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Galactic halos of fluid dark matter
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Dwarf spiral galaxies, and in particular the prototypical DDO 154, are known to be completely dominated by
an unseen component. The putative neutralinos, so far the favored explanation for the astronomical dark matter,
fail to reproduce the well measured rotation curves of those systems because these species tend to form a
central cusp whose presence is not supported by observation. We have considered here a self-coupled charged
scalar field as an alternative to neutralinos and investigated whether a Bose condensate of that field could
account for the dark matter inside DDO 154 and more generally inside dwarf spirals. The size of the conden-
sate turns out to be precisely determined by the scalar massm and self-couplingl of the field. We find actually
that form4/l;50–75 eV4 the agreement with the measurements of the circular speed of DDO 154 is impres-
sive, whereas it lessens for larger systems. The cosmological behavior of the field is also found to be consis-
tent, though marginally, with the limits set by big bang nucleosynthesis on the effective number of neutrino
families. We conclude that classical configurations of a scalar and self-coupled field provide a possible solution
to the astronomical dark matter problem and we suggest further directions of research.

DOI: 10.1103/PhysRevD.68.023511 PACS number~s!: 98.80.Cq, 04.40.Nr, 95.35.1d, 98.62.Gq
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I. INTRODUCTION

After many years of global consensus on the fact that d
matter consists of weakly interacting massive partic
~WIMPs!, such as, for instance, the lightest neutralino in
minimal supersymmetric standard model, there is still
strong evidence in favor of WIMP, either from bolomet
experiments designed for direct detection or from the ob
vation of cosmic rays, a fraction of which could consist
WIMP annihilation products. This absence of experimen
constraints on dark matter from the particle physics s
leaves the door wide open for alternative descriptions of
hidden mass of the Universe.

Moreover, in the past three years, there has been a lo
controversy concerning the small-scale inhomogeneities
the WIMP density. Indeed, many recentN-body simulations
of structure formation in the Universe suggested that
dark matter component modelized as a gas of free particle
such as WIMPs—tends to cluster excessively on scale
the order of 1 kpc and smaller. This would result in cus
density profiles at galactic centers, while most rotat
curves indicate a smooth core density@1#. Many galaxies
even seem to be dominated by baryons near their center,
a significant dark matter fraction only at large radii. Th
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clearly contradicts the results from currentN-body simula-
tions, in which the dark matter density is strongly enhanc
at the center of the halo with respect to its outskirts.

This argument was attacked by Weinberg and Katz@2#,
who stressed the importance of including the baryon com
nent in N-body simulations. Indeed, the baryon dissipati
effects could be responsible for a smoothing of the cen
dark matter cusp in the early Universe. This possible solut
to the dark matter crisis was discarded later by Sellwood@3#,
who found opposite results in his simulation.

Apart from the central cusp problem,N-body simulations
raised some secondary issues@1#. First, a clumpy halo could
generate some tidal effects that could break the spatial
herence of the disk. Second, the predicted number of sate
galaxies around each galactic halo is far beyond what we
around the Milky Way. Third, the dynamical friction betwee
dark matter particles and baryons should freeze out the s
ning motion of baryonic bars in barred galaxies. All the
arguments are still unclear, because they seem to depen
the resolution under which simulations are carried out@4,5#,
and also because of our ignorance of what could be the li
to-mass ratio inside small dark matter clumps. In additi
the predicted number of satellite galaxies does not seem
be in contradiction with constraints from microlensing@6#.

Should these various problems be confirmed or not
sounds reasonable to explore alternatives to the WI
model, or more generally speaking, to any description ba
on a gas of free particles. This can be done in various wa
for instance, one can introduce some deviations from a p
©2003 The American Physical Society11-1
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fect thermal phase-space distribution@7#, or add a self-
coupling between dark matter particles@8#. A more radical
possibility is to drop the assumption that dark matter is g
erned by the laws of statistical thermodynamics. This wo
be the case if dark matter consisted of a classical scalar fi
coherent on very large scales, and governed by the Kl
Gordon equation of motion.

This framework should be clearly distinguished fro
other models of bosonic dark matter, like those based
heavy bosons—for instance, sneutrinos—or axions. In
first case, the Compton wavelength\/(mc) of an individual
particle is much smaller than the typical interparticle d
tance, while in the second case, for axion masses of o
1026 eV, it is still much smaller than the typical size of
galaxy. So, in these examples, the bosons can be desc
on astronomical scales like a gas of free particles in stat
cal equilibrium. It follows that the halo structure cannot
distinguished from that of standard WIMPs.

A coherent scalar field configuration governed by t
Klein-Gordon and Einstein equations is nothing but a s
gravitating Bose condensate. Such condensates span
scales comparable to the de Broglie wavelengthL5\/p. In
the case of free bosons,i.e., with a quadratic scalar potentia
the momentump is of ordermvesc wherevesc is the escape
velocity from the system. Typical examples are boson s
@9–12#, for which the characteristic orders of magnitude d
cussed in the literature are, for instance,m;10 GeV and
vesc;c, leading to a radius as tiny asL;10214 cm. Even for
axions, which have a much smaller mass and an escape
locity given by the motion of stars in a galaxy,vesc
;100 km/s, the de Broglie wavelength is only of orderL
5100 km, so that on galactic scales the medium can
treated as a gas. In order to obtain a galactic halo descr
by the Klein-Gordon equation, one should consider mas
of order m5\/(Lvesc), where vesc;100 km/s and L
;10 kpc. This yieldsm;10223 eV. Such an ultralight sca
lar field was called ‘‘fuzzy dark matter’’ by Huet al. @13#,
who discussed its overall cosmological behavior. In so
previous work, we focused on a variant of this model
which the ultralight scalar field is complex; then, the co
served number associated with theU(1) global symmetry
helps in stabilizing the condensate against fragmenta
@10,12#. In @14#—hereafter paper I—we compared the ro
tion curves predicted by this model with some data fro
spiral galaxies. In@15#—hereafter paper II—we simulate
the cosmological evolution of the homogeneous backgro
of such a field. The model seems to be quite successfu
explaining the rotation curves, but it has two caveats. Fi
such a low mass is very difficult to implement in realis
particle physics models. The second problem is related to
fact that, because of theU(1) symmetry, the field carries
conserved quantum number. As explained in paper II,
value derived from cosmological considerations for the d
sity of this quantum number does not seem consistent w
that inferred from astrophysical arguments.

