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Matos, Guzmán, and Nuñez proposed a model for the galactic halo within the framework of scalar field

theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo

only when a certain condition is maintained. We fix that condition and also calculate its impact on

observable parameters of the model.
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One of the outstanding problems in modern astrophysics
is the problem of dark matter which is invoked as an
explanation for the observed flat rotation curves in the
galactic halo. Doppler emissions from stable circular orbits
of neutral hydrogen clouds in the halo allow the measure-
ment of tangential velocity vtgðrÞ of the clouds treated as

probe particles. According to Newton’s laws, centrifugal
acceleration v2

tg=r should balance the gravitational attrac-

tion GMðrÞ=r2, which immediately gives v2
tg ¼ GMðrÞ=r.

That is, one would expect a falloff of v2
tgðrÞ with r.

However, observations indicate that this is not the case:
vtg approximately levels off with r in the halo region. The

only way to interpret this result of observation is to accept
that the mass MðrÞ increases linearly with distance r.
Luminous mass distribution in the galaxy does not follow
this behavior; hence, the hypothesis that there must be
huge amounts of nonluminous matter hidden in the halo.
This unseen matter is given a technical name dark matter.

Despite the fact that the exact nature of dark matter is as
yet unknown, several analytic halo models exist in the
literature including those provided by scalar-tensor theo-
ries (see for instance [1]). In particular, the scalar field
model first proposed byMatos, Guzmán, and Nuñez [2] has
received considerable attention. It is important to note that
the authors primarily constructed an exact solution of
Einstein’s field equations sourced by a scalar field that
provides a density profile of 1=r2 together with other
appealing features of the metric functions. As a particular
application, they sketched a plausible interpretation of the
halo dark matter problem. The problem being important in
itself, we think that the interesting relativistic central fea-
ture of the solution, namely, a non-Newtonian halo, must
be well grounded. The purpose of the present Brief Report
is to fix the condition under which it is possible. In addi-
tion, we work out its impact on observable parameters.

It is to be mentioned that the solution in [2] has been
criticized because of its singular behavior at the origin [3],

but this singularity is not peculiar to that solution alone;
there are other viable halo models in the literature that also
possess such singularity (see for instance [4]). Subsequent
to the work in Ref. [2], the authors and the associated
research group have obtained several new results under
the scalar field dark matter model in galaxies: solution with
axial symmetry including the inner region [5], time-
dependent spacetimes [6], the full nonlinear Newtonian
evolution after the turn-around point [7], time evolution
of density fluctuation [8], collision properties of two struc-
tures [9], and so on. While they obtained constraints com-
ing from cosmological considerations, we believe that it is
also useful to ascertain the constraint appearing from the
local (halo) scale, which would clarify the relativistic
nature of the spherically symmetric model under
consideration.
Using the flat rotation curve condition [10], Matos,

Guzmán, and Nuñez obtain the spherically symmetric
static solution for the galactic halo as follows (G ¼ c ¼
1, unless specifically restored):

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2ðd�2 þ sin2�d�2Þ (1)

BðrÞ ¼ B0r
l AðrÞ ¼ 4� l2

4þDð4� l2Þr�ðlþ2Þ (2)

�ðrÞ ¼
ffiffiffiffiffiffiffi
l

8�

s
lnrþ�0 (3)

VðrÞ ¼ � 1

8�ð2� lÞr2 ; (4)

whereD is an arbitrary constant of integration,� and V are
the scalar field and potential, respectively. The parameter
l ¼ 2ðvtg=cÞ2, B0 > 0 is another constant. Observations of

the frequency shifts in the HI radiation show that, in the
halo region, vtg=c is nearly constant at a value 7� 10�4

[11]. Thus, in what follows, we take l� 10�6.
Note that we can rewrite AðrÞ in the standard

Schwarzschild form,
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AðrÞ ¼
�
1� 2mðrÞ

r

��1
; (5)

which is often convenient and will be useful later while
discussing the observational parameters. Such a form has
the advantage that it immediately reveals not only the mass
parametermðrÞ but also shows that the proper radial length
is larger than the Euclidean length because r > 2mðrÞ. This
inequality, which is essential for signature protection, dic-
tates that AðrÞ> 1. This is a crucial condition to be sat-
isfied by any valid metric.

Now, for the sake of simplicity, Matos, Guzmán, and
Nuñez choose D ¼ 0, but this is not the best choice be-
cause it makes the metric component A < 1. As a conse-
quence, whatever results follow from the reduced metric
should be taken with caution. For instance, the stresses
exhibit a density profile � < 0, meaning violation of weak

energy condition and furthermore lead to !<�1 (see
below), meaning repulsive gravity in the halo, contradict-
ing observational facts. But these are actually not the true
features of their model. To see the true picture, it is
necessary to calculate the relevant quantities with D � 0.
We find the density and pressure profiles in the rest

frame of the fluid as

� ¼ 1

8�

r�ð4þlÞ½Dðl3 þ l2 � 4l� 4Þ þ l2r2þl�
l2 � 4

(6)

pr ¼ 1

8�

r�ð4þlÞ½Dðl3 þ l2 � 4l� 4Þ � lð4þ lÞr2þl�
l2 � 4

(7)

pt ¼ 1

8�

r�ð6þlÞ½Dðl3 þ l2 � 4l� 4Þ þ l2r2þl�½ðr2 � 1Þl� 2ðr2 þ 1Þ�
4ðl2 � 4Þ ; (8)

where � is the energy density, pr is the radial pressure, and
pt are the transverse pressures.

