation

∇2φ = 4πGρ, (4.3)

and ρ = m|ψ|2. In spherical symmetry (in units ~=1, c=1) the SF solutions index by

the number of nodes Φn, satisfying the Einstein-Klein-Gordon system are related to the

Schrödinger-Poisson (SP) wavefunctions through

√
8πGΦn(x, t) = e−imtψn(x, t) (4.4)

with m the mass of the SF. It is worth noting that in the absence of interactions, as

mentioned in [Guzmán & Ureña-López(2004)], in the weak field limit the Einstein-Klein-

Gordon system, for a complex and a real scalar field reduces to solving the Schrödinger-

Poisson equations[Arbey et al.(2003)].

From current bounds reported in [Li et al.(2014)] obtained by imposing that the SF be-

haves cosmologically as pressureless matter(dust) we obtained that the interacting parame-

ter would be extremely small for the typical mass of ∼10−22eV/c2 (see eq. (3.56)), therefore

solutions to the SP system without interactions would behave qualitatively similar to those

when self-interactions are included, this assumption is supported by the similarity in the

solutions for a small self-coupling found in other works[Balakrishna, Seidel, & Suen(1998),

Colpi,Shapiro,& Wasserman(1986), Briscese(2011)], nevertheless, including interactions

can increase the maximum mass of stability[Colpi,Shapiro,& Wasserman(1986)] and mod-

ify the configuration radius, for instance, without the self interactions (SIs) λΦ4, the mass

of a self-bound zero node configuration is

M = 0.633m2
pl/m

where mpl is the Planck mass, while including a repulsive SI term [Balakrishna, Seidel, &

Suen(1998)] the mass becomes

M ∼ 0.06
√
λ
m3
pl

m2
,
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which for m = 1GeV it is larger than the former by ∼
√
λ
mpl

m
∼ 1019λ.

In principle both terms, the mass and self interaction, are contributing to the profile of

the self gravitating object, solving different limits can give us an idea of the behavior of

the solutions, in fact a complete numerical treatment of these two regimes can be found

in [Chavanis (2011), Chavanis & Delfini (2011), Chavanis & Harko (2012)]. In the case

where the SI are neglected the equation is

i~
∂

∂t
ψ(~r, t) =

(
− ~2

2m
∇2 +mφ

)
ψ(~r, t), (4.5)

in the other regime called the Thomas-Fermi limt the self interacting term dominates over

the kinetic term (also called the quantum term).

Given the similarities in the solutions, such as the density profiles, the existence of

a stable and unstable branch and stationary solutions with a characteristic oscillation

frequency[Ureña-López & Bernal(2010), Chavanis & Harko (2012), Balakrishna, Seidel, &

Suen(1998), Seidel & Suen(1990)] we may explore the non-interacting case and take it as

representative of the SFDM predictions.

The SP system has been solved to look for equilibrium configurations that could be com-

pared with some of the nearby galaxies, assuming they are in equilibrium. One char-

acteristic feature of stationary solutions of the form ψ(x, t) = e−iEntϕ(r) for the SP

system is the appearance of nodes in the spatial function ϕ(r), these nodes are asso-

ciated to different energy states of the SF, the zero node solution corresponds to the

ground state, one node to the first excited state, and so on. These excited states so-

lutions fit rotation curves(RCs) of large galaxies up to the outermost measured data

and can even reproduce the wiggles seen at large radii in high-resolution observations

[Sin (1994), Colpi,Shapiro,& Wasserman(1986), Robles & Matos(2013)]. Halos that are

purely in a single excited state seem to be unstable when the number of particles is

not conserved(finite perturbations) and decay to the ground state with different decay

rates[Guzmán & Ureña-López(2004), Balakrishna, Seidel, & Suen(1998)], though they ap-

pear to be stable when the number of particles is conserved(infinitesimal perturbations).

The ground state solution is stable under finite perturbations and infinitesimal pertur-

bations [Bernal et al.(2010), Seidel & Suen(1990)], but has difficulties to correctly fit the

rotation curves in large galaxies because its associated RC has a fast keplerian behavior
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shortly after reaching its maximum value unable to remain flat enough at large radii,

recently [Guzman et al.(2014)] have included rotation and find that the RCs can flatten

at large radii for certain values of angular momentum, although it remains unclear if the

same scheme works for galaxies of all sizes.

Another approach to get better fits in the RCs for both, large and small radii, was to

consider that bosons are not in one state but instead coexist in different states within

the halo, given the intention to describe dark matter halos I will refer to such configu-

rations as multistate halos(MSHs), albeit they were first study in the context of boson

stars[Ureña-López & Bernal(2010), Matos & Ureña-López(2007), Robles & Matos(2013),

Robles & Matos(2013b)]. The size of the MSH is determined by the most excited state

that accurately fits the RC for large radii, bosons in excited states are distributed to larger

radii than the ground state, and in contrast to the halo with a single state there are MSHs

that are stable under finite perturbations provided the ground state in the final halo con-

figuration has enough mass to stabilize the coexisting state[Ureña-López & Bernal(2010),

Bernal et al.(2010)]. In other words, when the ground state becomes the dominant state(in

terms of boson number density) in a MSH, it will provide enough support to prevent the

halo to collapse to a single state only, we may think of this as a quantum pressure produced

due to the degeneracy of the state.

In [Bernal et al.(2010)] it was shown that MSHs can be studied in the classical approach

as a collection of classical scalar fields coupled through gravity, one field ψi for each state,

this would modify the SP system such that its source of energy density would be the sum of

densities in each state[Ureña-López & Bernal(2010)], which corresponds to the non linear

case of eq (3.151), each state satisfies its respective Schrödinger equation while remaining

coupled through the Newtonian gravitational potential φ.

For stationary solutions we can assume wavefunctions of the form ψn(x, t) = e−iEntϕ(r),

then the SP system effectively reads

∇2ϕn = 2(φ− En)ϕn

∇2φ =
∑
n

|ϕn|2 (4.6)

with ∇2 the Laplacian operator, and En the energy eigenstates.
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Solving the equation for a simple MSH configuration using numerical methods [Ureña-

López & Bernal(2010)] has shown an interesting feature during its evolution towards sta-

bility.

One interesting feature of multistates is a "population inversion1" for initially unstable

halos. This was seen in the simple cases of taking a MSH in a superposition of the

lowest two energy states. For a MSH with only the ground and first excited states,

[Ureña-López & Bernal(2010), Bernal et al.(2010)] studied the critical value for its sta-

bility under small perturbations. If the ground state has N (1) particles and there are N (2)

in the excited state, the authors found that MSH would be stable under small perturba-

tions provided its ratio satisfies

η :=
N (2)

N (1)
≤ 1.2 = ηmax. (4.7)

In all the configurations studied in which η is larger than the maximum for stability ηmax,

the induced instability causes the configuration to lose a few particles and a remarkable

effect takes place, the excited state does a fast transition to the ground state and vice

versa, that is, the populations of the states are inverted such that the final η complies

with the stability condition (4.7), after the inversion the MSH approaches a stable config-

uration where the particle number remains constant for each state, after the transition the

particles that were initially in the excited state are now in the ground state where they

are redistributed and become more compact than in their original distribution, providing

pressure support in the central region, in Figure 4.1 ([Bernal et al.(2010)]) we can see the

inversion early on and the convergence to the new states in time by looking at the frequen-

cies (∝ N i) of each state. The time to settle down into a stable configuration, increases as

the fraction gets closer to ηmax. This population inversion(PI) is a characteristic feature

of MSHs and as we will see below such effect fits qualitatively good in our proposed halo

formation scenario in the SFDM model. In fact, we will explore its consequences in the gas

distribution during the period of galaxy formation. Additionally, given the cut-off in the

1The name might be more familiar from the phenomenon laser, in which the population inversion occurs

an emits photons. However, even though we have borrowed the name inspired in the laser phenomenon,

in the case of dark matter there is not photon emission, as we are considering the field to be effectively

decoupled from the rest of the particles, including the electromagnetic interaction.
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Figure 4.1: Plotted are the eigenfrequencies of each state during the transition of states in

a multistate configuration formed by a superposition of the ground and the first excited

state, characterized by their respective frequencies ω1 and ω2 (Bernal et al. 2010). The

transition inverts the eigenfrequencies and happens early due to the instability being

triggered due to the initial fraction of psyons in the excited states being larger than the

critical value for stability.

mass power spectrum for small mass halos (due to the small mass of the psyon) we expect

a delay in the formation of the first gravitational structures compared to the those found in

CDM[Matos & Ureña(2001), Marsh & Silk(2014), Bozek et al.(2015)], this was observed

with cosmological simulations for a mass of 8× 10−23eV [Schive et al.(2014)](although the

halo mass function was not reported by the authors), therefore, this intrinsic change of

states within MSHs at high redshift might have observable consequences in the gas and

stellar properties of the galaxies in the early stages of their formation, at those times the

gas would be tracing the potential wells and likely substantial changes in the halo will

impact the gas distribution too.

§4.2 LSB and dwarf galaxies
Among the vast number of galaxies that are currently observed, there are a large number

of them with stellar masses of M∗ ∼ 1010−1011M�, comparable to our Milky Way galaxy,

the masses of these structures make their detection easy with current space telescopes, the

detection becomes harder for smaller objects as their baryonic content decreases, despite



81

the limitations we know there are galaxies with M∗ ∼ 104 − 107M� that remain bounded

even in our own galaxy, these dwarf galaxies required large mass-to-light ratios (∼ 10 −
100[Walter & Peñarrubia(2011)]) which is usually interpreted as being in massive dark

matter halos that contribute largely to their mass budget, this interpretation becomes

more probable when the estimated mass-to-light ratios expected from stellar population

models lie below the inferred ratio obtained from the movements of the stars in the galaxy.

