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Abstract. The whole class of minimally coupled and massive scalar fields which may be responsible for flattening of galactic
rotation curves is found. An interesting relation with a class of scalar-tensor theories able to isotropise anisotropic models
of Universe is shown. The resulting metric is found and its stability and scalar field properties are tested with respect to the
presence of a second scalar field or a small perturbation of the rotation velocity at galactic outer radii.
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1. Introduction

One of the most fascinating cosmological problems is dark matter: 99 percent of the Universe energy density would be hidden.
A good indication of dark matter presence is given by galactic rotation curves which disagree with Kepler laws (Freeman 1970).
Particularly, spiral galaxy rotation curves seem flattened at large radii. One possible explanation is that they are made of a
luminous disk whose density exponentially decreased to adjust to a dark halo whose distribution evolves asr−2 (Rubin et al.
1997).
Dark matter nature is unknown today. From WMAP observations, we know that the matter of which we are made represents 4% of
the Universe content, 23% is made of cold dark matter and73% of dark energy. These exotic types of matter could be represented
by scalar fields (Matos et al. 1999), which are predicted by unification theories (Ellis et al. 1998). Starting from this assumption,
we will study how they could be responsible for the observed flattened rotation curves. Dark matter is not the only way to explain
them (Battaner & Florido 2000). Hence, Milgrom (Milgrom 1983a,b,c), Sanders (Sanders 1990) and others have proposed to
modify newtonian theory(MOND) for galaxies outer radii and in Battaner & Florido (1995), ad hoc magnetic field are considered.

Hence, the physical framework of this paper will be the scalar tensor theories. Unification theories and particularly super-
symmetry predict the existence of scalar fields, which thus deserve be taken into account in cosmology. Most of time, only their
cosmological consequences are analysed: quintessence phenomenon (Johri 2001; Sahni 2000), isotropisation (Fay 2001) or infla-
tion for instance. However, they could also be present at galactic scale. In this work, we are going to assume that the dynamics of
galaxies at outer radii is described by a scalar tensor theory with a dust perfect fluid, neglecting the radiation. The scalar fieldφ
will be minimally coupled, massive with a Brans-Dicke function representing its coupling with the metric. It is equivalent to con-
sider that, at galactic scale, the gravitational function is a constant but the potentialU and the Brans-Dicke coupling functionω
vary withφ.

Concerning the geometrical framework, we will consider a spherical and static metric. These are reasonable assumptions
since, generally, a galaxy has a rotation axis around which turn the stars with a velocity much smaller than light speed. We thus
neglect dragging effects, justifying a static metric (Guzm´an & Matos 2000). We will be interested by galactic regions where
rotation curves flatten and where most of the dark matter should be present, i.e. the galaxies outer radii. Indeed internal regions
need few or not dark matter to explain their dynamics.

Our goal will be to study the form of the metric and the scalar field properties explaining why the galactic rotation curves are
flattened. A similar work has been done in Matos et al. (2000) and Matos & Guzm´an (2001). In the first paper, a massive scalar
tensor theory is studied with a fixedω but an unknownU. After having found the metric compatible with flat rotation curves, it is
shown that the only potential able to reproduce such a dynamics should have an exponential form,U = ekφ. In the second paper,
with the same form forω, two massive scalar fields and a perfect fluid are considered. One of the potentials is assumed to have an
exponential form and similar results are found. In the present paper, we are going to consider a single massive scalar field with a
perfect fluid but bothω andU will be unknown functions ofφ. Then we will look for the metric and relations betweenω andU
allowing to get the observed flat rotation curves, thus generalising the results of Matos et al. (2000) to a larger class of scalar
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tensor theories. Moreover, we will test the stability of our results by considering a small perturbation of the rotation velocity
or/and an additional scalar field.
It is important to note that other types of rotation curves exist, such as decreasing rotation curves found by
Casertano & van Gorkom (1991). Moreover, it seems that bright compact galaxy rotation curves are slightly decreasing whereas
low luminosity ones tend to be increasing, indicating that they have more dark matter. However in this work we will only take
into account asymptotically flat rotation curves. Indeed, a large number of them seems to be well approximated by an Universal
Rotation Curve (Persic et al. 1996) whose formulation, adapted to spiral galaxies, tends to a constant at late times. It shows how
rotation curves depend on galaxy luminosity: increasing or decreasing rotation curves would respectively correspond to low or
high galactic luminosity but should tend to a constant at outer radii. It seems to be confirmed by Swaters (Swaters 1999) who
has examined a large number of dwarf galaxies and found that their rotation curves flattened over 2 disk scale lengths. MOND
theories or the presence of electromagnetic fields can also predict this type of curves. Consequently, although all the rotation
curves do not flatten, this type of behaviour is sufficiently observed or predicted to justify a particular attention.