These caveats motivate the introduction of a quartic s
coupling term in the scalar potential. In that case, it is
ready known from boson stars that for the same value of
mass the self-coupling constrains the field to condense
02351
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much larger scales@16,12#; the size of the self-gravitating
configurations is still given byL5\/p, but in the presence
of a self-coupling, the momentum cannot be identified w
mvesc. Then, without recurring to ultralight masses, we m
still describe the galactic halos with a Bose condensate
massive scalar field with quartic—or close to quartic—se
coupling was proposed as a possible dark matter candi
by Peebles, who called it ‘‘fluid dark matter’’@17#. In this
paper, we will study a variant of fluid dark matter in whic
the quartically self-coupled massive scalar field is compl
still for stability reasons.1 Some cosmological properties o
such a field were already discussed in@19#.

We will focus mainly on galaxy rotation curves, assumi
that the dark matter halos are the self-gravitating, aspher
and stable equilibrium configurations of our scalar field
the presence of a baryonic matter distribution—stellar di
HI gas, etc. We will present here the first solution of th
problem. However, we should stress that some differ
models in which the rotation curves are also seeded b
coherent scalar field were studied previously by Schunk@20#,
with a vanishing scalar potential, by Goodman@21#, with a
repulsive self-interaction, by Matoset al. @22#, by Nuca-
mendi et al. @23#, by Wetterich@24#, and by Urena-Lopez
and Liddle@25#. In some of these papers, and also in ma
other recent proposals~see, for instance,@26#!, the main goal
is to try to solve simultaneously the dark energy and d
matter problems, assuming that a quintessence field can
ter on galactic scales. This raises some subtle issues, like
existence of a scale-dependent equation of state. At
present stage, we do not have such an ambition, and we
focus only on the dark matter problem.

In Sec. II, we write the Einstein and Klein-Gordon equ
tions which govern the scalar field and the gravitational p
tential distributions in the presence of a given baryonic m
ter density. We will see that these equations can be comb
into a single nonlinear Poisson equation. The solutions
technically difficult to find, first, due to the nonlinearity, an
second, because some boundary conditions are given a
center, some others at infinity. So it is not possible to follo
a lattice approach, in which one would start from a particu
point and integrate numerically grid point by grid poin
However we present in Sec. III a recursive method wh
allows us to find all the exact solutions after a few iteratio
In Sec. IV, we compare the galaxy rotation curves obtain
in this way with some observational data. We lay particu
emphasis on the dwarf spiral galaxy DDO 154, for which t
rotation curve is among the most difficult to explain with th
usual dark matter profiles. We will see that a mass-to-s
coupling ratio ofm4/l.50 (eV)4 provides a very good fit to
the DDO 154 rotation curve, but at the expense of poor fits
the largest spiral galaxies. Because the scalar field conde
inside the gravitational potential wells of baryons a
strengthens them, the question of its effects on the in
dynamics of the solar system naturally arises. We derive
Sec. V a modification of the solar attraction in the presen

1In contrast, a scalar field dark matter model in which the field
real and unstable is discussed in@18#.
1-2
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of the self-interacting scalar field under scrutiny and sh
that an anomalous acceleration appears that is constan
that points toward the Sun. We investigate the limit set
our model by the Pioneer radio data. In paper II, we stud
the cosmological behavior of a homogeneous scalar field
was assumed to play the role of dark matter at least from
time of matter-radiation equality until today. This analysis
updated in Sec. VI where we specifically assumem4/l
.50 (eV)4. Such a large value points toward a large to
density of the Universe during radiation domination, whi
is at the edge of the current bounds set, in particular, by
bang nucleosynthesis~BBN! on cosmological parameters
The last section is devoted to a discussion of the strong
weak aspects of our alternative dark matter model. We fin
suggest some further directions of investigation beyo
the simple but restrictive framework of isolated boson
configurations.

II. GRAVITATIONAL BEHAVIOR

The complex scalar fieldf under scrutiny in this article is
associated with the Lagrangian density

L5gmn]mf†]nf2V~f!, ~1!

where theU(1) invariant potentialV includes both quadratic
and quartic contributions:

V~f!5m2w†f1l$f†f%2. ~2!

The gravitational behavior of the system follows the stand
general relativity~GR! equations while the fieldf satisfies
the Klein-Gordon equation

1

A2g
]m$A2ggmn]nf%1

]V

]f†
50, ~3!

wheregmn denotes the metric. We would like to investiga
to what extent the scalar fieldf may account for the dark
matter inside galaxies. The problem simplifies insofar as
gravitational fields at stake are weak and static. In this qu
Newtonian limit of general relativity, deviations from th
Minkowski metric hmn5diag$1,21,21,21% are accounted
for by the perturbation tensorhmn ~from now on, we use the
conventionc51). The Newtonian gravitational potentialF
5h00/2 is actually a small quantity of ordervesc

2

;1027–1026, wherevesc denotes the escape velocity. O
analysis is based on an expansion up to first order inF. The
baryonic content of galaxies is described through the ene
momentum tensor

Tmn5~rb1Pb!U
mUn2Pbgmn , ~4!

whereUm5$1,vW %. Baryons behave as dust with nonrelati
istic velocities. Actually, because galaxies are virializ
systems—hence the assumption of static gravitatio
fields—the spatial velocityv is a small quantity of order
vesc;AF. The kinetic pressure–to–mass density ratio
02351
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even more negligible sincePb /rb;v2;vesc
2 ;F!1. We are

interested in classical configurations where the fieldf is in a
coherent state such as

f$xW ,t%5
s~xW !

A2
exp~2 ivt !. ~5!

Indeed, one can prove that all stable spherically symme
configurations can be parameterized in that way@10#. The
time derivative]0f equals2 ivf, whereas the space de
rivative ] if is of orderf/L whereL is the physical length of
the configuration. That length—which is related to the p
rameters m and l of the potential—is required to be
;1 –100 kpc to account for the galactic dark matter. On
other hand, we shall see later thatv is very close to the mas
m, which is numerically found to be in the ballpark of
fraction of an eV. We readily infer a ratio

] if

]0f
;

1

mL
56.4310227H 1 eV

m J H 1 kpc

L J . ~6!

So the space derivative] if of the scalar field can be safel
neglected throughout the analysis. In its weak-field lim
general relativity becomes a gauge theory. By convenie
choosing the gauge of harmonic coordinates in which
metric perturbationhmn satisfies the condition

]mh a
m 5

1

2
]a$h m

m %, ~7!

the GR equations simplify into

hhmn5216pGSmn . ~8!

The effective sourceSmn is related to the energy-momentu
tensorTmn through

Smn5Tmn2
1

2
gmnT l

l . ~9!

In the propagation equation~8!, the sourceSmn is computed
in flat space while the metric perturbationhmn is of orderF.
If the dark matter inside galaxies is understood as some c
sical configuration of the fieldf, Smn should take into ac-
count both the baryonic population—stars and gas—and
scalar condensate. In the Newtonian limit where gravitom
netic effects are disregarded, the nonrelativistic velocities
baryons can be neglected. The only nonvanishing com
nents of the baryonic source tensor are

S00
b 5

rb

2
and Si j

b 52h i j

rb

2
. ~10!