Dwarf spheroidal galaxies (dSphs) orbiting the MW are effectively devoid of gas and

although they have a variety of star formation histories most of them have old stellar pop-

ulations[Madau et al.(2014), Weisz et al.(2014a), Weisz et al.(2014b), Weisz et al.(2014c),

Weisz et al.(2015)]. In addition to nearby dwarfs there are extragalactic low surface

brightness galaxies whose dark matter content is also though to be high [Kuzio de Naray

et al.(2010), Kuzio de Naray & Spekkens(2011), Kuzio de Naray & Kaufmann(2011)] but

these are usually more extended with observed radii larger than ∼ 1kpc as is frequently

the case for dwarfs. These systems are particularly interesting candidates to test dark

matter models as their baryonic matter may be neglected as a first approximation, on the

other hand some of them lack enough resolution that frequently hinders the comparison

in the inner parts.

Assuming that the stellar systems of the dSphs are pressure supported and in dynamic

equilibrium2, we follow the procedure of [Walker et al.(2009)] to find the relationship be-

tween the mass distribution of a SFDM halo and the stellar distribution, this is given by

the Jeans equation
1

ν

d

dr
(ν〈v2

r〉) + 2
β〈v2

r〉
r

= −GM(r)

r2
, (4.8)

where ν(r),〈v2
r〉, and β(r) describe the 3-dimensional density, radial velocity dispersion,

and orbital anisotropy, respectively, of the stellar component. The parameter β quantifies

the degree of radial stellar anisotropy and there is no preference for either radially, β > 0,

or tangentially, β < 0, biased systems. For circular orbits β = −∞ ,〈v2
r〉 = 0 ; if 〈v2

r〉 =

2The assumption of dynamical equilibrium is not necessarily true for all galaxies, the environment

can affect such condition and even play a significant role in the halo and stellar distributions making

the conclusions from the dynamical equilibrium hypothesis dubious and could possibly be the cause of

discrepancies between the fits and observations. Although it is uncertain if galaxies are in true dynamical

equilibrium, assuming the latter is often a good first approximation in dwarf spheroidals.
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〈v2
θ〉 = 〈v2

φ〉, β = 0 (isotropic orbits); and for radial orbits β = 1, 〈v2
φ〉 = 〈v2

θ〉 = 0. Although

β can take all this values, we restrict the anisotropy to be in the range −0.6 ≤ β ≤ 0.3

for the most realistic scenarios [Walker et al.(2009)], and consistent with other estimates

using also the dSphs [Lokas(2009)].

In the simplest case the orbital anisotropy is independent of r ( β = const), the solution of

the Jeans equation relates the projection of the velocity dispersion along the line-of-sight,

σ2
los(R), and the mass profileM(r), to the stellar density I(R) [Binney & Tremaine (2008)]

through

σ2
los =

2G

I(R)

∫ ∞
R

dr′ν(r′)M(r′)(r′)2β−2F (β,R, r′), (4.9)

with

F (β,R, r′) ≡
∫ r′

R

dr

(
1− βR

2

r2

)
r−2β+1

√
r2 −R2

, (4.10)

and R the projected radius.

We adopt an analytic profile for the projected stellar density I(R). As in [Walker et

al.(2010), Salucci et al.(2011)], we consider a Plummer profile for the stellar density with

the projected half-light radius, rhalf , as the only shape parameter,

I(R) =
L

πr2
half

1

[1 + (R/rhalf )2]2
, (4.11)

where L is the total luminosity. With the projected stellar density known, one can recover

the 3-dimensional stellar density [Binney & Tremaine (2008)]

ν(r) = − 1

π

∫ ∞
r

dI

dR

dR√
R2 − r2

. (4.12)

substituting eq. (4.11) in eq. (4.12) for the Plummer profile we have

ν(r) =
3L

4πr3
half

1

[1 + (r/rhalf )2]5/2
. (4.13)

Using eqs. (4.9) and (4.10) we can find the halo parameters that best reproduce the

velocity dispersion data. We have three free parameters per galaxy: the scale radius

∼ 1/kj, the density, and the orbital anisotropy β. For the stellar component we use rhalf
from [Walker et al.(2009)].

One advantage of the analytical approximation we derived in the last chapter is that in

the core region where the density will be dominated by the ground state once the halo
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has reach stability the analytical approximation resembles the numerical solution with

high accuracy, this is not surprising as the inner distributions is given by the quantum

pressure which is just Heisenberg’s uncertainty principle acting on such scales. In fact,

from the simulations in [Schive et al.(2014)] the inner kiloparsec of the density profiles of

different SFDM halos displays an ubiquitous core, in the supplementary information of

[Schive et al.(2014)] the authors provided an empirical fit to the inner profile (where the

solitonic core is present) for the dwarf galaxy Fornax given by

ρ(r) ≈ 1.9(m/10−23eV )−2(rc/kpc)
−4

[1 + 9.1× 10−2(r/rc)2]8
M�pc

−3. (4.14)

where core radius rc is defined as the radius in which the density has has dropped to

one-half its peak value, for appropriate normalization values our analytical profile is in

good agreement with the latter numerically motivated. We will comment on the reason of

these similarities and the interpretation below when we give our halo formation scenario,

for the moment we will assume (3.147) to model the dwarf galaxies.

We first model the dSphs assuming the ground state is enough, this means setting j=1 and

thus eq.(3.147) has no oscillations, we obtained good fits restricting to realistic values of the

orbital anisotropy, −0.6 ≤ β ≤ 0.3, in previous studies where the Thomas-Fermi(TF) ap-

proximation is taken at zero temperature [Robles & Matos(2012), Böhmer & Harko(2007),

Lora & Magaña(2014), Diez-Tejedor et al.(2014)] only the pure condensate was physically

allowed, for reference we include the solution under the TF approximation [Robles &

Matos(2012), Böhmer & Harko(2007)]

ρ(r) = ρ0
0

sin(πr/r0
max)

(πr/r0
max)

, (4.15)

where ρ0
0 is the central density of the condensate, r0

max =
√
π2Λ/2(~/mc) is considered as

a configuration radius where ρ(r0
max) = 0 and therefore ρ(r) = 0 for r ≥ r0

max , m is the

mass of the scalar field, Λ = λm2
Planck/4πm

2, and λ is the dimensionless parameter that

determines the two-body interactions of the field.

Using only the ground state for our analytical profile produces dispersion velocity fits in

dSphs that are almost indistinguishable to those using eq. (4.15) within ∼ 500pc, the

region where the condensed state best fits the data. The latter implies that within this



84 CHAPTER 4. CONSEQUENCES OF SFDM IN GALAXIES

radius the dSphs are also well reproduced using our profile

ρj(r) = ρj0
sin2(kjr)

(kjr)2
,

with only the condensed state(j = 1). There are several values of β that produce a fit

consistent within the error bars of σlos, with the upcoming surveys MaNGA, Gaia it will be

possible to have much better precision of the velocities of nearby stars, allowing possibly

to improve to distinguish subtle differences such as the existence of more than the ground

state bosons conforming the halos.

If we now include the first excited state in the analysis we see in Figure 4.2 that there is a

difference mostly in the outer regions, associated to a wider distribution of excited-state

psyons in the halo[Martinez-Medina, Robles, & Matos(2015)]. The relevance of adding

excited states is mostly seen in larger galaxies as they play an important role to flatten

the rotation curves and reach agreement with HI observations.

We see that dSphs of similar sizes and properties are described with a single state, in

fact this is shown in Fig. 4.2 for the dSphs within 500pc, notice that the corrections

due to the first excited state are small but not zero, we must take into consideration

that the larger the galaxy is, the more relevant are the contributions of other states.

In Table 1 we give the values of the best fit parameters used for the modeled galaxies.

Indeed, if we model extended galaxies where the rotation curves remain flat for more

than 10 kpc the need of more excited states becomes clear, Figure 4.3 illustrates this

feature, here we fitted three LSB galaxies assuming multistate halos and we obtained

good fits to all radii, in fact the wiggles in the data are also nicely reproduced. In this

figure we have also compared with the typical Einasto profile that is used to model CDM

halos[Navarro et al.(2010), Merrit et al.(2006), Graham et al.(2006)],

V 2
E = 4πGρ−2

r3
−2

r

[
e2/α

α

(
α

2

)(3/α)

γ(
3

α
, x′)

]
, (4.16)

with γ the incomplete gamma function given by

γ(
3

α
, x′) =

∫ x′

0

e−τ τ (3/α)−1dτ

with x′ := 2
α

( r
r−2

)α, r−2 is the radius in which the logarithmic slope of the density is −2,

ρ−2 is the density at the radius r−2, and α is a parameter that describes the degree of

curvature of the profile[Merrit et al.(2006), Graham et al.(2006)].
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Figure 4.2: Projected velocity dispersion profiles for the eight brightest dwarf spheroidal

satellites of the Milky Way [Walker et al.(2009)]. The solid (black) lines correspond to the

profiles calculated with the anisotropy parameter that best fits the data using the BEC

model(eq.4.15), and the dotted (blue) lines show the multistate halo profile (eq.3.147)

that includes the sum of the first excited state and the ground state. The effects of the

first state are more pronounced for the galaxies with measurements in r >1 kpc, these

states have R2 > R1 implying that dwarf dark matter halos extend to at least R2 ≈ 5

kpc, however the dominant component of the mixed state within 500 pc remains to be the

ground state, this region is also where the BEC profile provides a good description.
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Figure 4.3: Rotation curve fits to three LSB galaxies. top left panel : NGC 1003, top rigth

panel : NGC 6946, bottom panel : NGC 1560. Solid lines are the fits using the SFDM

model, here n represents the states used for the fit, dashed line represents Einasto’s fits,

and triangles are the observational data. In NGC 1560 we see that the dip at r ≈5kpc is

reproduced more accurately in the SFDM profile. Einasto fits show different values of α

in each galaxy, suggesting a non-universality in the DM halos, the same is concluded in

the SFDM model due to the different states involved in the fits.
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Table 4.1: Parameters for the condensate state and the first excited state that together

form the potential well for each dSph (blue lines in Fig 4.2.)