The plane of this paper is the following. In Sect. 2, we look for metric form and scalar field properties allowing to get flattened
rotation curves. In Sect. 3, we discuss about these results.

2. Metric and scalar field mathematical properties

This section is divided in two parts. In the first one, we consider the presence of a single scalar field. We look for the metric and
properties of the unknown functionsω andU such that the rotation curves be flattened at galaxy outer radii. In the second one,
we test our results stability by adding a second scalar field. We will use a static and spherical metric written as:

ds2 = −e2φdt2 + e2Λdr2 + r2
(
dθ2 + sin2 θdφ2

)
(1)

φ andΛ being some functions ofr.

2.1. With a single scalar field

The action for a minimally coupled and massive scalar field with a perfect fluid is given by:

S =
∫ (

R− ω
ψ
ψ,µψ

,µ − U +
16π
c4

Lm

) √−gd4x (2)

R is the Ricci scalar,ψ the scalar field,ω(ψ) the Brans-Dicke coupling function andU(ψ) the potential.Lm is the Lagrangian
describing a dust perfect fluid whose impulsion-energy tensor writesTαβ = ρuαuβ with uα the 4-velocity andρ the density of the
dust fluid. We get the field equations and Klein-Gordon equation by varying the action with respect to the metric functions and
scalar field:

r−2
[
r
(
1− e−2Λ

)]′
=

ω

2ψ
ψ′2e−2Λ + 1/2U + ρ (3)

−r−2
(
1− e−2Λ

)
+ 2r−1φ′e−2Λ =

ω

2ψ
ψ′2e−2Λ − 1/2U (4)

e−2Λ
(
φ′′ + φ′2 + φ′Λ′ − Λ′/2

)
= − ω

2ψ
ψ′2e−2Λ − 1/2U (5)

e−2Λψ′2
(
ωψ−1

)
ψ
+ 2e−2Λωψ−1

[(
2r−1 − Λ′ + φ′

)
ψ′ + ψ′′

]
− Uψ = 0. (6)

A prime stands for a derivative with respect tor and aψ indice, a derivative with respect to the scalar field. By subtracting
Eqs. (3)–(4) and by summing (4)–(5), it comes:

r(Λ′ − φ′) − 1+ e2Λ
[
1− 1/2r2(U + ρ)

]
= 0 (7)

r2Λ′
(
2φ′ − 1

)
+ 2r2

(
φ′′ + φ′2

)
+ 4rφ′ + 2− 2e2Λ

(
1− r2U

)
= 0. (8)

Then, we deriveU andρ as some functions ofΛ andφ:

ρ = 1/2e−2Λr−2
[
−2+ 2e2Λ + r

(
4− r + 2rφ′

)
Λ′ + 2r2

(
φ′2 + φ′′

)]
(9)

U = −1/2e−2Λr−2
[
2− 2e2Λ + rφ′(4+ 2rφ′) + r2Λ′(2φ′ − 1)+ 2r2φ′′

]
. (10)

We introduce these expressions in (5) to getω as a function ofΛ, φ andψ. Then putting the above forms ofU, ρ andω in
Klein-Gordon equation yields:

Λ′
[
2(r − 2)+ r(r − 12)φ′ − 2r2φ′2

]
− 2φ′

[
e2Λ − 3+ r2

(
φ′2 + φ′′

)]
= 0 (11)
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which is scalar field independent. Since we are interested by flat rotation curves, we assume that rotation velocity tends to a
constant for larger. However, rotation curves as seen by an observer at infinity for a spherical symmetry, are given byVrot =√

rgtt,r/(2gtt), as shown in Matos et al. (2000) where a newtonian interpretation of this last expression is given. It implies that
φ′ → V2

rotr
−1 and thene2φ → r2V2

rot. To simplify our results below, we define the following constants:

c1 = 2
(
1+ V2

rot − 2V6
rot

)
c2 = V4

rot − 1

c3 = −2
(
2+ 6V2

rot + V4
rot

)
c4 = 2+ V2

rot

c5 = −2V2
rot

(
−3− V2

rot + V4
rot

) (
2+ 6V2

rot + V4
rot

)−1

c6 = −3− V2
rot + V4

rot

c7 = −4− 12V2
rot − 2V4

rot

c8 = −2− 4V2
rot − 4V4

rot.