Assuming that Eq.~5! describes the scalar field configuratio
and disregarding the space derivatives] if leads to the
source components

S00
w 5v2s22V while Si j

w 52h i j V, ~11!

where the potential is
1-3
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V~s!5
m2

2
s21

l

4
s4. ~12!

The well-known solution of the Lienard and Wiechert r
tarded potentials satisfies the propagation equation~8!. We
readily conclude that the metric does not contain any spa
time componenth0i and may be expressed at this stage a

dt25~112F!dt22~122C!d i j dxidxj , ~13!

where the static potentialsF and C are given by integrals
over the source distributionD of the baryonic and scala
mass densities:

F~xW !52GE
D

d3yW

uxW2yW u
$rb~yW !1rf8 ~yW !% ~14!

and

C~xW !52GE
D

d3yW

uxW2yW u
$rb~yW !1rf9 ~yW !%. ~15!

The densitiesrf8 andrf9 are, respectively, defined by

rf8 52v2s22m2s22
l

2
s4 ~16!

and

rf9 5m2s21
l

2
s4. ~17!

The potentialsF and C are differenta priori. A careful
inspection of the Klein-Gordon equation will eventual
show that they are actually equal. The latter may be writ
as

~122F!f̈2~11F23C!21] i$~11F2C!] if%1
]V

]f†
50.

~18!

The space-dependent term is some 53 orders of magn
smaller than its time-dependent counterpart and we
safely disregard it, so that the relation~18! simplifies to

ls25~122F!v22m2, ~19!

where the configuration~5! has been assumed. The sca
field is in a classical state that may be pictured as a B
condensate on the boundaries of which the gravitatio
potential is

F05
1

2 S 12
m2

v2D . ~20!

Because the potentialF0 is a small quantity, the pulsationv
is very close to the massm. The scalar field essentially van
ishes outside the condensate whereas its inner value i
rectly related to the gravitational potentialF through
02351
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ls252~F02F!v2.2~F02F!m2. ~21!

This relation has important consequences. To commence
densities rf8 5m2s2$113F02F% and rf9 5m2s2$11F0

2F22C% both become equal torf.m2s2 at lowest order
in the potentials. ThenF[C and the metric simplifies. It is
straightforward to show that it readily satisfies the gau
condition ~7!. The scalar field density may be expressed
the difference between the gravitational potentials inside
on the boundary of the scalar field condensate:

rf5
2m4

l
~F02F!H~F02F!, ~22!

whereH(x)51 for x.0 andH(x)50 elsewhere. This lead
to the Poisson equation

DF54pGrb18pG
m4

l
~F02F!H~F02F!. ~23!

Inside the condensate, gravity turns out to be effectiv
modified by the presence of the scalar densityrf whereas
the conventional Poisson equation is recovered outside.
fining the Planck mass throughMP51/AG, we derive a
typical scale of

L25
l

8p

MP
2

m4
5

L

m2
~24!

for the scalar field configurations in which we are interest
The dimensionless constantL has been introduced by@16# in
their analysis of self-interacting boson stars. The scaleL is
related to the massm and the quartic couplingl through

L.1.6 kpcH l

1022J 1/2H 1 eV

m J 2

, ~25!

so that values of the mass in the ballpark of an eV may w
be compatible with a sizeL of order of a few kiloparsecs. As
already noticed in@16#, the space-dependent term in th
Klein-Gordon equation~18! is actually suppressed by a fac
tor of L which, in our case, reaches values as large
;1053. The key feature of the scalar field configurations
stake is the existence of a unique scaleL that depends only
on the parametersm andl of the potentialV.

A pure scalar field configuration may also be seen a
mere fluid with mass densityrf . The pressurePf may be
derived from the space-space componentTi j 52h i j Pf of its
energy-momentum tensor. This leads to

Pf5L5g00ḟ†ḟ2V.
m4

l
~F02F!2 ~26!

inside the condensate whereF<F0. The corresponding
equation of state boils down to

Pf5
l

4m4
rf

2 ~27!
1-4



ri
ui

le

n

gu
av
n
ns

th
io

so
on
e

s,
o

n

e
d
ial

is
te

on-

ns

l

GALACTIC HALOS OF FLUID DARK MATTER PHYSICAL REVIEW D 68, 023511 ~2003!
and features the generic polytropic formP5KrG whereG
5111/n andK5l/4m4 are constants. We search for sphe
cal symmetric solutions of configurations in hydrostatic eq
librium of the form r/rC5Qn(z) and P/PC5Qn11(z)
wherez5r /L is the dimensionless radius. The typical sca
of the polytrope depends on the central densityrC and pres-
surePC through

L25
~n11!PC

4pGrC
2

, ~28!

whereas the generic functionQ satisfies the Lane-Emde
equation

1

z2

d

dzH z2
dQ

dz J 52Qn, ~29!

with the initial conditionsQ(0)51 andQ8(0)50. In the
scalar field case, the polytropic index isn51 and the
solution

rf

rfC
5Q~z!5

sinz

z
~30!

readily obtains. It describes a spherical symmetric confi
ration where the scalar field alone is bound by its own gr
ity. The radius of the pure scalar field condensate is theR
5pL where the scaleL has already been derived in relatio
~24! and ~25!:

R5pL5pH K

2pGJ 1/2

[pH l

8pGJ 1/2 1

m2
. ~31!

The effect of an aspherical distribution of baryons on
scalar field condensate will be examined in the next sect

III. RESOLUTION METHOD

We would like to compute the gravitational potentialF
associated with any density of baryonsrb in the galaxy, in
the presence of a scalar field condensate. So we need to
Eq. ~23!. The Heaviside function renders this equati
strongly nonlinear: different solutions have different surfac
where

F~xW !5F0 , ~32!

so the sum of two solutions is not a solution. Nevertheles
is possible to solve the equation with a recursive meth
The idea is to start from an approximate solutionF (0), and
to find F (n) from the iterations

DF (n11)54pGrb18pG
m4

l
~F02F (n)!H~F02F (n)!.

~33!

If, for a judicious choice ofF (0), theF (n)’s converge toward
a limit F (`), then the latter will be an exact solutio
of Eq. ~23!.
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We will always work in the approximation in which th
baryonic densityrb(xW ) is axially symmetric, continuous, an
vanishing at infinity. So the induced gravitational potent
should be

axially symmetric,

continuous and twice derivable,

vanishing at infinity. ~34!