dSph ρBEC0 (10−2M�pc−3) R1 (kpc) ρ1st−state
0 (10−2M�pc−3) R2 (kpc) β

Carina 6.60 1 0.45 3.6 0.3

Draco 10.6 1.5 0.51 6 0.3

Fornax 5.09 1.5 0.16 7 0

Leo I 14.5 1 0.37 5 0.3

Leo II 28.5 0.5 0.46 3 0.3

Sculptor 13.5 1 0.24 5.6 0.1

Sextants 2.42 1.25 0.07 6 -0.1

Ursa Minor 13.1 1 0.34 5 0

The agreement with dark matter dominated systems is one remarkable success of the

SFDM, moreover, looking at the functional form of the density profile we can observe that

this models produces a flat density profile in the center, this translates into a a linear

increase in the rotation curve (v ∼ r for small r), although this is notably a difference

to the usual cusp in CDM simulations currently it remains challenging to observationally

disprove either model based only on the inner slope of their profiles, one particular reason is

because some CDM simulations have shown that through stellar feedback the dark matter

slopes can yield a "shallow cusp" resembling a slighly steeper core profile(ρ ∼ r−0.5), it is

nevertheless reassuring that the model is able to provide an explanation without contrived

hypotheses or relying on unknown parameters for the stellar feedback that in dark matter

dominated systems are not expected to play a major role anyway. In this sense the SFDM

is a viable model. Looking back at Figure 4.3 we notice that the number of excited states

that live in a SFDM halo is in fact not known a priori, it is until we do the fitting of the

data that can have information about the composition of the halos. It would be desirable

to look for possible correlations in galaxy mass, size and the required combination of states

j in a large sample of galaxies that allow to get better statistics and find the trends, if

any.
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§4.3 Tidal Stripping in SFDM halos
A particular feature of a SFDM halo is to possess a flat density profile, although this

property may not be totally true when baryons can not be neglected in the center of the

halos, it seems to be common in satellite halos where the baryons are not dominating

the mass content, as shown in the previous section3. It is true however, that we observe

galaxies and not dark halos4, additionally MW galaxies5 rapidly assemble most of their

mass (in CDM simulations tends to be at redshift ∼ 2) and don’t undergo major changes

later on, unless a major merger occurs, for this reason it is often assumed that the MW is

a static halo and thus, simplify the study of tidal effects in small satellites that are being

accreted on a MW host.

Previous studies have shown, using empirical core-like density profiles for DM halos, that

tidal disruption can be more important in core-like DM halos than in halos with NFW

profiles, especially if they pass close to the galactic disk (see Klimentowski et al. (2009)

and Peñarrubia et al. (2010) for collisionless simulations). However, until now there

has not been studies addressing whether the tidal effects are strong enough to remove

completely the stars in classical and ultra faint dwarf galaxies hosted by BEC halos.

We investigated[Robles et al.(2014)] this issue through a series of simulations of a stellar

component described by a Plummer profile when it is embedded in a SFDM subhalo

subject to the influence of a MW SFDM host halo with a disk component. The Plummer

profile reads

ρ(r) =
3M∗
4πr3

p

(
1 +

r

rp

)−5/2

, (4.17)

3In fact, as galaxies become more luminous by increasing their baryonic content within a dark halo, the

adiabatic contraction can increase the central density resulting in larger logarithmic slopes in the inner

kpc, as seen in some dwarf galaxies that favor a more cuspy density distribution, it would be interesting

to verify whether this effect is enough in the SFDM model to be in agreement with these observations.
4Given the large number of expected dark mini halos with halo masses Mh < 108M� in CDM simu-

lations, mainly around massive galaxies including those of Milky Way-like masses (Mh ∼ 1× 1012) there

have been proposals to detect them using techniques like weak lensing, this research is still ongoing and

so far there are not signatures of their existence.
5We use the standard jargon where a Milky Way-like galaxy refers to a galaxy with a comparable mass

to our real Milky Way, frequently this mean galaxies with comparable halo masses and morphology.
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Figure 4.4: From left to right are the cicular velocity, mass, and density profiles used for:

the MW’s SFDM halo model (purple lines), and the cored DM halo (pink lines).

where M∗ is the mass of the stellar component, and rp is the Plummer radius, One

should note that rp can be related to the half-mass radius rh through rh = 1.3rp. In

our simulations[Robles et al.(2014)], we have set a half-mass radius of 200 pc, and a stel-

lar mass of M∗ ' 7.3 × 105 M�, motivated by the typical values for Draco, which is

one of the classical dSph galaxies and also one of the least luminous satellites (e.g., see

[Martin et al.(2008)] and [Odenkirchen et al.(2001)], for Draco). For the MW disk we

adopted the Miyamoto-Nagai potential[Miyamoto & Nagai(1975)]

Φd(R, z) = − GMd√
R2 + (a+

√
z2 + b2)2

. (4.18)

In the latter equation, Md stands for the mass of the disc, and a and b stand for the

horizontal and vertical scale-lengths, respectively. We have set the mass of the disk Md =

7.7× 1010 M�, and the scale length a = 6 kpc, and b = 0.3 kpc.

We used similar parameters that reproduce current MW data for our SFDM MW host.

We found that using ρ0,4 = 0.0191 M� pc−3, j = 4, and Rh = 100 kpc (see purple lines

in Figure (4.4)) in Equation (3.147) gives a good representation to the MW DM in the

SFDM model. We compared with an empirical cored profile [Peñarrubia et al.(2010)]

ρ(r) =
ρ0

(1 + (r/Rs)2)3/2
. (4.19)

For the MW’s cored DM profile (Equation 4.19), we set Rs = 15 kpc. The corresponding

circular velocity, mass and density of the cored DM halo, are shown with pink lines in
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Figure (4.4). It has to be noted that, for both (SFDM and cored) MW halos, the core

radius is ∼ 11.5 kpc, and that the mass estimations within 100 kpc are comparable.

Therefore, the DM profiles are not identical but the total mass enclosed at the halo radius

is the same. The wiggles found in the halo and shown in Figure 4.4 are also a particular

difference of this SFDM profile with respect to other core models.

For the mass models in our satellite subhalos, the mass of the dark halo enclosed at Rh = 2

kpc lies in the range 108-109 M� and we use only j = 1 for simplicity, as we showed

before the excited state will not contribute strongly to the inner dynamics as it is the

ground states that dominates in this region. The resulting mass-to-light ratios represent

DM dominated dSphs. For instance, the mass-to-light ratios of dSphs ([M/L]half ) in the

MW range from ∼ 7 M�/L� (Leo I, Fornax) to ∼ (103) M�/L� (UMa II, Seg, UMaI)

[Collins et al.(2014)]. In particular, Draco has a very low luminosity but a high estimated

total mass within the tidal radius ofM(rt) = 2.2−3.5×107 M� [Odenkirchen et al.(2001)],

this leads to a high mass-to-light ratio of (M/L)i ' 92−146. For the dwarf central density

of the dwarf, we select two different values that encompass the range of masses found in

dwarfs, 0.16 M� pc−3 (model A) and a less massive one with 0.031 M� pc−3 (model B).

In Figure (4.5), the dashed lines show the circular velocity, mass, and density associated

with the SFDM halos of models A and B. The corresponding SFDM dwarf core radius

(defined as the radius at which the central density drops a factor of two) is ∼ 750 pc

for both A and B models and its presence is distinctive prediction of the model. For the

orbit of the dwarf galaxy, we assume an apocenter distance from the MW, ra = 70 kpc

and two different pericenter distances (rp = 14 and 35 kpc). We conducted simulations

with and without adding the presence of a Miyamoto-Nagai disk in the MW potential to

assess the effects on the dwarfs due to the close encounter with the disk component. Our

main interest is the stellar component evolution that is located deep inside the subhalo.

[Peñarrubia et al.(2010)] show that the major effect of tidal disruption of a DM subhalo

occurs in the outermost radius, while inner regions (. 1 kpc) are less affected by tides

and the central density profiles are only shifted to a slightly lower value maintaining the

same inner shape during the evolution. Table 2 summarizes our simulations.

Figure (4.6) shows the dwarf galaxy stellar mass profile at t = 0 and t = 10 Gyr in all our

simulations. From the upper-left panel in Figure (4.5) we see that all A models lose some
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Table 4.2: Parameters used in our simulations.Column 1 identifies the simulation, column

2 specifies rp/ra for the orbit, column 3 shows the plane of the orbit, next two columns give

the central density for the dwarf and the MW DM halos in each simulation, respectively,

column 6 determines if a disk is present in the Milky Way halo, and column 7 gives the

DM model used in the simulation.
Dwarf Dwarf MW MW DM

Simulation rp
ra

orbit ρ0 ρ0 disk model

plane (107 M� (kpc)−3) (107 M� (kpc)−3)

A1 1/2 x-y 16 1.91 – SFDM

B1 1/2 x-y 3.1 1.91 – SFDM

A2 1 x-y 16 1.91 X SFDM

B2 1 x-y 3.1 1.91 X SFDM

A3 1/2 x-y 16 1.91 X SFDM

A3core 1/2 x-y 16 1.91 X Core

B3, B6 1/2 x-y 3.1 1.91 X SFDM

B3core, B6core 1/2 x-y 3.1 1.91 X Core

A4, A6 1/5 x-y 16 1.91 X SFDM

A4core, A6core 1/5 x-y 16 1.91 X Core

B4 1/5 x-y 3.1 1.91 X SFDM

B4core 1/5 x-y 3.1 1.91 X Core

A5 1/5 45◦ 16 1.91 X SFDM

B5 1/5 45◦ 3.1 1.91 X SFDM

• Simulations B6(B6core) use the same parameters of B3(B3core) but with a satellite

stellar mass M∗ = 1× 104 M�

• Simulations A6 (A6core) use the same parameters of A4(A4core) but with a satellite

stellar mass M∗ = 1× 104M�
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Figure 4.5: The circular velocity(left), mass(center), and density profile(right) associated

to the two SFDM halos of the dwarf galaxy (dashed black line (blue in the online version)

is model A: 0.16 M� pc−3, and dashed gray line (cyan in the online version) is model B:

0.031 M� pc−3). The corresponding core DM models are shown with solid lines with their

respective colors for comparison.

particles, but the loss is not substantial and the galaxies survive with escencially the same

initial mass after 10 Gyr. These simulations suggest that the density is high enough to

strongly bound the stars and prevent the disruption of the satellite. A similar behavior

is seen when a cuspy-like profile is used [Klimentowski et al.(2009), Łokas et al.(2012)],

making tidal disruption an inefficient process in both core and cusp-like subhalos to reduce

their stellar mass within 1kpc and therefore making it not the relevant mechanism that

decreases the abundance of massive dwarf satellites around MW type galaxies, even for

orbits with close pericenters of 14 kpc.