Introducingφ′ in (11) and integrating, we find forΛ:

e2Λ = c6

[
Λ0

(c4r + c7

r

)c5 − 1
]−1

(12)

Λ0 is a positive integration constant. This last expression is only physically meaning for larger where it tends to the constant

c6

[
Λ0cc5

4 − 1
]−1

as 1/r. This constant must be positive otherwiseeΛ is not defined for larger and moreover, numerical integrations
seem to show thatΛ diverges for a finite value of this coordinate. Then, from (9), (10) and (12), we calculate that asymptotically:

ρ = 2

−1+ Λ0

(c1 + c2r)
(
c3r−1 + c4

)c5

c3 + c4r


(
c6r2

)−1
(13)

U = 2

c2 −
(2c4 − 3)Λ0 [c8 + r(c4 − 1)]

(
c4 + c3r−1

)c5

c3 + c4r


(
c6r2

)−1
. (14)

For larger, ρ andU vanish asr−2. This asymptotical behaviour for the perfect fluid energy density is the same as the nonsingular
isothermal profile, one of the most frequent halos. The metric describing the galaxies outer radii where the rotation curves flatten
is thus the same as in Matos et al. (2000) whateverω. Considering a perturbationδ(r) of Vrot does not modify these results as
long asrδ′ → 0.
From the form of the metric and since we have leftω undetermined, we can get for larger a relation betweenω andU such that
the rotation curves be flattened. By summing (3) and (4) and taking into account asymptotical behaviours forρ andU, we find
the following three limits:

ωψ′2ψ−1 → 4`−2r−2 (15)

U → U1r−2 (16)

U ′ = Uψψ
′ → −2U1r

−3 (17)

`−2 =

[
c4 − 3+ c6

c4(Λ−1
0 c
−c5
4 −1)

]
andU1 are some constants. We use (16) and (17) for respectively introduceU and replaceψ′ in (15).

Then, consideringg andk two functions ofr and rewriting (15) and (17) as respectivelyωψ′2ψ−1 → g(r) andUψψ
′ → k(r),

we have

ωk2

ψU2
ψ

→ gr4r−4.

Using (16) to replacer4 and introduceU, it comes

ωU2

ψU2
ψ

→ U2
1
g(r)
k(r)2

r−4.

Since hereg(r) = 4`−2r−2 andk(r) = −2U1r−3, we find:

ψU2
ψ

ωU2
→ `2 , 0. (18)
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For a given form ofU(ψ), (16) defines a unique form forr(ψ). U(ψ) andr(ψ) may then be introduced in (17), defining a unique
form forψ′(ψ). Then,r(ψ) andψ′(ψ) may be introduced in (15), defining a unique form forω(ψ). Consequently, for a givenU(ψ),
(15)–(16) defined a uniqueω(ψ). The same remark applies to (18). Consequently, for a givenU, the system (15)–(17) or (18)
uniquely defineω and thus the class of scalar tensor-theories responsible for the rotation curves flattening for given potential or
Brans-Dicke coupling function. However, only (15)–(17) uniquely defineψ(r).
We have shown above thatρ asymptotically behaves asr−2. Examining the Eq. (3), we note that the scalar field energy densityρφ
shall be written asω2ψψ

′2e−2Λ +1/2U. Knowing the asymptotical limits of each of these terms, we deduce that for larger, ρ ∝ ρφ:
the scalar field is quintessent.
The limit (18) is doubly important. Firstly, in (Fay 2001, 2003; Fay & Luminet 2003) it has been shown that a necessary condition

for isotropisation of Bianchi models was
ψU2

ψ

ωU2 → `2, ` being a constant in a close interval depending on the presence of curvature
and perfect fluid. Consequently, galactic scalar field properties for larger could match a cosmological scalar field present in the
entire Universe which would allow for its isotropisation. Secondly, specifying one of the unknown functionsω or U, (18) allow
determining in a unique way the other one: this limit gives a necessary and sufficient relation between these two functions such
that the galactic rotation curves for outer radii be flattened. It thus generalises the work of Matos et al. (2000) for whichω was a
known function of the scalar field leading to an exponential potential.
In the following section, we examine the stability of these results with respect to the presence of a second scalar field.