We introduce a spherical coordinate system (r ,u,w) where
(u50) defines the symmetry axis. So there will be now
dependence in the solutions, and a good way to find them
to perform a Legendre transformation. Let us first illustra
this for the general Poisson equation

DF~r ,u!5S~r ,u!, ~35!

whereS andF possess the properties of symmetry and c
tinuity listed previously. If one decomposes the potentialF
and the source termS into Legendre polynomials:

F~r ,u!5(
l 50

1`

Pl~cosu!F l~r !, ~36!

S~r ,u!5(
l 50

1`

Pl~cosu!Sl~r !, ~37!

then theSl ’s are found from

Sl~r !5
2l 11

2 E
21

11

S~r ,u!Pl~cosu!d~cosu!, ~38!

while theF l ’s are the solutions of the linear set of equatio

1

r 2

d

dr S r 2
dF l

dr D2
l ~ l 11!

r 2
F l5Sl . ~39!

The boundary conditions are given by the properties~34! for
all l ’s,

d

dr
F l~0!50 and lim

r→1`

F l~r !50. ~40!

So, in order to find the solution of Eq.~39!, one can first
compute some Green’s functionsGl that are continuous, nul
at infinity, with zero derivative at the center, and verifying

1

r 2

d

dr S r 2
]

]r
Gl~r ,u! D2

l ~ l 11!

r 2
Gl~r ,u!5d~r 2u!,

~41!

whered is the Dirac function. The unique answer is

Gl~r ,u!52
u

2l 11 H S r

uD l

H~u2r !1S r

uD 2( l 11)

H~r 2u!J .

~42!
1-5
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FIG. 1. Gravitational potentialF (n) seen in
the direction u5p/2 after n50 ~solid/red!, 1
~light dotted/green!, 5 ~heavy dotted/blue!, and 10
~dashed/purple! recursions, withr opt5r max/p, r 0

52r max/p, u05p/2. The functions are seen t
converge quickly.
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SinceF l(r )5*0
1`Sl(u)Gl(u,r )du, one finally finds

F l~r !52
r 2( l 11)

2l 11 E
0

r

Sl~u!ul 12du

2
r l

2l 11Er

1`

Sl~u!u12 ldu. ~43!

We can still use this Green’s function technique in our rec
sive method. Indeed, ifF (n) shares the properties~34!, then
we can identify the right-hand side of Eq.~33! with S(r ,u)
and find F (n11) using the method described above. Th
F (n11) also shares the properties~34!. So, at each recursio
step, we need to expand the right-hand side of Eq.~33! in
Legendre coefficients. Note that theF l

(n)’s are known from
the previous iteration, while the numberF0 has to be im-
posed in some arbitrary way. In fact, looking again at E
~23!, it is clear that there should be different solutionsF
associated with different values of the free parameterF0.
Intuitively, this parameter tunes the size of the bosonic h
since it defines the surface inside which the scalar field p
a role. In the recursion technique, a possible strategy co
be to imposeF0 once and for all. Proceeding in that way, w
found that the solution did not converge properly. In fact
is much more efficient to choose arbitrarily a point of coo
dinates (r 0 ,u0), and to require step by step that this po
remains on the boundary; in other words, for eachn, we
defineF0 asF (n)(r 0 ,u0). For a givenu0, the different pos-
sible choices ofr 0 generate a one-parameter family of so
tions. However, only a finite range ofr 0 values lead to a
solution, fromr min50 for no bosonic halo to

r max5pA l

8pGm4
5pL ~44!

for a pure scalar field configuration@see Eq.~31! or the al-
ternative derivation in Appendix A#. The choice ofu0 itself is
irrelevant and we checked that any other choice gives
same family of solutions.
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In summary, for a given baryonic density, the modifi
nonlinear Poisson equation can be solved by~1! choosing an
arbitraryu0, ~2! choosing a valuer 0 reflecting the size of the
scalar field halo,~3! defining a starting functionF (0), and~4!
integrating Eq.~33! recursively, with the help of Eqs.~38!,
~43!, and ~36!. We show in Appendix B how to define
function F (0) which is close enough to the real solution
order to ensure fast convergence.

Let us illustrate this technique with a particular examp
based on a stellar disk plus a bosonic halo. In the followi
we will always treat the stellar disk as a thin distribution wi
exponentially decreasing density. The optical radius is
fined in such a way that it encompasses 83% of the t
stellar mass, and the thickness of the disk is chosen to b
times smaller than its radius, so that

rb~r ,u!}expH 23.2UcosuU r

r opt
J expH 23.2gUsinuU r

r opt
J ,

~45!

where g520. Let us choose a case wherer 0 and r opt are
comparable, so that baryons and bosons both have an i
ence: for instance,

r opt5
r max

p
and ~r 0 ,u0!5S 2

r max

p
,
p

2 D . ~46!

We plot on Fig. 1 the function

F (n)~r ,p/2!

F (n)~r 0 ,p/2!
~47!

for n50,1,5,10. In this example, the valueF5F0 is reached
at r 52r opt in the disk plane, andr 51.85r opt in the orthogo-
nal direction. The oblate form of the equipotentials is seen
Fig. 2.

A good test of the recursive method is to pick up differe
values ofu0 and see whether there is always a valuer 0(u0)
1-6
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such thatF0 is always the same, and the solutionsF(r ,u)
are exactly identical. We checked this successfully on v
ous examples.

The rotation curve can be deduced from the gravitatio
potential

v25r
]

]r
F~r ,u5p/2!. ~48!

In Fig. 3, we compare the rotation curve obtained followi

FIG. 2. Equipotential lines generated by a disk-shaped den
and a scalar field halo~solid/red!, compared to spherical equipoten
tials ~dashed/blue!. This plot has been computed in the case (r opt

5r max/p, r 052r max/p, u05p/2). The Cartesian coordinates (x,z)
are such that the axis of revolution of the galaxy corresponds tx
50.

FIG. 3. Rotation curve due to a disk-shaped density~solid/red!
compared to that obtained in a spherical approximation~dashed/
green! as in paper I. These two examples have been computed in
case (r opt5r max/p, r 052r opt , u05p/2). The difference is seen to
be fairly small.
02351
i-

l

our method with the one calculated in the approximation
paper I: namely, replacing the thin disk by a spherical o
with a density such that in the absence of any halo the r
tion curve along the stellar plane would be the same as w
the true nonspherical disk. In the presence of a halo,
can see that the difference becomes important only
large radius.