The B models for the SFDM halo show a slightly larger particle loss than the A models

(upper-right panel in Figure 4.6) except for model B4 which shows a more pronounced

particle loss. The small central density of the SFDM dwarf subhalo, plays a crucial role

in its survival. The final mass (at t = 10 Gyr) for B models is smaller than the high

A density case in all cases. This shows that even if the orbit is far from the MW disk,

whenever the DM subhalos have low densities the stars in the center are susceptible to

spread out more than in denser halos as seen by comparing the two upper panels in Figure

(4.6) within 500 pc.

The considerable disruption in both B4 simulations indicates the need to include the

disruption of the halo. In our simulations, the satellites still remain due to the assumption
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Figure 4.6: Upper panel: Dwarf stellar mass for models A(left) and B(right) at t = 0

and t = 10 Gyr. The upper left panel would represent a classical dwarf and the upper

right would be an ultra faint-like galaxy. The different symbols in the panel represent the

dark matter model used in that simulation according to Table 1. Bottom panels show

small mass satellites with M∗ = 1× 104 (models A6, A6core, B6, and B6core) at t = 0 and

t = 10 Gyr, different symbols correspond to different simulations. In all A models of the

SFDM the galaxy survives at the end of the simulation independent of the stellar mass and

the orbits we considered, even the presence of a disk in the MW scalar field halo cannot

destroy the satellite. In B models where the subhalo is less dense, the satellite losses more

mass than in A cases but will still survive inside the subhalo, except when the pericenter

becomes comparable to the disc’s scale length where we expect the scalar field subhalo to

be disrupted too.
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of fixed subhalo, but we expect the dwarf halos to fully disrupt and that their stars get

dispersed around the MW halo. This one of the restrictions of the simulation, given that

the dark halos are fixed, we can track the evolution of the stars and used them as tracers

of the strength of the tidal interactions. As stars in the center become strongly affected,

shown by the decrease in the stellar densities, it is also a likely that the halo will suffer

some disruption too, this effect is not substantial for most of our simulations but it appears

for B4 due to its proximity to the MW disk and the small subhalo central density.

We also conducted a couple of simulations (A5 and B5) where we set the dwarf galaxy

embedded in the MW SFDM halo potential, with a rp/ra = 1/5 including the baryonic

MW disk component and similar to A4 and B4 models, but now we place the dwarf galaxy

in an orbit inclined 45◦ from the x−y plane. In this case we observe that the dwarf galaxy

gets destroyed within ∼ 1.5 Gyr. This suggests that orbits with close pericenter distances

and inclination effects are important factors to the survival of low density SFDM dwarf

satellites. In A6 and A6core, the parameters are identical to A4 and A4core respectively, but

the stellar mass of the satellite is smaller M∗ = 1 × 104M�.These parameters correspond

to the closest orbit where the tidal effects should be the largest. The other pair, B6 and

B6core, uses M∗ = 1× 104M� and the parameters of B3 and B3core respectively. Despite

their low mass the satellites can remain with most of their initial mass after 10 Gyr. Here

we show that if the satellites are in scalar field subhalos with central densities comparable

to classical dSphs, some of their stars are stripped but the galaxies can survive with smaller

masses and hence contribute to the number of dwarf satellites around a MW host. It must

be noted that, in the SFDM model,the substructure is smaller due to the wave properties

causing the cut-off in the power spectrum, as confirmed in [Schive et al.(2014)].

For the lower density dwarfs (comparable to ultra faint dwarfs), we obtained that they

could survive but only if their orbits do not get well inside the disk of their host. On the

other hand, low density halos with close pericenter orbits can be fully stripped of stars if

evolved for a long time even with a fixed subhalo potential, but as we expect them to be

destroyed once the fixed halo hypothesis is relaxed. Therefore, we do not get DM halos

that are tiny and dark, contrary to the CDM predictions where the cusp prevents total

disruption.

Therefore, our results point to an alternative solution to the satellite overabundance prob-



95

lem and the cusp-core issue by means of the quantum DM properties of the scalar field,

and without relying strongly on the messy astrophysical processes. Here, small mass sub-

halos with core profiles (ρ(r) ∼ r0) and with orbits not crossing the host’s disk are able

to survive for a long time, otherwise the close encounters with the disk could completely

destroy them. On the other hand, more massive dwarfs can get closer or farther from the

host’s disk and still survive with core profiles. To determine the final fate of these galaxies

and make a fair comparison with current CDM simulations it is necessary to invoke the

astrophysics but so far we have found that this model seems to offer a good description

to the nearby galaxies, although this is not meant to be a compelling reason to prefer this

model over CDM. In fact, the results might vary if we relax the fixed halo hypothesis for

the satellite, and include gas that is self gravitating6, both conditions could show results

that differ from the ones we found, particularly because the self-gravity of the gas will

make it less difficult to be stripped of stars as the gravitational potential is now deeper,

on the other hand, the subhalo will also feel the tidal interaction, in this case we expect

the the mass loss to be similar to that in [Peñarrubia et al.(2010)], however it is not clear

what effect the oscillations of the MW halo have on the subhalo when both are not fixed,

and how they compare when smooth DM distributions are considered, the limitations of

our approach cannot assess this question but it is undoubtedly something that requires

further exploration.

§4.4 Rings and shells in early type galaxies
An interesting feature of the intrinsic nature of psyons is to allow for some bosons in excited

states. This property has been pointed out before in the context of multistates in a SFDM

halo, we mentioned the possibility of a population inversion in the states that can turn

an initially unstable multistate halo (MSH) into a stable one according to the ratio of the

particle numbers in each state. This MSHs present ripples in the density profile that are

a consequence of the quantum nature of the psyons, in [Robles, Medina & Matos (2015)]

we have modeled these properties using an analytical model that captures the effect of the

transition and explore how the transition affects the gas embedded in a MSH halo.
6When gas is self gravitating the mass of the gas also contributes to the gravitational potential in

addition to the dark matter.
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We consider a multistate halo with only the first and ground state coexisting, this is

because we know the stability threshold for this multistate configuration. In [Bernal et

al.(2010)] it was seen that the larger the η above the critical value, the faster it settles to

its final stable configuration, to be sure that the MSH is initially in the unstable regime

we pick an intermediate value η=1.6. We explore the evolution of the gas distribution that

follows a disk of gas with a Miyamoto-Nagai profile[Miyamoto & Nagai(1975)] with gas

mass ofMg = 3.9×109M�, and for the horizontal and vertical scale-lengths we use a = 6.5

kpc and b = 0.5 kpc respectively, we modified the code ZEUS-MP[Hayes et al.(2006)] to

evolve the gaseous component embedded in the MSH, the gas is not self gravitating and

is treated as a tracer of the potential only.

We use a semi-analytical model that let us control the rate of the transition to a stable

state, this type of isolated and simplified simulations help to identify the main effects of the

transition in the gas and aid the interpretation of the results. However, It remains unclear

when the transition is set for a given halo or its duration, this requires a better sampling of

the problem, first by considering a larger representative sample of halos, and second, how

the properties vary with the transition time. It is in these semi-analytical simulations that

an analytical form of the density profile becomes handy, keeping in mind the limitation

of this profile, we use the form (3.147) to model our MSH, the main idea is to start

from an unstable MSH halo and invert the masses of the states neglecting any particle

loss in the total halo, during the population inversion in the numerical solution both

states lose a few percentage of their initial masses(<10% [Ureña-López & Bernal(2010),

Bernal et al.(2010)]), but this loss would not substantially affect the final halo profile, for

this reason we may neglect the mass loss in our analytical study.

After the inversion the total initial mass of the ground state M i
1(Ri

1) becomes the final

mass of the excited state M f
2(Rf

2) and vice versa, and the nodes in the wavefunctions will

also have changed, that is

M i
1(Ri

1) −→M f
2(Rf

2), M i
2(Ri

2) −→M f
1(Rf

1) (4.20)

j : 1, 2 −→ 2, 1 = j′. (4.21)

where the mass profiles for each state j are now flipped, Rj is taken as a truncation radius

of the corresponding state, that is, for radii grater than Rj the number of particles in the
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Table 4.3: Initial and final parameters defining the MSH.
Initial Final

j j′

1 2 1 2

M 1.844 2.953 2.953 1.844

R 10 20 10 20

state j is neglected, i.e we take ρj(r)=0 for all r > Rj whereas for r ≤ Rj the density

profile of the state j is given by (3.147). The total density of the MHS would be described

by ρ(r)=ρ1(r)+ρ2(r).