Matos, Guzmán, and Nuñez conclude that their model
has huge pressure over density and thus it is non-
Newtonian. We wish to emphasize that the role of the
nonzero value of D is crucial not only for avoiding repul-
sive gravity (as alluded to above) but also for arriving at a
correct conclusion about the relative strengths between
pressure and density. For instance, let us take D ¼ 1. In
the distant halo region, we can take, typically, r�
100–300 Kpc and with l� 10�6, we find the numerical
values to be �� 10�9 and pr � 10�9, which means that
they are of the same order. But on the other hand, pr þ
2pt � 10�11 ) pr þ 2pt � 10�2�, which indicates that
total pressure is roughly 100 times less than the density.
However, if we take D ¼ 10�5, we find that pr þ 2pt �

103�. If we keep on decreasing the value of D further (but
never exactly to zero for reasons stated above), we see that
the total pressure dominates more and more over density
reinforcing the non-Newtonian nature.
The next question is: How far can we go on decreasing

D? We notice the following interesting scenario. When
D ¼ 10�7, we find pr þ 2pt ¼ 9� 105�, which leads to

! ¼ prþ2pt

3� ¼ 3� 105 (attractive gravity) as shown in

Fig. 1. This is the extreme possible non-Newtonian halo
in the scalar field model under consideration. The reason is
this. If D ¼ 10�8, we find that !> 0 up to r ¼ r0 ¼
200 Kpc (attractive gravity) and becomes !<�1 after
r ¼ r0 (repulsive gravity). At r ¼ r0, there is a singularity
in!. This value ofD represents a transition from attraction
to repulsion as shown in Fig. 2. When D � 10�9, we find

FIG. 1. Plot of !ðrÞ vs r in which ! is computed from either
Eqs. (6)–(8) or (21) with l ¼ 10�6 andD ¼ 10�7. The distance r
in the galactic halo region is taken in the range 100–300 Kpcs.
The non-Newtonian values of ! are evident.

FIG. 2. Plot of !ðrÞ vs r in which ! is computed from either
Eqs. (6)–(8) or (21) with l ¼ 10�6 andD ¼ 10�8. The distance r
in the galactic halo region is taken in the range 100–300 Kpcs.
The figure displays the transition behavior of ! as discussed in
the text.
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that � < 0, !<�1 (repulsive gravity), which share the
woes that follow also from the choice D ¼ 0 (Figs. 3 and
4). These show that we cannot decreaseD below 10�7, that
is, we must haveD � 10�7. This is the condition that must
be maintained in order to have a non-Newtonian halo.

The pressures are anisotropic, as is evident from Eqs. (7)
and (8), which is a good feature of the solution from the
point of view of exterior matching. Note that the solution
cannot be matched to the Schwarzschild exterior metric at
the boundary of the halo if the pressures were isotropic
[12]. It can be further verified that � > 0, �þ pr > 0, �þ
pr þ 2pt > 0 for D � 10�7; so we can say that the halo
matter is not exotic because the standard energy conditions
are satisfied everywhere. Therefore, we expect attractive
gravity in the halo. To confirm it, we follow the prescrip-
tion by Lynden-Bell, Katz, and Bičák [13], and find that the
total gravitational energy is indeed negative:

EG ¼ 4�
Z r2

r1

½1� A1=2��r2dr < 0; (9)

due to the fact that � > 0, 1� A1=2 < 0, and r2 > r1. This

prescription has been very useful in the case of scalar field
wormholes too [14–16].
Certainly, the scalar field model corresponding to D ¼

10�7 is highly non-Newtonian because pr þ 2pt � 106�.
As a result, a purely Newtonian definition of mass, viz.
MðrÞ ¼ 4�

R
�r2dr, does not apply. However, incorporat-

ing the pressure contribution, the dynamical mass in the
first post-Newtonian order becomes

MpNðrÞ ¼ 4�
Z
ð�þ pr þ 2ptÞr2dr ¼ 106MðrÞ; (10)

which clearly reflects the non-Newtonian nature of the
model in terms of masses.
We next focus on the observable parameters expected in

this non-Newtonian halo. Whatever be the analytic model
for it, there must be a way to contrast its predictions with
actual measurements. The key point is that one does not
directly measure the metric functions but indirectly mea-
sures gravitational potentials and masses from rotation
curve and lensing observations. Faber and Visser [17]
have shown how, in the first post-Newtonian approxima-
tion, the combined measurements of rotation curves and
gravitational lensing allow inferences about the mass and
pressure profile of the galactic halo as well as its equation
of state.
The usual techniques for obtaining the potential for

rotation curve (RC) measurements yield a pseudopotential
(see Ref. [17] for details):