IV. THE ROTATION CURVES OF DWARF SPIRALS

Dwarf spiral galaxies are known to be completely dom
nated by dark matter at all radii. The usual cold dark ma
~CDM! models fail to reproduce the rotation curves of tho
systems. The purpose of this analysis is to investig
whether a self-interacting massive scalar field halo is able
reproduce such rotation curves. Therefore, we will first sc
tinize the typical dwarf spiral galaxy DDO 154, which ha
been thoroughly studied—see, for example, the observat
in @27# and@28#. Because it is isolated and therefore seems
be protected against any external influence, this dwarf sp
represents a prototypical example for our study. Its HI g
contribution is well measured and follows the distribution

rgas~r ,u!5rgas
c expH 20.8UcosuU r

r opt
J expH 25UsinuU r

r opt
J .

~49!

Its optical radiusr opt is equal to 1.4 kpc. The contribution o
its stars is visible and therefore well known, with a dens
distribution given by relation~45!. Both stars and gas ac
count for a small fraction of the observed circular velocit

In order to compare the various dark matter models w
the observations on DDO 154, we have performed ax2 test
on the 13 data points from Ref.@28#. To commence, we have
considered models in which the approximate real density
stars and gas has been assumed asrgas

c '0.15rstars
c and

vstars(r opt)'„0.3–0.4…v tot(r opt), wherevstarsis the stellar con-
tribution to the rotation velocityv tot . The precise value of
the ratiovstars(r opt)/v tot(r opt) is unknown and has been ad
justed here in order to provide the best fit. On top of the st
and gas, a dark matter component is added with a den
profile that depends on the model at stake. The mode
Moore et al. @1# is featured in panel~a! of Fig. 4 and corre-
sponds to the spherical symmetric density

rM~r !5rM
c H r opt

3

r 1.5~r 1r s!
1.5J , ~50!

wherer s is a scale radius parameter that is also adjusted
the fit. Recent CDMN-body simulations point toward such
profile. In the case of DDO 154, the best fit corresponds
rM

c (r opt/r s)
1.5'0.07rstars

c and to very large values of th
scale radiusr s . Thex2 value is found to be approximativel
equal to 600 for 10 degrees of freedom. As previously m
tioned, the model of Mooreet al., where the density diverge
like r 21.5 in the central region fails to account for the da
matter distribution inside DDO 154. Then we tested
Navarro-Frenk-White~NFW! spherical density profile@29#
where

ty

he
1-7



d
sumed:

ARBEY, LESGOURGUES, AND SALATI PHYSICAL REVIEW D68, 023511 ~2003!
FIG. 4. From left to right and top to bottom, the best fit of the DDO 154 rotation curve~solid/red! is featured as well as the observe
stellar ~dotted/green! and gas~dashed/purple! densities. A dark matter component has been added and various profiles have been as
Moore et al.’s density~a!, the NFW profile~b!, isothermal halo~c!, and Burkert’s phenomenological distribution~d!.
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rNFW~r !5rNFW
c H r opt

3

r ~r 1r s!
2J . ~51!

Such a distribution peaks at the center and has also b
found to arise naturally inN-body numerical simulations o
neutralino dark matter. We find that the bestx2 lies around
200 whenr s'9r opt andrNFW

c '6rstars
c @see panel~b! of Fig.

4#. We also considered an isothermal spherical halo@30# with

r iso~r !5r iso
c H r opt

2

r 21r s
2J . ~52!

This density was introduced in order to account for flat ro
tion curves. In the case of DDO 154 where the circular sp
starts to decrease beyond 4.5 kpc, the best fit is obtained
r s'1.2r opt and r iso

c '0.15rstars
c . The correspondingx2 is

now far better with a value;55 @see panel~c! of Fig. 4#.
Finally, a Burkert spherical distribution@31#

rB~r !5rB
c H r opt

3

~r 1r s!~r 21r s
2!
J ~53!
02351
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was considered. This density law has a core radius of
r s—just like the isothermal halo—and converges at large d
tances towards a Mooreet al. or a NFW profile. It has been
introduced as a phenomenological explanation of the rota
curves of dwarf galaxies@32#. The best parameters are the
r s'1.9r opt and rB

c'6rstars
c , leading to a bestx2;45 @see

panel~d! of Fig. 4#. At this stage, we reach the conclusio
that neutralino dark matter—should it collapse according
N-body numerical simulations like those of Mooreet al. or
NFW—is too much peaked at the center of DDO 154 a
does not account for the rotation curve in that region. T
fact that these species fail to reproduce the inner dynamic
a system known to be saturated by dark matter is definite
problem. The isothermal and Burkert halos provide a be
agreement with the data but are not consistent with the
crease observed beyond 4.5 kpc.

We then investigated a slightly different idea. Followin
Pfennigeret al. @33#, the dark matter inside galaxies wou
consist of pure molecular hydrogen H2, so cold that it would
have gone undetected so far. The formation of stars in
inner parts and the concomitant UV light production wou
have turned part of the H2 into detectable HI. The distribu
1-8
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GALACTIC HALOS OF FLUID DARK MATTER PHYSICAL REVIEW D 68, 023511 ~2003!
tion of this hidden H2 component could be derived in th
case of DDO 154 from its observed rotation curve. We w
nevertheless adopt the opposite point of view since our
is to derive—and not to start from—the circular speed. W
therefore artificially rescaled the observed gas density~49!
by a homogeneous overall factor. The best fit featured in F
5 corresponds torgas

c 5rstars
c and leads to a bestx2 of ;500

which is not particularly exciting. In the case of the mode
of Fig. 4, the addition of such a cold gas component does
improve the goodness of our fits.

Finally, we assumed the presence of a self-interact
bosonic halo and applied the recursion method discusse
Sec. III. The left plot of Fig. 6 corresponds to stellar and g
populations as observed while a value ofm4/l'75 eV4 pro-
vides a bestx2 of 16. The agreement with the measure
rotation curve is quite good. Notice that the bosonic h

FIG. 5. The DDO 154 rotation curve~solid/red! is fitted with the
observed stellar density~dotted/green! while the gas distribution
~dashed/purple! has been artificially enhanced with respect to t
observed HI by a rescaling factor.
02351
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completely dominates the inner dynamics beyond;0.5 kpc.
More impressive is the right plot of Fig. 6 where the g
distribution has now been rescaled in order to improve
goodness of fit. A bestx2 of ;7 is reached forrgas

c

'0.35rstars
c and a value ofm4/l'50 eV4.