The function that models the time evolution of the transition to the stable configuration,

is based on the numerical solution, for unstable halos the transition happens really fast,

during this period the central density varies until it settles down in the new stable value,

the inversion also modifies the radius of each state which is related to its central density

ρc,j by the mass profile

Mj(Rj) =

(
2

π

)
ρc,jR

3
j

j2
. (4.22)

A smooth function that captures the population inversion(PI) of the numerical evolution

and allows an interpolation between an initial and final Rj is

Rf
j′(t) = Ri

j +
εj′,j
2

(
1 + tanh[α(t− tinv)]

)
, (4.23)

where α determines the transfer rate from the initially unstable to the final stable MSH,

εj′,j = Rf
j′ −Ri

j is a parameter that relates the initial radius to the one after the inversion,

and tinv is the time where the PI is halfway to reach its final stage with j′ confined in Rf
j′ ,

we use the same functional dependence to invert j to j′.

With implemented this analytical model in ZEUS and follow a gaseous disk used as a tracer

of the gravitational potential, setting the initial condition such that the gas velocities

are those of the background dark matter halo. We explore an early and late transition

specified by tinv=1 and 3 Gyrs respectively, and we also evolve these cases when α = 1, 1/4

corresponding to an fast and slow inversion, we denote by Atinv
α a realization that had a

PI with parameters tinv and α.



98 CHAPTER 4. CONSEQUENCES OF SFDM IN GALAXIES

Figure 4.7: Comparison of initial gas distribution(left) and its final stage. The central

panel corresponds to a halo that had an early transition to its stable configuration at

tinv=1 Gyr(A1
1) and on the last panel(right) the transition was at a later epoch tinv=3

Gyrs(A3
1). A ring appears in both simulations at the corresponding density peak at 9 kpc.

In Figure 4.7 we show the initial and final gas distributions of a halo with the parameters

in table 4.3 where the mass is in units 1 × 1010M� and R is in kpc. In Figure (4.7) we

see a surprising agglomeration of gas at 9 kpc that reaches up to ∼ 20% of the mean

central density (≈ 0.45M�pc−3), the fact that it remains well after the transition is an

important issue as this could be a key signature of the model that is not found in CDM or

other alternatives, this suggest a potential mechanism to form substructure around some

of the isolated early galaxies, in fact, the ring of gas orbiting around the denser central

concentration is reminiscent of those found in certain elliptical galaxies. The ring keeps

its location until the end of the simulations in our isolated galaxy because its origin lies in

the shape of the background SFDM halo, moreover, the stability of the halo under small

perturbations, such as accretion of small galaxies, mildly change the inner DM potential

but may alter the ring structure in a similar way that the population inversion modified

the initial gas profile, however, after the merging process has concluded the gas will start

redistributing and, according to our results, had enough gas remain on the outskirts a ring-

like structure would appear again. The final amplitude of the ring’s density will depend

more strongly on the details of the merging process but its location should be similar
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to the non perturbed halo provided the DM halo potential was not severely modified as

expected for minor mergers in the past or those relatively more recent, thus, tidal features

are not exclusive of galaxy mergers when the dark matter is an ultra light scalar field.

In these results we have seen that the presence of the symmetric ring is due to the spheri-

cally symmetry hypothesis in the SFDM halo, deviations from this symmetry could result

in incomplete rings and shells although a certain degree of symmetry should remain, which

may be a feature to distinguish the SFDM halo debris from remnants that come from recent

galaxy mergers that depend on the path of the accreted satellites and do not necessar-

ily leave tidal debris of a particular symmetry, our results suggest that outer regions of

dark halos may not be totally smooth. Exploring in more detail the regions where shells

and rings form could also help to put constraints on their origin, their formation, and

serve to test galaxy and halo formation scenarios such as the quantum dark matter(QDM)

paradigm.

§4.5 Galaxy formation scenario in SFDM haloes

Initial fluctuations that grow due to the cosmological expansion of the universe eventu-

ally separate from it and start collapsing due to its own gravity, at this time (known as

turnaround) the halo has a number of psyons that can be in different states, their values

would be determined before the collapse of the configuration, and have some dependence

on the its local environment. Depending on the number density of bosons populating the

excited states we can have different fates and for the halos.

Based on the results exposed in this chapter and the ones reported in the literature, it is

clear that the QDM paradigm deserves some further attention, it is convenient to describe

how the known features would relate, at least qualitatively, with the observed galaxy

populations, for this reason we propose the following galaxy formation scenario in SFDM

halos.

The smallest and less dense systems, such as dwarf galaxies, would reside in SFDM halos

with most bosons in the ground state except possibly for just a few excited particles as seen

in [Martinez-Medina, Robles, & Matos(2015)], this is because the potential wells of these

haloes, being the lowest density systems, would be just massive enough to collapse and
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allow the existence of the minimum energy state that would form a bound configuration.

Larger configurations that had initially a larger number of bosons in excited states than

in the ground state can undergo a population inversion and reach a stable state, collapse

to a dense ground state or become a black hole depending on how large the fraction of

particles in excited states is after turnaround, given the different possible outcomes for

this case we expect that most galaxies are formed this way, for instance, ellipticals can

form when halos transition to a stable configuration that quickly increases the ground

state and deepens the gravitational potential resulting in a dense and compact structure

where the bulge can form. High surface brightness galaxies usually have RCs that fall

slowly after its maximum speed, they would likely correspond to SFDM halos whose final

stable configuration has a comparable number of bosons in the excited and ground states

as both states would contribute evenly in the central region increasing the gravitational

potential well where more star formation can take place, and for distances larger than

a given radius (likely the first maximum peak in the RC) the ground state would be

a small contribution to the density, thus in the outer regions the baryonic RC would

remain below its maximum. Another possible outcome for extended halos is when the

fraction of excited particles is below its stability threshold, in these cases gravity will

slowly redistribute DM bosons in the stable MSH but mostly keeping the particle number

constant, considering that psyons in the excited states are subdominant and more widely

distributed than the ones in the ground state of a MSH, the DM gravitational potential

in the center would be less dense than in the high surface brightness case so that gas

accretion would also proceed more slowly resulting in rotation curves for the baryonic

matter that slowly increase to large radii or with almost flat profiles, this case is quite

similar to what is found in low surface brightness galaxies[Kuzio de Naray et al.(2010),

Kuzio de Naray & Spekkens(2011), Kuzio de Naray & Kaufmann(2011)].

Overall, this galaxy formation scenario broadly describes different galaxy types showing

that only due to the dark matter properties in the context of SFDM it is possible to agree

with the general features of several galaxies. However, we do not expect this scenario to

represent all galaxies, in fact, to get a better description of individual galaxies we require

taking into account other fundamental parameters that affect their evolution, such as

the environment, angular momentum, galaxy mergers etc., we will leave a more in-depth
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exploration of the model and comparison to this scenario including the full astrophysical

processes for the years to come, for now the SFDM model looks a promising alternative.
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Chapter 5

Self interacting dark matter

In the last chapter we have explored the SFDM model, here we will consider another al-

ternative idea proposed in [Spergel & Steinhardt (2000)], it assumes that cold dark mat-

ter has weak interactions with baryons but strong self-interactions, this model received

the name of self-interacting dark matter (SIDM). The required scattering cross-section is

roughly (m/g)−1 cm2 where m in this chapter denotes the particle mass of the dark matter

possessing this type of interaction, a value of 1 cm2/g ≈ 2 barn GeV−1 is approximately

a nuclear-scale cross section. In this case, frequent elastic scattering in the dense central

regions of halos can redistribute energy and angular momentum among particles, creating

an isothermal, round core of approximately constant density [Burkert(2000)].

For the SIDM model to be an attractive alternative to the Cold Dark Matter paradigm,

it should be able to address the issues that CDM faces today, for instance substantially

reduce the central densities of dwarf-size halos.

Early studies suggested that this idea was ruled out by studies of gravitational lensing

[Miralda-Escude(2000)] or by catastrophic gravitational core collapse found in a simulation

of an isolated halo [Kochanek & White(2002)], but recent numerical studies show that

these concerns are not borne out in fully cosmological simulations. SIDM simulations show

that there is a viable window of mass and cross-section where self-interacting dark matter

(SIDM) can produce cored dark matter profiles and remain consistent with observational

constraints [Rocha et al.(2013), Peter et al.(2013)] Elastic scattering in the central regions,

where an average particle experiences a few collisions per Hubble time, flattens the density

cusp and reduces triaxiality, leading to halo shapes being more spherical in the inner

regions. The scattering mechanism would operate across a wide range of halo masses,

from Milky Way-like galaxies to dwarf satellites. Because of their shallower potential,

103
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SIDM subhalos are more easily subject to tidal disruption than CDM subhalos. However,

cosmological simulations suggest only small suppression of the low-mass subhalo count for

allowed cross sections except in the innermost region of the host halo[Rocha et al.(2013),

Vogelsberger et al.(2012)], this has questioned the preference of this alternative to the

standard model.

§5.1 Satellites in SIDM halos
In the past few years there have been several simulations focusing on reproducing the

properties of the dwarf galaxies around MW-like host, motivated in part by the increasing

resolution in observations of local group dwarfs and more detailed observations in their

star formation histories[Weisz et al.(2014a), Weisz et al.(2014b)].

Assuming velocity-independent cross sections in the range 0.1−0.5 cm2/g create cores that

are approximately the right size for Milky Way dwarf galaxies [Markevitch et al.(2004)],

spiral galaxies, and galaxy clusters[Newman et al.(2013a), Newman et al.(2013b)], although

the core sizes in dwarf galaxies are still a matter of debate, the sizes can be modified if

baryons are included in the simulations [Rocha et al.(2013), Kaplinghat et al.(2014)] or

by lacking enough numerical resolution to study the inner kpc[Bastidas Fry et al.(2015),

Vogelsberger et al.(2014)], which is essential in dwarfs. The same range for the cross sec-

tions above are also consistent with observations of merging galaxy clusters [Clowe et

al.(2006), Randall et al.(2008), Dawson et al.(2012)]

Although there is not a particular particle candidate for the model, there have been some

theoretical models that aim to produce SIDM particle candidates [Ackerman et al.(2009),

Buckley & Fox (2010), Feng et al. (2010), Tulin et al. (2013a), Tulin et al. (2013b)], how-

ever in these models the strong self-interactions may only be present in a narrow range of

halo mass, leaving halos on other scales effectively collisionless and indistinguishable from

CDM expectations.