2.2. With 2 scalar fields

When two massive scalar fields are present, the action may take the following form:

S =
∫ (

R− ω1

ψ1
ψ1,µψ

,µ
1 −

ω2

ψ2
ψ2,µψ

,µ
2 − U +

16π
c4

Lm

) √−gd4x. (19)

Theψi are two scalar fields such thatω1 = ω1(ψ1), ω2 = ω2(ψ2) andU = U(ψ1, ψ2). This form of the action is not the most
general one but allows testing the results of the previous section. The field equations are:

r−2
[
r
(
1− e−2Λ

)]′
=

ω1

2ψ1
ψ′21 e−2Λ +

ω2

2ψ2
ψ′22 e−2Λ + 1/2U + ρ (20)

−r−2
(
1− e−2Λ

)
+ 2r−1φ′e−2Λ =

ω1

2ψ1
ψ′21 e−2Λ +

ω2

2ψ2
ψ′22 e−2Λ − 1/2U (21)

e−2Λ
(
φ′′ + φ′2 + φ′Λ′ − Λ′/2

)
= − ω1

2ψ1
ψ′21 e−2Λ − ω2

2ψ2
ψ′22 e−2Λ − 1/2U (22)

e−2Λψ′21
(
ω1ψ

−1
1

)
ψ1
+ 2e−2Λω1ψ

−1
1

[(
2r−1 − Λ′ + φ′

)
ψ′1 + ψ

′′
1

]
− Uψ1 = 0 (23)

e−2Λψ′22
(
ω2ψ

−1
2

)
ψ2
+ 2e−2Λω2ψ

−1
2

[(
2r−1 − Λ′ + φ′

)
ψ′2 + ψ

′′
2

]
− Uψ2 = 0. (24)

Making the same calculus as in Sect. 2.1, we get an equation similar to (11), i.e. independent on the scalar fields:

4− 4e2Λ + 4r3φ′3 + 2r3Λ′2(2φ′ − 1)+ r3Λ′′ − 2rφ′
(
4− 2e2Λ + r2Λ′′

)
−4r2φ′′ + 2rΛ′

[
6− 2r − (r − 16)rφ′ + 4r2φ′2 + r2φ′′

]
− 2r3φ′′′ = 0. (25)

Equations forρ andU are the same as (9) and (10). Equation (25) does not depend onU, ω1, ω2 or the scalar fields forms.
Moreover, we always haveφ′ → V2

rotr
−1 which asymptotically characterises a flat rotation curve. The solution forΛ issued from

Eq. (25) is thus independent on the scalar fields and the unknown functionsωi andU. It will be always the same, whateverU,ω1,
ω2 andψi . In particular, if we consider the special case where one of the scalar fields is negligible, one have to recover the same
asymptotical form forΛ as when only one scalar field is present. Hence, the asymptotical solution for Eq. (25) should be the same
as for (11): when 2 scalar fields are considered,Λ tends to a constant asr−1 andΛ′ vanishes asr−2. This is in agreement with
Matos & Guzmán (2001) and implies thatU andρ also vanish asr−2. These results are the same if we consider a perturbationδ
for the rotation velocity as long asδ′r andδ′′r2 are asymptotically vanishing.
Anew, we find the following limits allowing to determine if a relation exists betweenω1, ω2 andU when the rotation curves
flatten:

ω1ψ
′2
1 ψ
−1
1 + ω2ψ

′2
2 ψ
−1
2 → 2`−2r−2 (26)

U → U1r−2 (27)

U ′ = Uψ1ψ
′
1 + Uψ2ψ

′
2 → −2U1r

−3. (28)

Let us put thatωiψ
′2
i ψ
−1
i → gi andUψiψ

′
i → ki . Then,g1 + g2→ r−2, k1 + k2→ r−3 and we have

ωiU2

ψiU2
ψi

→ U2
1
gi

k2
i

r−4.
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It implies that only one of thegi(or ki) have to tend tor−2 (respectivelyr−3), the second one varying as or slower than this last
limit. Moreover, Eqs. (23)–(24) may be written as:(
ωi

ψi
ψ′2i e−2Λ

)′
+ 2

ωi

ψi
ψ′2i e−2Λ

(
2
r
+ φ′

)
− Uψiφ

′
i = 0.

Hence, sinceΛ → constandφ′ → r−1, if gi < r−2, ki have to vary slower thanr−3. We thus distinguish 2 possible behaviours
for gi andki :

– case 1:gi → r−2 andki → r−3

As previously, it comes that
ψ1U2

ψ1

ω1U2 and
ψ2U2

ψ2

ω2U2 tend to some constants.