In addition to the prototypical example of DDO 154, w
analyzed a set@32# of small and medium size spiral system
for which measurements of the rotation curve are of h
quality. These galaxies were selected with the requirem
that they have no bulge, very little HI, if any, and a domina
stellar disk that accounts for the dynamics in the central
gion. They are also dominated by dark matter as is clear fr
Fig. 7. A self-interacting bosonic halo has been assumed w
m4/l'50 eV4. Because of the presence of wiggles in t
rotation curves—presumably related to spiral arms inside
disks—the bestx2 value becomes meaningless. The quali
tive agreement is nevertheless correct except in the cas
545-G5 where the optical radius isr opt57.7 kpc. Because
the massm and the couplingl define a unique scale o
;2.3 kpc @see relation~25!#, the Bose condensate does n
extend far enough to account for the dark matter inside la
systems. A single self-interacting bosonic halo fails to rep
duce the dark matter inside light and massive spirals at
same time. A possible solution lies in the existence of sev
small bosonic condensates or clumps inside the halos
large galaxies, whereas a single condensate would acc
for the dark matter of dwarf spirals such as DDO 154. W
concentrated on dwarf spiral galaxies for which neutralin
seem to be actually in trouble. The case of several boso
clumps is beyond the scope of this work and will be inve
tigated elsewhere.

V. THE SOLAR SYSTEM

As long as we were interested in the inner dynamics
galactic systems, the baryonic densityrb in Eqs. ~23! and
~33! was implicitly averaged over distances of order of a fe
par secs and behaved smoothly. If the stellar populatio
now made of pointlike particles with massMi , the gravita-
s
of
FIG. 6. The best fit of the DDO 154 rotation curve~solid/red! is presented with the observed stellar density~dotted/green! and gas
distribution~dashed/purple!. In the left panel, a self-interacting bosonic halo is assumed withm4/l'75 eV4 together with the observed ga
density profile. In the right panel, the gas component has been rescaled in order to improve the goodness of fit and a valuem4/l
'50 eV4 is derived.
1-9
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FIG. 7. From left to right and top to bottom, the best fit~solid/red! of the rotation curves of various spiral galaxies with increasing opt
radii. The dotted/green lines stand for the stellar contributions. The various panels correspond to~a! N7339 (r opt54.8 kpc), ~b! M-3-1042
(r opt54.8 kpc), ~c! N755 (r opt54.8 kpc), ~d! 116-G12 (r opt55.4 kpc), ~e! 563-G14 (r opt56.4 kpc), and~f! 545-G5 (r opt57.7 kpc).
on is
say
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tional potentialF varies according to

DF18pG
m4

l
~F2F0!H~F02F!

54pG(
i

M id
3~rW2r i

W !. ~54!
02351
Outside the Bose condensate, the usual Poisson equati
recovered so that the gravitational attraction of a star—
the Sun—is not modified with respect to the conventio
situation. Slightly different is the case where the Sun l
inside the region where the fieldf extends. Intuitively, the
scalar field is expected to be attracted by the solar gra
and to concentrate around the Sun, whose gravity sho
1-10
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consequently be strengthened. In order to investigate
effect, we first notice that the potential differenceF2F0 is
a linear function of the sources within the Bose condens
The contributionF( of the sun to the potential differenc
F2F0 satisfies the modified Poisson equation

DF(18pG
m4

l
F(54pGr( , ~55!

with the condition that it must vanish on the boundaries
the Bose condensate. If the solar system is well embed
inside the latter—below a depth well in excess of a f
astronomical units~AU!—the surface of the condensate is
far away that we may just require thatF( vanishes at infin-
ity. Assuming in addition that the solar densityr( has an
isotropic distribution, the solution of Eq.~55! readily obtains
in terms of the spherical Bessel functionsj 0(z)5sinz/z and
n0(z)52cosz/z as explained in Appendix B:

F(~r !524pG
L3

r H coszE
0

z

r(~u!u sinudu

1sinzE
z

1`

r(~u!u cosuduJ . ~56!

The dimensionless radial coordinatez is defined as the ratio
r /L where the typical scaleL has already been defined
Sec. II. Relations~24! and ~25! imply that L exceeds the
solar radiusR( by some 10–11 orders of magnitude. T
gravitational potential which the Sun generates with the h
of the scalar fieldf simplifies to

F(~r !52
GM(

r
cos~r /L !. ~57!

Because of our assumption as regards the boun
condition—which we placed at infinity—this relation may b
safely used only for distancesr !L. Inside the solar system
this leads to the potential

F(~r !52
GM(

r H 12
r 2

2L2J ~58!

and to the gravitational field

g~r !52
GM(

r 2
2

GM(

2L2
. ~59!

Should the solar system be embedded inside the Bose
densate of the field under scrutiny in this article, the vario
planets and satellites that orbit around the Sun should
dergo the additional constant radial attraction

dg5~2.85310218 cm s22!H 1022

l J H m

1 eVJ 4

. ~60!

This acceleration is so weak that it should not alter the m
tion of the planets around the Sun. The relative increas
the solar gravitational attraction is actually
02351
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g
51.93310217H r

1 AUJ 2H 1022

l J H m

1 eVJ 4

. ~61!

Detailed analyses of radiometric data from Pioneer 10 and
indicate the existence of an apparent anomalous acceler
acting on these spacecraft@34#. Quite exciting is the obser
vation that this anomalous accelerationdgP is constant and
directed toward the Sun. Both features are actually expe
in the presence of a self-interacting scalar field. However,
magnitude of the observed anomalous accelerationdgP
;8.531028 cm s22 is ten orders of magnitude larger tha
what is needed to explain the rotation curve of DDO 15
Should the Pioneer acceleration be the consequence of a
lar field enhanced solar gravity, it would indicate an exce
ingly large value form/l1/4 of the order of 1.3 keV and a
typical condensate sizeL;931023 pc. We are therefore led
to the conclusion that we cannot explain with the same va
of m/l1/4 the Pioneer anomalous acceleration and the ro
tion curves of dwarf spirals.

VI. COSMOLOGICAL BEHAVIOR

We will now consider briefly the possible cosmologic
behavior of our scalar field. In paper II, we studied the c
mological evolution of a homogeneous complex scalar fi
with a quadratic and/or quartic potential. Here, we want
update this analysis for the values ofm4/l found in Sec. IV.
Generally speaking, focusing on the homogeneous quant
is the first step in any comprehensive study of a given c
mological scenario. In our case, we need to know whet
the evolution of the field background violates any cosm
logical bound before studying the possible growth of spa
fluctuations—hoping that they will cluster and form galac
halos after the time of equality between radiation density a
field density.