In [Zavala et al.(2013)] they use high resolution cosmological simulations of a Milky-Way

size halo to assess whether a constant cross section per unit mass of σ/m ∼ 0.1 cm2/g is

sufficient to account for the low mass densities in dwarf spheroidal galaxies, they found

that such cross section produces a population of massive subhalos that is inconsistent

with the kinematics of the classical dwarf spheroidals, in particular with the inferred



105

slopes of the mass profiles of Fornax and Sculptor. In their simulation the problem is

solved if σ/m ∼ 0.1 cm2/g at the dwarf spheroidal scales. On the other hand this value

may be in some tension with the constraints obtained from the offset of gas and mass

distribution observed in collisions of galaxy clusters. Using the Chandra and Hubble

Space Telescopes there are 72 observed collisions, including both major and minor mergers.

[Harvey et al.(2015)] combined these measurements statistically, and detect the existence

of dark mass at 7.6σ significance. The position of the dark mass has remained closely

aligned within 5.8± 8.2 kpc of associated stars, they report that the self-interaction cross-

section satisfies σDM/m < 0.47 cm2/g at a 95% confidence level. Their results would

disfavor some proposed extensions to the standard model[Foot (2014), Boddy et al.(2014),

Cline et al.(2014), Tulin et al. (2013a)].

It its known from CDM that including the baryonic component in simulations can affect

the results inferred from dark matter only simulations, in [Kaplinghat et al.(2014)] they

estimated analytically the DM equilibrium configuration that results from a stellar dis-

tribution added to the centre of a SIDM halo, they studied the regime where the stellar

component dominates the gravitational potential and found that the DM core sizes (den-

sities) are smaller (higher) than observed in DM-only SIDM simulations, it is therefore

expected that current SIDM constraints could change as more simulations in this regime

are available.

One of the recent studies that includes baryons and self-interactions is given in Bastidas

Fry et al.(2015), adopting a large constant cross section of 2 cm2/g., they found that

SIDM fails to significantly lower the central dark matter density at halo peak velocities

Vmax < 30 km/s, they associate the cause to low central velocity dispersion and densities

that translate in time scales for SIDM collisions greater than a Hubble time, as well as

the weak supernova feedback found in such low mass galaxies. A direct consequence of

their results is that both CDM and SIDM halos at these low masses have cuspy dark

matter density profiles. In field dwarf galaxies with halo masses larger than ∼ 1010 M�,

the baryonic processes create dark matter cores and central DM plus baryon distributions

that are effectively indistinguishable between CDM and SIDM.

Another independent study was given in [Vogelsberger et al.(2014)], they explore the

regime of dwarf galaxies where DM dominates the gravitational potential even in the
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innermost regions. They include baryonic physics using the implementation described in

[Vogelsberger et al.(2013)] employing the moving mesh code AREPO [Springel (2010)].

Their simulated dwarf has a halo mass ∼ 1.1 × 1010M�. They apply different mod-

els to this initial condition, including two cases with a constant cross section σ/m = 1

cm2/g (SIDM1) and σ/m = 10 cm2/g (SIDM10), and two cases with a velocity-dependent

cross section motivated by the particle physics model presented in [Feng et al.(2009),

Loeb & Weiner(2011)], and also studied in [Zavala et al.(2013)], vdSIDMa assumes σ/m

3.5 cm2/g and Vmax = 30 km/s, and vdSIDMb assumes σ/m 35 cm2/g and Vmax = 10

km/s.

For one of the dwarfs (shown in Fig5.1), they used DM particle mass resolution mdm =

7.75×1010M�, a cell mass mb = 1.48×1010M�, the Plummer-equivalent maximum physi-

cal softening length ε = 68pc, and the number of DM particles in the high resolution region

Np=15,353,772. Their values were tested for convergence with a CDM only simulation

with ∼10 times more DM particles which allows to accurately resolve the inner 200pc of

the galaxy, that is, for larger radius the two-body relaxation time is larger than a Hubble

time, having good convergence ensures the lack of unphysical shallower slopes that are not

formed due to the self interactions. One detailed comprehensive study for the convergence

of mass profiles is given in [Power et al.(2003)], there are several considerations and nu-

merical parameters that affect the structure of simulated N-body dark halo, choices of the

gravitational softening, time-step, force accuracy, initial redshift, and particle number. In

their tests, the authors found that for suitably chosen softenings that render particle dis-

creteness effects negligible, convergence in the circular velocity is obtained at radii where

the following conditions are satisfied: (i) the time-step is much shorter than the local or-

bital time-scale; (ii) accelerations do not exceed a characteristic acceleration imprinted by

the gravitational softening; and (iii) enough particles are enclosed so that the collisional

relaxation time-scale is longer than the age of the Universe. Convergence also requires

sufficiently high initial redshift and accurate force computations. Poor spatial, time, or

force resolution leads generally to systems with artificially low central density, but may

also result in the formation of artificially dense central cusps. When dealing with self

interactions and the cusp-core problem, where the relevant scale is of order 1kpc, it is

required to chose the softening to resolve the innermost radii to avoid misinterpreting the
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results.

[Garrison-Kimmel et al.(2013)] found that for a dwarf halo in CDM simulations with the

Plummer-equivalent softening length to secure convergence at 250pc for a halo of 5×109M�

is of ∼ 70pc, using three million particles, however a softening length of ε = 10pc is

required to assure the convergence and study regions larger than 100 pc from the center

of the halo, at this distance the forces are Newtonian and the code Gadget-2 safely tracks

the accelaration of each particle. One of the latest SIDM simulations of a cosmological

and isolated dwarf galaxy (in the field) was given in [Elbert et al.(2014)], they see that

the SIDM has better convergence than CDM for the same number of particles, most likely

the self-interactions are the dominant mechanism rather than being dominated by binary

interactions. In the latter simulation the dark matter self-interactions were calculated

using an SIDM smoothing length equal 0.25ε with a particle mass 1.5 ×103M� and a

Plummer-equivalent force softening ε = 28pc, their halos are of 1 × 1010M� with Vmax =

37km/s and use 4.6×106 particles, this softening allows the author to safely resolve regions

as close as 200 pc.

In [Kauffmann (2014)] they suggested that galaxies with M∗ ∼ 108M� suffer ongoing

bursts of star formation with a typical duration (∆tburst) of the order of the character-

istic dynamical time of the galaxy (∆tdyn). Although this might suggest that the gas

outflows from these bursts could change the DM distribution, it is not clear how effi-

cient this would be since the highly efficient regime occurs only once (∆tburst < < ∆tdyn).

In [Vogelsberger et al.(2014)] the star formation rates of their two simulated dwarfs (one

shown in Fig. 5.3) show that the rate of dA is fluctuating around a moderately non-

evolving mean. Most importantly, none of our dwarfs have an exponentially declining star

formation history.

They conclude that baryons have only a minor effect on the evolution and size of the cores

in the SIDM halos, as expected the large σ/m = 10 cm2/g presents the largest difference,

where the shallow DM profile allows supernovae feedback to expand the core a bit more

compared to the DM-only case. They also found that the size of the stellar core is closely

related to the size of the DM core as seen in Figure 5.1.

Additionally, they pointed out that in the constant σ/m case the density within the stellar

core is reduced, in SIDM1 the reduction is by a factor of ∼ 2-3 compared to the CDM case.
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Figure 5.1: Density profile for DM (solid) and stars (dashed) within the inner 4 kpc for the

different DM models of one dwarf halo from [Vogelsberger et al.(2014)] . The stars trace

the evolution of DM and also form a core. The size of the stellar core is closely related to

the size of the DM core. This can be seen most prominently for the SIDM1 and SIDM10

models.

The stellar mass in the sub-kpc region is reduced ≈ 30% as a byproduct of the reduced

DM gravitational potential due to self-scattering, and a reduced central stellar metallicity

is found by 10% at z = 0 compared to the CDM case.

In the velocity dependent case, although a sizable DM core is also formed (400 pc), the

effect in the stellar distribution at all scales is minimal relative to CDM. These features in

the stellar distribution could give clues to distinguish among the SIDM models, although

to pursue the comparison, the most important limitation lies in the lack of a significant

number of simulated galaxies with baryons and dark matter self interactions. Because

SIDM aims to be more than just an alternative model, the current goal is to find un-

ambiguous observations to either rule out or find evidence for SIDM cross sections σ/m

> 0.1 cm2/g, for smaller cross-sections the halo phenomenology is likely to be indistin-

guishable from CDM, in particular the abundance of satellites around Milky-Way-like

halos[Vogelsberger et al.(2012), Zavala et al.(2013)].
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§5.2 Too-Big-to-Fail in SIDM
Thanks to the continually increasing numerical resolution in simulations, we can carry a

more quantitative comparison of the numerical results and our Local Group. One concern

that is always present in simulations where baryonic processes are included, is the difficulty

to disentangle the relevance of each effect in the evolution of a galaxy.

As a way to get a better insight of how a given baryonic process, e.g. supernovae(SNe)

feedback, cosmic rays, stellar winds, photoionization, etc., impacts the evolution of a

galaxy, it is useful to conduct controlled simulations where only one process is acting.