– case 2:g1→ r−2, g2� r−2, k1→ r−3 et k2 � r−3

Consequently, the dynamical effects ofψ2 are asymptotically negligible in the field equations and the metric functions dy-
namics does not depend on it. We find thatω1U2

ψ1U2
ψ1

tends to a non vanishing constant andω2U2

ψ2U2
ψ2

diverges or vanishes.

We conclude that the scalar fieldsψi which are not asymptotically negligible are such that
ψiU2

ψi

ωiU2 tend to some non vanishing
constants. Hence, the results of the previous section are not modified by the introduction of a second scalar field. Anew, we note
that the scalar fields energy density which shall beω1

2ψ1
ψ′21 e−2Λ + ω2

2ψ2
ψ′22 e−2Λ + 1/2U asymptotically tends tor−2 and behaves as

the one of the dust fluid. It means that the two (or the dominant) scalar fields are (respectively is) quintessent.

3. Discussion

In this work, we have looked for the characteristics of the metric functions and scalar field such that galactic rotation curves
flatten for outer radii. For the metric we have got the following result:

Let us consider a minimally coupled and massive scalar field defined by a potential U and a Brans-Dicke coupling func-
tion ω with a spherically static metric. When, at outer radii, the galactic rotation curves flatten, the metric is asymptotically
defined byds2 = −r2V2

rotdt2 +Λ1dr2 + r2(dθ2 + sin2θdφ2),Λ1 being a constant, whatever the form of the potential or Brans-Dicke
coupling function.

This result is stable related to a small perturbationδ of the rotation velocity such thatrδ′ → 0 or if we consider a sec-
ond scalar fieldφ as defined by the Lagrangian (19). In this last case the perturbation must be such thatδ′r andδ′′r2 vanish for
larger. It is in accordance with the asymptotical form of the metric found in Matos & Guzm´an (2001) where an exponential
potential was found to explain the flattening of the rotation curves. Here, this property is generalized to any functionsω and
potentialU with the following characteristics:

Let us consider a minimally coupled and massive scalar field defined by a potential U and a Brans-Dicke coupling func-
tion ω with a spherically static metric. When, at outer radii, the galactic rotation curves flatten, the energy densities of the
perfect fluid and scalar field vanish as r−2: the scalar field is asymptotically quintessent. Moreover,ω and U are asymptotically

related by the relation
ψU2

ψ

ωU2 → `2, `2 being a constant, and U vanishes as r−2.

Hence the energy density of the scalar field shows that we are using an isothermal profile which decays inr−2 and fit the
flat galactic rotation curves quite well and not a Navarro-Frenk-White (Navarro et al. 1997) profile where the density goes
like r−3 in the asymptotic region and whose corresponding metric and rotation velocity has been recently determined in Matos &
Núñez (2003). When 2 scalar fields are present, again their energy density behaves as the one of the perfect fluid. Consequently,
at least one of them is quintessent. The presence of quintessent scalar fields in spiral galaxies have been examined in Matos
& Guzman (2000) where the agreement with the observed rotation curves is shown. Moreover, the scalar fields which are not

negligible are such that
ψiU2

ψi

ωiU2 tends to a constant, leaving the above last result unchanged for these scalar fields.

Let us make some remarks on the quantity
ψU2

ψ

ωU2 . Firstly, any necessary condition expressed with the unknown functions1 of
a scalar tensor theory such that the metric converge toward a determined form must be invariant with respect to a scalar field
transformation. Indeed, consideringF(U, ω), a necessary condition such that ds2 always tends to a determined form, since a
transformationψ = T(Ψ) of the scalar field keeps the metric, it must be the same for the necessary conditionF(U, ω). One can

easily check it is the case for
ψU2

ψ

ωU2 . Particularly there is a scalar field transformation which allows to rewrite the metric under the
form