�RC ¼ � � �N; (11)

where �N is the Newtonian potential, � ¼ 1
2 lnB, and a

pseudomass

mRC ¼ r2�0ðrÞ � 4�
Z
ð�þ pr þ 2ptÞr2dr: (12)

Faber and Visser also define the lensing pseudopotential as

�lens ¼ �ðrÞ
2

þ 1

2

Z mðrÞ
r2

dr; (13)

and a pseudomass mlens obtained from lensing measure-
ments as

mlens ¼ 1
2r

2�0ðrÞ þ 1
2mðrÞ: (14)

The first order approximations of Einstein’s equations
yield

�ðrÞ � 1

4�r2
½2m0

lensðrÞ �m0
RCðrÞ� (15)

4�r2ðpr þ 2ptÞ � 2½m0
RCðrÞ �m0

lensðrÞ�; (16)

where the right-hand sides denote pseudodensity and pseu-
dopressures. Furthermore, Faber and Visser define a di-
mensionless quantity,

FIG. 3. Plot of !ðrÞ vs r in which ! is computed from either
Eqs. (6)–(8) or (21) with l ¼ 10�6 andD ¼ 10�9. The distance r
in the galactic halo region is taken in the range 100–300 Kpcs.
The values of ! are negative indicating repulsion.

FIG. 4. Plot of !ðrÞ vs r in which ! is computed from either
Eqs. (6)–(8) or (21) with l ¼ 10�6 and D ¼ 0. The distance r in
the galactic halo region is taken in the range 100–300 Kpcs. The
values of ! are negative indicating repulsion, similar to that in
Fig. 3.
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!ðrÞ ¼ pr þ 2pt

3�
� 2

3

m0
RC �m0

lens

2m0
lens �m0

RC

: (17)

The pseudoquantities on the right-hand side of
Eqs. (11)–(17) are actual observables from the combined
measurement. If the observed pseudoprofiles reasonably
match with the analytic pseudoprofiles coming from a
priori given metric functions, one can say that the solution
is physically substantiated. Otherwise, it has to be ruled out
as nonviable. The impact of a small nonzero D on the
analytic pseudoprofiles can now be computed. For the
extreme (D ¼ 10�7) Matos, Guzmán, and Nuñez solution,
these work out to leading order in r as

mRCðrÞ ¼ lr

2
� 10�6r (18)

mlensðrÞ � lðl2 þ l� 4Þr
4ðl2 � 4Þ � 10�6r (19)

2ðm0
RC �m0

lensÞ �
lðl2 � l� 4Þ
2ðl2 � 4Þ � 10�6: (20)

The dimensionless parameter ! to all orders in r with no
restriction on D is

!ðrÞ � 2

3

m0
RC �m0

lens

2m0
lens �m0

RC

¼ lðl2 � l� 4Þr2þl �Dðl3 þ l2 � 4l� 4Þ
3½Dðl3 þ l2 � 4l� 4Þ þ l2r2þl� ; (21)

which yields ! � 3� 105 for D ¼ 10�7 within our
chosen range, r� 100–300 Kpc. Note that if we straight-
away put D ¼ 0 in Eq. (21), we get!ðrÞ<�1, conveying
a completely wrong physical conclusion.
The pivotal result of the present article is thatD � 10�7

and not D ¼ 0, as discussed above. Of course, the lowest
limit on D is small and it is quite tempting to set it exactly
to zero. But the price for it is that one gets a completely
wrong picture of the halo. We have analyzed the model
taking into account only the lowest value of D. Similar
analysis can be carried out with other values of D as well
respecting the suggested lower limit. We can say that, by
and large, the conclusion of Matos, Guzmán, and Nuñez
about the non-Newtonian nature of the halo is right pro-
vided the restriction on D is maintained. With this restric-
tion in place, their model can indeed be a physically viable
one. If combined measurements follow the pattern as in-
dicated in Eqs. (18)–(21), we would say that the model is
observationally supported. However, given the present un-
certainties in observation, it is yet too premature to say so.

We are deeply indebted to Guzel N. Kutdusova for her
assistance at SSPA and BSPU where the work was carried
out.
Note added in proof.–A boson star formed by a self-

interacting massive scalar field with quartic interaction
potential was investigated in Ref. [18]. A similar boson
star as a model of galactic halo was first investigated by
Lee and Koh [19].
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Ureña-López, and P. Wiederhold, Classical Quantum
Gravity 19, 5017 (2002).

[7] F. S. Guzmán and L.A. Ureña-López, Phys. Rev. D 68,
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