In [Garrison-Kimmel et al.(2013)] they followed this approach in the context of CDM,

they aim to study whether supernova feedback alone can solve the “Too Big to Fail”

problem for Milky Way subhalos. They initialize a dark matter halo with Vmax = 35

km/s at 2.2 kpc using a Hernquist (1990) sphere, which roughly follows the expected

ρ ∝ r−1 dependence at small radius, these parameters are motivated by the predictions of

cosmological abundance matching models, where galaxies with LV ∼ 105 L� form in dark

matter halos with Vmax ∼ 35 km/s [Guo et al(2010)] and also from simulations of Milky

Way-size halos where the Too-Big-To-Fail(TBTF) subhalos typically have Vmax > 35 km/s

[Boylan-Kolchin et al.(2012)]. They run convergence tests and find that in order to resolve

up to 100pc the high resolution parameters are required, corresponding to 3×106 particles

with particle mass of 760M�, halo mass 5 × 109M� and ε = 10pc, where the numerical

effects due to lack of convergence (some of these described in [Power et al.(2003)]) may

manifest up to ∼ 4ε, that is still smaller than 100pc (Fig 5.2).

Using the high resolution parameters in idealized numerical simulations, they model the

dynamical effects of supernovae feedback through the use of a time-varying spherically-

symmetric gravitational potential placed at the center of the halo, they did this by adding

an externally tunable Hernquist potential to the N-body code Gadget2 [Springel(2005)]

such that each particle has an additional acceleration given

~a =
−GMgal(t)

[r − b(t)]2
~r

r
, (5.1)

with Mgal the total mass in the potential at a time t and b = r1/2(
√

2 − 1), r1/2 is the

half-mass radius of the potential. They fix r1/2 and vary Mgal, they focus in the typical
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Figure 5.2: Plotted left: is the mass in the central potential as a function of time for the

blowout scheme. The gray line shows how the mass varies for a single blowout with Mmax

= 108M�; the red dotted line shows the same for repeated blowouts withMmax = 107 M�.

A single cycle takes 500 Myr. These two cases result in the same cumulative total of mass

displaced. Right: density profile for a CDM halo of 5 × 109M� for different resolutions,

unresolving the inner regions creates artificial cores[Garrison-Kimmel et al.(2013)].

value among the bright Milky Way dSphs of r1/2 = 500pc. In order to mimic a blowout

they varyMgal in time according to the following cycle: firstMgal varies linearly from zero

to its maximum value in 200 Myr(we can think of this as gas slowly accumulating in the

center), it remains there for 100 Myr and then instantaneously returns to zero for another

200 Myr, the last step is what mimics the feedback from SNe(see figure 5.2).

They find that for a fixed amount of mass expelled from the galaxy (but not necessarily

from the halo and hence it may be recycled) cyclic blowouts preferentially remove DMmass

from the centers of halos, being most dramatic if r1/2=100pc for a fixed expelled mass.

Despite the central density is reduced to a mild cusp ρ ∝ r−α, with α ≥ 0.5, it is still above

those observed in dSphs by [Walter & Peñarrubia(2011), Amorisco & Evans (2012)], they

also found unlikely that SNe blowouts can affect the total mass within the stellar extent at

the level required to resolve the TBTF problem without fine tuning, mainly because the

required energy injected into the dark matter by explosive feedback exceeds, in six of the

nine MW satellite galaxies of concern, the total available energy budget for all of the type
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II supernova that have occurred in the galaxies assuming a typical initial mass function

[Kroupa (2002)], where one expects approximately one SNII explosion per 100 M� formed,

these results consider that the energy is injected directly into the dark matter with 100%

coupling. For instance, assuming a stellar-mass-to-light ratio M∗/LV for Ursa Minor, the

energy equivalent of more than 40,000 supernovae must be delivered with 100% efficiency

directly to the dark matter in order to have the dwarf simulations agree with the mass of

this galaxy.

The latter results suggest that in the CDM model solving simultaneously the cusp-core

and TBFT requires more than just accounting for blowouts from SNe feedback. It is

reasonable to question how the situation changes if self-interactions and blowout feedback

from SNe are now working together.

To answer the question we use the same feedback model of [Garrison-Kimmel et al.(2013)]

and consider two scenarios[Robles et al.(2015)], one in which each massive blowout cycle

expels 108M�(A) and one less massive where 107M� (B) are driven out from the center

of the halo. In order to maximize the differences between CDM and SIDM when baryons

are included, we study the most efficient feedback model found in Garrison-Kimmel et

al.(2013), thus, we use r1/2 = 100 pc. Following [Garrison-Kimmel et al.(2013)], we gener-

ated the initial condition(IC) with the publicly available code spherIC1 and use the same

parameters for the halo, the dark matter self-interactions were calculated using an SIDM

smoothing length equal to 0.25 ε, as described in [Rocha et al.(2013)].

From the last section σ/m seem to lie in the range 0.1 cm2g−1 < σ/m < 1 cm2g−1,

[Miralda-Escude(2000), Yoshida et al.(2000), Davé et al.(2001), Peter et al.(2013)], taken

σ/m ≈ 1 cm2g−1 is more consistent with dSphs and their observed core sizes as seen in

[Rocha et al.(2013), Zavala et al.(2013)].

In [Peter et al.(2013)] they argue that σ/m =1 cm2g−1 may be in conflict with halo shapes

in clusters, but taken into account the uncertainties in the halo shape analysis, and the

preference of dSphs for such value, we decide to use σ/m =1 cm2g−1 in our analysis. All

our simulations are high-resolution, that is, we use 3×106 particles, force softening of 10 pc

and particle mass of 760 M�, these values guarantee that the radii of interest (r< 1kpc)

is well resolved and the core, when formed, is due to self-interactions and not due to lack
1The code and documentation can be downloaded from https://bitbucket.org/migroch/spheric.
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of numerical resolution.

To compare with the standard model we do the simulations for CDM and SIDM for blowout

(A) ten consecutive times, both are initialized with the same cusp profile (Acdm,Asidm), we

run five blowouts type (B) for CDM and SIDM for the same IC(B5,cdm,Bcusp
5,sidm), we also

run the SIDM case but starting with a core profile(Bcore
5,sidm), The initial condition with the

core is taken from the isolated SIDM halo (no feedback) left to evolve for 10 Gyr, at this

time the system has develop a core-like density profile and has become isothermal due to

the self-interactions. To explore the effect of initializing the simulations with a cusp or

core in a SIDM halo, we simulate only one blowout type (B) and let the system relax until

5 Gyrs (Bcusp
1,sidm,B

core
1,sidm), and compare them with one blowout type (B) in CDM (B1,cdm).

Finally inspired by the fact that some dwarf galaxies show more than one stellar population

[Kirby et al.(2013), Weisz et al.(2014a), Willman & Strader(2012)], possibly indicating a

starburst in the distant past and maybe another starburst some time later, we explore

the case where a galaxy produces two major blowouts but they are sufficiently spaced

(∼3 Gyrs) so that the self-interactions have enough time to regrow the core after each

event, for this two-blowout case, or type (C), we run two simulations, both start with the

core-like IC and are subject to a blowout of 108M�, then after 3 Gyrs we impart a second

blowout ejecting 108M� in one of the runs(C8) and ejecting 107M� (C7) for the other run,

after the blowout we let the system relax until 5 Gyrs.

We find that low mass ejections of 107M� are not effective enough to preclude the core

from forming whereas massive blowouts not only conflict with the core formation but also

erase any previous core if already present. We found a higher resistance of SIDM halos

to be disrupted by feedback in the central regions, more events of massive blowout are

needed in a SIDM simulation compared to its CDM counterpart to reach typical cen-

tral densities of near dSphs[Wolf et al.(2010), Walker et al.(2009), Simon & Geha(2007),

Muñoz et al.(2005), Koch et al.(2007), Mateo et al.(2008)]. This result is kept whether we

start with a cuspy or a core density profile in the SIDM simulations. If we impart one more

massive blowout to C7 and C8 we could bring the SIDM haloes to a better agreement with

dSphs, however this would imply some star formation in the last few Gyrs which differs

from the general trend of old stellar populations and the absence of current star formation

found in dSphs.
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In Figure 5.3 we see that SNe blowouts are more effective to reduce the central density

if particles are collisionless, i.e. SIDM halos are less responsive to feedback. We can

understand this as follows: when the SIDM halo is in isolation the collisions tend to make

the velocity distribution isotropic, this is achieved by the displacement of DM particles

with higher velocity dispersions in the outer regions toward the center where cold (lower

velocity) particles reside, the particle displacement generates an inward heat flux that

increases the collisions near the center. If SNe feedback is included, the particles receive

an extra acceleration that decreases for large radii and changes their velocities such that

fast moving particles are now located near the center, where the blowout is more effective,

consequently there is a temporary inversion in the direction of heat transfer, particles

move to the outside producing an outward heat flux, this effect is shown in the right panel

of Figure 5.3. In the dynamical feedback scheme under consideration, when no feedback is

acting ~a = ~0, called “before infall”, the inward flux is dominant and the interactions try to

thermalize the halo, once the external potential reaches its maximum value and just before

it returns to zero, we call this stage “after infall”, the outward flux is now dominant and the

velocity dispersion changes drastically, the latter flux increases the number of collisions in

various regions due to particles trying to escape and particles that were previously heading

to the center, these regions act like “barriers” that preclude the escape of particles in the

center and therefore make the effect of SN feedback less efficient to reduce the central

density.