S =
∫ (

R−Ψ,µΨ,µ − U +
16π
c4

Lm

) √−gd4x

1 i.e.ω andU for the present case.
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corresponding to the one of Matos et al. (2000) and leading to their results. However, for most ofω functions, this transformation
is not defined or analyticaly workable and thus the results of Matos et al. (2000) can not be arbitrarily applied to any forms
of couple (ω,U) whereas it could be important to keep bothω and U as depending on the scalar field. As instance, if the
potential vanishes, thus mimicing a vanishing cosmological constant, compatibility of the theory with PPN parameters requires
thatω → ∞ andωφω−3 → 0 (Nordvedt 1968; Wagoner 1970), which does not fit with a constantω got after field redefinition.
Indeed, it recovers the general problem of finding a metric whose dynamics is agreed with the observations and whose potential
is in accordance with, as instance, particle physics predictions for the form of the potential: for this, it is necessary to keep the
freedom of choosing a form forω(φ). Keepingω as an undetermined function of the scalar field thus allows finding the set of all
scalar tensor theories able to produce flat rotation curves foranyforms ofω andU, even when the above scalar field redefinition
can not be anatically performed.

The part of the results concerning the convergence of
ψU2

ψ

ωU2 to a constant seems strangely correlated to isotropisation of
homogeneous models which also needs this condition (Fay 2001, 2003; Fay & Luminet 2003). It shows that the properties of a
galactic scalar field allowing the flattening of rotation curves could match those of a cosmological scalar field favouring Universe
isotropisation.

Starting from the form of the potential, the property
ψU2

ψ

ωU2 → `2 allows recovering the Brans-Dicke coupling function such that
the rotation curves could flatten and vice-versa. Let us examine some of the most studied potentials. Hence, if we consider an
exponential potentialU = ekψ, we find thatω = k2`−2ψ, in accordance with the results of Matos et al. (2000) as a particular
case of the class of theories we have found, andψ ∝ ln r. If we takeU = ψk, the Brans-Dicke coupling function should be
ω = k2`−2ψ−1 andψ ∝ r−2k−1

. Thus, we see that considering two unknown functionsω andU instead of a single one leads
to an important generalisation of Matos et al. (2000). Indeed, assuming asymptotically flat rotation curves fix the behaviour of
one of the metric function, i.e.φ. Consequently, in Matos et al. (2000), sinceω is chosen, the potential is uniquely determined
whereas in this paper we can find it depends onω, thus explaining the asymptotical relation betweenω andU. It follows that an
exponential potential is not the only one allowing to get flat rotation curves but a whole class of scalar tensor theories such that
ψU2

ψ

ωU2 → `2 leads to this property. We remark that a cosmological constant can not explain why the rotation curves flatten since
the potential must evolve asr−2. This is in agreement with the theories which try to solve the cosmological constant problem by
considering it as a variable function rather than a true constant.

The interpretation of scalar fields properties found in this work may be done at cosmological or galactic scales. Phenomena
giving birth to scalar fields probably have a cosmological nature and are related to particle physics theories. To our knowledge it
does not exist any way to generate them by galactic process. Their properties based on rotation curves observations are coherent
with their usual cosmological picture i.e. their quintessent nature and their role in the Universe isotropisation. However, if we
consider an asymptotically increasing rotation curve, it could mean thatφ′ increased faster thanr−1. It would come from Eqs. (10)
and (9) that the quantityU/ρ could diverge. If such rotation curves were observed (it is the case but some doubts subsist on the
fact that they could asymptotically flatten, Persic et al. 1996), it would mean that scalar fields, at least at galactic scale, would
not be quintessent. Then the quintessence properties would only be valid for some types of galaxies. In Casertano & van Gorkom
(1991), decreasing, increasing or flattening rotation curves are studied. Observations seem to show that the first ones appear for
bright galaxies and the second ones for faint galaxies. A possible interpretation would be that flat rotation curves would be the
outcome of an equivalent mixing between luminous and dark matter, the decreasing or increasing rotation curves resulting of a
respectively luminous matter or dark matter domination. This flat rotation curves interpretation is coherent with the scalar field
quintessence property found in this paper.

To conclude, this work generalises those of Matos et al. (2000) and Matos & Guzm´an (2001). The metric got in these papers
and the quintessent nature of the scalar fields have been generalised for any form ofω. A relation betweenU andω has been
found and allows getting easily one of these quantities from the other. It selects the class of scalar tensor theories which could be
in agreement with flat rotation curves and shows that an exponential potential is not the only one able to produce such a dynamics.
Moreover, we have remarked that this class is also in agreement with Universe isotropisation. The stability of these results with
respect to a small perturbation of rotation velocity or the presence of a second scalar field have been tested. A next step would be
to consider a non minimally coupled scalar tensor theory, i.e. with a variable gravitational constant or/and a magnetic field that
could play a fundamental role at a galactic scale.
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