We refer the reader to paper II for a detailed resolution
the Klein-Gordon and Friedmann equations in a Unive
containing ordinary radiation, baryons, a homogeneous c
plex field, and a cosmological constant relevant only today
is straightforward to show that when the potential is dom
nated by the quartic term, the energy density of the fi
smoothly decays asa24: so, in the early Universe, the scala
field behaves as ‘‘dark radiation.’’ Later, when the quadra
term takes over, i.e., when

m2ufu2;lufu4 ⇒ V~f!;2
m4

l
, ~62!

the field starts to decay asa23, like dark matter: so it could
be responsible for a ‘‘matterlike’’ dominated stage. Durin
the whole cosmological evolution, the kinetic energy of t
field is of the same order of magnitude as its potential
ergy. So the ratiom4/l immediately gives a rough estimat
of the total energy density of the field at the time of
transition, denoted later asrf

tr . If this density is;1 eV4, we
immediately notice that it is of the same order of magnitu
as the density at radiation-matter equality—remember
req.0.55 eV4 for the concordance CDM with a cosmolog
cal constant (LCDM) model. So, in the early Universe, th
1-11
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density of our ‘‘dark radiation’’~the scalar field! had to be
comparable to that of ‘‘true radiation’’~photons and neutri-
nos!. This brings some considerable tension with the bou
on the total radiation density that can be derived from BB

This cosmological toy model and the problems associa
with it were first discussed by Peebles@17# in the case of a
real scalar field, with essentially the same motivations a
the present work. As a possible way out, Peebles propos
small modification of the scalar potential,

V~f!5m2f21lfq, ~63!

where q would be noninteger and slightly smaller than
Indeed, by lowering the indexq, one can decrease the fra
tion of dark radiation in the early Universe, and in particu
at BBN. We will not follow this direction. Indeed, the analy
sis of Sec. IV revealed a preferred value ofm4/l around
50–75 eV4. This is significantly larger than the observe
value ofreq and than the rough estimate of paper I where
consideredm4/l.1 eV4. Our purpose in the rest of thi
section will be to check whether this new value is compati
with the BBN bound.

In order to obtain a precise relation between the param
m4/l and the effective number of neutrinos at BBN—whi
is a convenient way to parametrize a cosmological den
that behaves like some extra relativistic degrees
freedom—we need to study numerically the detailed beh
ior of the field in the vicinity of a transition between th
radiationlike and matterlike regimes. For each value
m4/l, it is possible to followrf , and to extrapolate the
branches inrf}a24 and in rf}a23. We definerf

tr as the
energy density given at the intersection of the two asym
totes. A knowledge of this single number is sufficient in o
der to relate exactly the constant value ofrfa4 in the early
Universe to the constant value ofrfa3 measured today. A
simple numerical simulation gives

rf
transition52.4m4/l ~64!

independently of any other field or cosmological paramet
The simulation also provides a very good analytic appro
mation of the field density at any time—imposing that tod
whena5a0, the field density is given by the fraction of th
critical density usually attributed to cold dark matter,rf

5VCDMrc
0 :

rf5VCDMrc
0F ~a0 /a!61S VCDMrc

0 l

2.4m4D 2/3

~a0 /a!8G 1/2

.

~65!

The field density before the transition can be read dire
from the previous equation. It can be conveniently para
etrized in terms of an effective neutrino number, defined
usual through

DNeff5
rf

rn
, ~66!

wherern is the standard density of a single relativistic ne
trino species. The final result is
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DNeff5S VCDM
4 rc

04l

2.4rn
03m4 D 1/3

57.5S VCDMh2

0.13 D 4/3S l1/4eV

m D 4/3

.

~67!

Sticking to m4/l550 (eV)4, and using the currently pre
ferred valuesh50.68 andVCDM50.3, one findsDNeff52,
which is above the usual BBN bounduDNeffu,1 @35#. How-
ever, it is still possible to find some values o
(DNeff ,h,Vcdm) satisfying the above relation and allowed
the 1s level by current cosmic microwave backgroun
~CMB! experiments and BBN predictions@36#—for instance,
~1.0,0.63,0.20!. In any case, in the very near future, ne
CMB observations will set some stringent limits on the
three parameters: it will then be easy to assess the validit
our alternative to the usual cosmological scenario.

VII. CONCLUSIONS

We have shown that a self-coupled charged scalar fi
provides an excellent fit to the rotation curve of the dw
spiral DDO 154. That galaxy is the prototypical example o
system known to be completely dominated by dark mat
The effect of the quartic couplingl results in an effective
modified gravitation inside the Bose condensate, where
Poisson equation becomes strongly nonlinear. T
problem—complicated by the nonsphericity of the bary
distribution—has been solved exactly as explained in S
III. The agreement with the observations of the circu
speed of DDO 154 is impressive. Notice that neutralino d
matter does not pass this test because of the central cusp
it would develop. We conclude that the charged scalar fi
considered in this analysis provides an exciting alternative
galactic dark matter—at least inside dwarf systems. A typi
value ofm4/l;50–75 eV4 obtains.

The scalar field behaves cosmologically as a dark ra
tion component as long as the quartic contribution of
potentialV(f) dominates over its quadratic counterpart. T
situation reversed when the field energy density
;2.4m4/l and a matterlike behavior subsequently ensu
The larger the crucial parameterm4/l, the sooner the tran
sition between dark radiation and dark matterlike behavio
and consequently the smaller the contribution of the sc
field to the overall radiation density at early times—for
fixed scalar field mass density today. A large value ofm4/l
translates into a small number of effective neutrino famil
during BBN and we have shown that our model margina
satisfies the requirement thatDNeff should not exceed 1.

Actually the model is strongly constrained on the o
hand by the sizeL of the Bose condensates—and therefore
the corresponding galactic halos—and on the other hand
the contributionDNeff to the radiation density at BBN. Both
L andDNeff decrease with increasingm4/l and a value for
the latter of;50–75 eV4, which provides excellent agree
ment with DDO 154, is marginally consistent with BBN
Large halos cannot consequently be pictured in terms o
single Bose condensate, and the simple scheme prese
here has to be modified. A possible solution—yet not ve
natural—is to replace the quartic field self-interaction by
1-12
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fq term as suggested in@17#. This would alleviate the BBN
constraint. Another option worth being explored is to ima
ine that massive and extended halos are formed of sev
bosonic clumps. The coherent configuration that has b
investigated here may be understood as the ground sta
some gigantic bosonic atom. It is therefore conceivable
the scalar field may also form several such condensates
would be organized inside a huge bosonic molecule wit
spatial extension much in excess ofL. The electron cloud
around the proton does not extend further than;10210 m
inside the hydrogen atom and yet electrons are delocal
over meter size distances inside metals.

If so, the dark matter would be made of small boso
clumps. Should the solar system lie within such a system,
motion of its planets would provide in that case a low
bound onL, since the smaller the latter, the stronger is
effective modification to Newton’s law of gravitation. W
have actually shown in Sec. V that the scalar field conc
trates in the solar potential well and strengthens it to gene
an additional gravitational attraction that is radial and co
stant. As a matter of fact, the radio data from the Pion
probes are consistent with such an anomalous accelera
which seems to be constant and directed toward the S
Assuming that it results from the self-interacting scalar fi
that we have investigated in this work, the observed mag
tude dgP;8.531028 cm s22 would imply a value for
m/l1/4 of order 1.3 keV and a typical condensate sizeL
;0.01 pc. The merging of many of these small boso
clumps into a larger structure like a galactic halo is an op
question.