In Figure 5.4 we show the central densities at a distance of 250 pc for all of our sim-

ulations, the grey line represents the density of the isolated SIDM halo after 10 Gyrs

and serves to compare the efficiency of SN feedback to reduce the central density in

CDM and SIDM haloes. The simulations with values above that line started in a cuspy

distribution. For both of the low energy feedback simulations (type A), SN feedback ef-

fects are extremely small and produce no relevant change to account for the observed

densities in the bright dSphs, for the CDM runs this is consistent with the results of

[Garrison-Kimmel et al.(2013)], in the SIDM halo small feedback translates into a negli-

gible delay in the core formation, here the self-interactions are dominant and the halo is

slowly thermalizing, the small effect is shown in Figure 5.4 noting that for this run the

final value ends on top of the grey line.
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Figure 5.3: Left:Initial and final density profiles after two massive blowouts ejecting a total

cumulative mass 1× 108M� for both SIDM(solid line) and CDM (dashed line).The shaded

region shows observational data for bright dSphs with r1/2 comparable to the one used

in our simulations. Right:Velocity dispersion for SIDM in isolation, before and after the

first infall of 108M�. The arrows show the direction of the heat flux, before infall hotter

particles transfer heat to cold ones in the center as expected from the SIDM scenario,

however, at infall time there is an inversion of heat flux where the particles at the center,

being now hotter, can move to the outer regions.
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Figure 5.4: Densities at 250pc from the center for all the simulations. For simulations C7,

C8, and all type B with 5 blowouts we plot the density after their respective blowouts.

For all the other simulations we plot initial and final values only. The density always

decreases after each blowout. The gray line represents the central density of a SIDM halo

in isolation.

In fact, in case that observations confirm that low mass DM dominated systems possess

large cores, SIDM would still be an attractive candidate, especially because low energy

feedback events applied to collisionless particles cannot transform the characteristic cusp

into a more constant density profile [Governato et al.(2012), Hopkins et al.(2014)]. Al-

though we obtained that in the less massive SNe feedback scenario (blowouts of type A)

the TBTF problem persists in both CDM and SIDM models, the result could change

if we consider a full cosmological SIDM simulation, it has been seen that cosmological

SIDM halos have lower central densities at the end of the simulations than our isolated

run [Rocha et al.(2013), Zavala et al.(2013)], but it is possible that the difference is due to

their lower numerical resolution, in fact, lately the increase in resolution could reopen the

possibility of using larger values of σ/m= 0.5 - 50 cm2/g and solve the TBTF issue and cre-

ate cores of comparable sizes to those found in dSphs as suggested in [Elbert et al.(2014)].

Today, it seems clear that there is still work to be done in the SIDM model before it can

be preferred over the standard paradigm.
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Chapter 6

Conclusions

In this thesis i have provided an overview of the current standing of the standard model

of cosmology, also knwon and Cold Dark Matter(CDM). I have focused my study in the

challenges at galactic scales that the model is currently facing and described some of the

ideas in the literature that could bring the standard model to reasonable agreement with

the newest observations. Being in the era of high-resolution observations, it is now possible

to test some of the long standing theoretical predictions of the standard cosmological

paradigm, so far the cosmological probes reveal an excellent agreement with the expected

behavior in large scales. This seems to be continuouly verified performing numerical

simulations that include the relevant physical processes at those scales, at the same time

these simulations also reveal the existence of discrepancies in the small scale regime, i.e. in

galactic scales, some of the discrepancies treated in this thesis are the ubiquitous cusp-core

problem, the missing satellite problem and the Too-Big-To-Fail issue.

In chapter 2 I have described in more detail solutions to these discrepancies in the cold

dark matter model and their obsevational implications in dwarf galaxies. The most likely

explanation seems to require modeling the interplay of astrophysical processes and the dark

component in a self cosistent way, seemingly only when the processes oparate collectively

is that we obtain the correct predictions. Although the latter is numerically plausible,

there remains some skepticism of the results from hydrodynamical simulations, principally

because the implemented routines that aim to describe the astropysical process are in most

cases approximations of our already incomplete understanding of baryonic processes.

Instead of blaming the stellar and gas physics for the apparent discrepancies of CDM

predictions and obsevations in small scales, there exists the possibilty that our assumptions

on the dark matter are still missing something essential. Following the latter approach has

117
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led to several proposals of dark matter models, two strong contenders were presented here,

the scalar field dark matter(SFDM) and the self-interacting dark matter(SIDM) models.

In Chapter 3 we described the status and conceptual bases of the SFDM model in the

cosmological regime. We provided a classification of the models that assume an ultra light

boson as dark matter to clearly identify the main properties of the dark matter particle

under study. We propose that a spontaneos symmetry break in the early universe led to

the decoupling of the scalar field, by means of the temperature corrections and the fact

that the universe cools due to the expansion of the universe, at some time the temperature

drops enough such that the symmetry break appears and we interpret that time when the

scalar field decouples from the rest matter. Once the field is set in its new minimum,we

can derive an explicit analytical approximation of the density distribution of a scalar field

dark matter halo made of psyons(the corresponding bosonic dark matter particles) which

is quite useful when dealing with obsevational tests in galactic scales.

We devote chapter 4 to evaluate the SFDM model in galactic scales. We focus our study

in dwarf spheroidal galaxies, being the origin of the discrepancies found in CDM, they are

suitable systems where we can test alternative models and possibly find clues to distinguish

among the different DM proposals. We have found good agreement with the central

shallow density slopes found in local dSphs, a consequence of the core profile predicted by

the SFDM model whose origin lies in Heisenberg’s uncertainty principle acting at ∼ 1kpc

scales due to the small mass of the psyon. Assuming a mass of m ≈ 1×10−22eV/c2 for the

psyon drastically decreases the formation of halos below 108M�, additionally, we found

that SFDM subhalos with ∼ kpc cores orbitting around MW-like hosts that also possess a

SFDM halo, are more susceptible to be tidally disrupted when they closely interact with

the host’s disk, but that their stars can remain within the subhalos when the latter are

in orbits whose pericenters are larger than the disk’s length. If we assume one galaxy per

halo the expected satellite abundance around Milky-Way-like galaxies should be smaller

than the predicted value of CDM cosmological simulations, even the most massive ones,

in the upcomming years identifying more satellites around massive hosts will help to set

more stringent constraints on the SFDM model, in case the surveys increase the satellite

abundance substantially we might need to reconsider the preference of the SFDM model

over CDM, in the opposite case, the model offers a simpler explanation than the messy
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baryonics physics to the missing satellite problem and possibly to the Too-Big-To-Big

issue, although it is worth noticing that the value of the mass is contraint by observations

and not predicted by the model.

Finally, in chapter 5 we discuss the status of the SIDM model regarding the cusp-core

and TBTF issue. The appearance of high resolution hydrodynamical simulations, both

cosmological and of isolated galaxies, have attracted the attention to the SIDM model

of a large part of scientists in the past few years. The simulations imply that previous

theoretical contraints on the cross-section per unit mass of σ/m < 1 cm2/g can be modified

and still give cosnistent results with the central masses of dwarf galaxies when baryons are

included. There are increasingly more works suggesting that neither self-interactions with

constant σ/m <0.5 cm2/g nor supernovae II feedback alone can account for the flattening

of the central density profile in dSphs and simultaneously substantially reduce the missing

satellite or the TBTF problem. In fact, we have shown that SIDM with constant σ/m = 1

cm2/g(a preferential value to create core sizes comparable to the stellar half-mass radius in

nearby dwarfs) and blowout feedback from SNe modeled by a time-varying potential that

mimics the effect of a SNII explosion, produce very similar results to the CDM + baryons

solution, and hence it is difficult to distinguish between these models when baryons are in

the play. Slighly modifying the model to allow for a velocity dependent cross section has

not reveal a substantial change to the predictions of constant σ/m, which can question

the motivation to include the velocity dependence in the future. Despite SIDM being

apparently indistinguishable from CDM for current constraints of the scattering cross

section, it remains a viable model when astrophysical processes are accounted for in the

simulations.

At this point, it seems that there is still much work to be done in SIDM and other models

before they can become the new benchmark in cosmology, although there is a discouraging

tone in the sentence, I have always found new ideas quite exciting. Even if it takes some

time to develop them, they offer the opportunity for a great discovery, quoting the chinese

philosopher Lao-tzu: “A journey of a thousand miles begins with a single step”.
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Appendix

Publication List

• "Flat Central Density Profile and Constant DM Surface Density in Galaxies from

Scalar Field Dark Matter" , Victor H. Robles, T. Matos, MNRAS, 422, 282-289

(2012)

• "Exact Solution to Finite Temperature SFDM: Natural Cores without Feedback",

Victor H. Robles, T. Matos, ApJ , 763 , 19 (2013)

• "Strong Lensing with Finite Temperature Scalar Field Dark Matter" Victor H. Rob-

les, T. Matos, 2013, Phys.Rev. D88, 083008 (2013)

• "Dwarf galaxies in multistate Scalar Field Dark matter halos" Martinez-Medina, L.

A. , V. H. Robles, T. Matos, PRD 91, 023519 (2015)

• "Evolution of a dwarf satellite galaxy embedded in a scalar field dark matter halo"

Victor H. Robles, V. Lora, T. Matos, F.J. Sanchez-Salcedo., arXiv:1404.3424, sub-

mitted to MNRAS

• "SFDM: A new formation mechanism of tidal debris" Victor H. Robles, L.A. Martinez-

Medina, T. Matos 2015, arXiv:1503.00799, in revision.

• Victor H. Robles, James S. Bullock, Shea Garrison-Kimmel, O. Elbert, in prepara-

tion. (2015). I have included the main results from this work in Section 5.2.

Articles published in proceedings

• "Finite Temperature Density Profile in SFDM" Victor H. Robles, T. Matos, 2013.

Published in Sources and Detection of Dark Matter and Dark Energy in the Universe,

Ed. David Cline, Springer Proceedings in Physics, Vol. 148, Springer Netherlands,

2013, pp 17-24.
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• "A Review on the Scalar Field Bose-Einstein Condensate Dark Matter Model" Abril

Suarez, Victor H. Robles, Tonatiuh Matos, In: Accelerated Cosmic Expansion. Ed.

By Claudia Moreno González, José Edgar Madríz Aguilar, and Luis Marina Reyes

Barrera. Astrophysics and Space Science Proceedings, Vol. 38, Springer Interna-

tional Publishing, 2014, pp. 107-142.
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