ACKNOWLEDGMENTS

We would like to thank D. Maurin and R. Taillet for use
ful discussions.

APPENDIX A

The purpose of this section is to derive the gravitatio
potential generated by a pure scalar field condensate.
calculation is complementary to the one at the end of Sec
based on the polytropic formalism. In the absence of a ba
onic densityrb , Eq. ~23! reads

D~F2F0!18pG
m4

l
~F2F0!H~F02F!50. ~A1!

Since there is no source, let us suppose that the gravitati
potential has a spherical symmetry. One can do a cha
of variable r 5zAl/8pGm4 so that the equation become
simply

d2

dz2
$z~F2F0!%1z~F2F0!H~F02F!50. ~A2!

The only solution of this equation which is continuous a
derivable everywhere and goes to zero at infinity is
02351
-
ral
en
of

at
at
a

ed

c
e

r
e

-
te
-
r

on,
n.

i-

c
n

l
is

II,
y-

al
ge

F~z!

55 F01@F~0!2F0#
sinz

z
if z,p ~see paper II!,

pF0

z
otherwise.

~A3!

So the maximum extension of the scalar field halo isr max

5pAl/8pGm4. The density of the bosonic halo is

rf52
2m4

l
~F2F0!H~z2p! ~A4!

and the total mass is

M54pS l

8pGm4D 3/2E
0

1`

rf~z8!z82dz8

5
p

G
A l

8pGm4
@F02F~0!#. ~A5!

On the other hand, the Gauss theorem applied to the sp
of radiusr 5r max gives

F052
GM

r max
52

GM

p
A8pGm4

l
~A6!

so thatF(0)52F0. The solution~A3! can be rewritten as

F~z!55 F0S 11
sinz

z D if z,p,

pF0

z
otherwise.

~A7!

APPENDIX B

The purpose of this appendix is to provide a prescript
for the definition ofF (0)—the starting function in the recur
sive method. We tested this prescription on various
amples, and found thatF (0) is always a fairly good approxi-
mation of the exact solution, allowing for quick convergenc

The idea is to enforce the boundary surface on which
field density (m4/l)(F2F0)H(F02F) vanishes to be a
perfect sphere. Of course, this has to be wrong when
baryonic density is nonspherical. So, if we impose a cons
boundary radius, we need to relax the fact that the value oF
should be constant all over the boundary. In other terms,r
is the radial coordinate, we replaceH(F02F) by H(r 0
2r ), wherer 0 is an arbitrary boundary radius.

If we define a dimensionless radial coordinatez
5rA8pGm4/l, Eq. ~23! becomes

DF5S~z,u!1~F02F!H~z02z!, ~B1!
1-13
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whereS54pGr. After a Legendre transformation, we ob
tain the following set of differential equations:

1

z2

d

dzS z2
dF l

dz D2
l ~ l 11!

z2
~F l2F0d l ,0!H~z02z!5Sl~z!,

~B2!

whered l ,0 is the Kronecker symbol. Each of these equatio
can be solved separately on the two intervals 0<z<z0 and
z0<z<`, using Green’s functions. In terms of the spheric
Bessel functionsj l(z) andnl(z), the solution of Eq.~B1! for
z<z0 is

F l~z!5F0d l01nl~z!E
0

z

u2 j l~u!Sl~u!du

1 j l~z!E
z

z0
u2nl~u!Sl~u!du1Cl

1 j l~z! ~B3!

whereCl
1 is a free constant. In the same way, forz>z0, the

solution is
d

02351
s

l

F l~z!52
1

2l 11
z2( l 11)E

z0

z

ul 12Sl~u!du

2
1

2l 11
zlE

z

1`

u12 lSl~u!du2Cl
2 1

2l 11
z2( l 11),

~B4!

whereCl
2 is another free constant. We impose the requi

ment that each Legendre coefficient of the gravitational
tential is derivable and continuous on the boundaryz5z0:

F l~z0
2!5F l~z0

1!,

d

dz
F l~z0

2!5
d

dz
F l~z0

1!. ~B5!

This defines a unique value for each constant of integrat
Cl
15

~ I l
22I l

12F0d l ,0!~ l 11!1z0~Jl
22Jl

1!

~ l 11! j l~z0!1z0 j l8~z0!
,

Cl
25

2z0
l 12~2l 11! j l~z0!~Jl

22Jl
1!1z0

l 12~2l 11! j l8~z0!~ I l
22I l

12F0d l ,0!

~ l 11! j l~z0!1z0 j l8~z0!
, ~B6!
er-

ch
where

I l
15nl~z0!E

0

z0
u2 j l~u!Sl~u!du,

I l
252

1

2l 11
z0

l E
z0

1`

u12 lSl~u!du,

Jl
15nl8~z0!E

0

z0
u2 j l~u!Sl~u!du,

Jl
252

l

2l 11
z0

l 21E
z0

1`

u12 lSl~u!du.

~B7!

One can then reconstruct the gravitational potentialF (0)

from

F (0)~z,u!5(
l 50

1`

Pl~cosu!F l~z!. ~B8!

So far, the approximate solutionF (0) constructed in this way
depends on two arbitrary numbers: first,z0, and second,F0,
which appears explicitly in the definitions ofC0

1 and C0
2.

However,z0 andF0 have to be related in some way. Indee
if F (0) were an exact solution,F0 would be equal by defi-
,

nition to F (0)(z0 ,u) for any u. In our approximation
scheme,F (0)(z0 ,u) is not independent ofu, but we can
choose a particular directionu0, and impose thatF0
5F (0)(z0 ,u0). Inserting this identity in Eq.~B8!, and using
Eq. ~B3!, one obtains the relation

F05F (0)~z0 ,u0!

5
z0

tanz0
(
l 50

1`

Pl~cosu0!

3H nl~z0!E
0

z0
u2 j l~u!Sl~u!du1Kl j l~z0!J ~B9!

where

Kl5
~ I l

22I l
1!~ l 11!1z0~Jl

22Jl
1!

~ l 11! j l~z0!1z0 j l8~z0!
. ~B10!

In summary, the first step of our recursive method is p
formed in the following order:~1! we choose a valuez0 ~or
r 0) and an arbitrary directionu0 ~which will be kept for all
the following iterations!; ~2! we solve Eq.~B9! in order to
find F0; ~3! we computeF (0)(z,u) using Eqs.~B3!, ~B4!,
and ~B8!. The next iterations are performed in the mu
simpler way described in Sec. III.
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