
ROTATING BRANS-DICKE WOITMHOLES

Kamal K. Nandi
Department of Mathematics,
University of North Bengal,
Dadeeling (w.8.) 734 430,
INDIA.

and

Nail G. Migranov
Department of Physics,
Bashkir State Pedagogical University,
3-A, October Revolution Street,
Ufa 450000,
Bashkortostan,
RUSSIA.

Abstract

Using the ansatz and a revised algorithm of Matos and Núñez, the present article
derives several clesses, not all independent, of asymptotically flat rotating
wormhole solutions in the Brans-Dicke Theory. The solutions are essentially of
formal nature and they reveal mathematically interesting features of EMS field
equations. The vqcuum stríng versions of the solutions are straightforward.

I. Introduction

Recently, there is a revival of interest in the Brans-Dicke Theory (BDT) due

principally to the following reasons: The theory occurs naturally in the low energy
limit of the effective string theory in four dimensions or the KaIuza-Klein theory. It
is found to be consistent not only with the weak field solar system tests but also

with the recent cosmological observations. Moreover, the theory accommodates

Mach's principle. (It is known that Einstein's General Relativify (EGR) can not
accommodate Mach's principle satisfactorily). All these are well known.

A less well known yet an important arena where BDT has found immense

applications is the field of wormhole physics, a field recently re-activated by the

seminal work of Morris, Thorne and Yurtsever (MTY) t1]. Conceptual
predecessors of MTY wormholes could be traced to the geometry of Flamm



paraboloid, Wheeler's concept of "charge without charge", Klein bottle or the

binstein-Rosen bridge model of a particle l2]. Wormholes are topological handles

that connect two distant regions of space. These objects are invoked in the

investigations of problems ianging from local to cosmological scales, not to

mentioi the possibility of using these objects as a means of interstellar travel [1].

Wormholes iequire for their construction what is called "exotic matter" - matter

that violate some or all of the known energy conditions, the weakest being the

averaged null energy condition. Such matters are known to arise in quantum

effects. However, thé strongest theoretical justification for the existence of exotic

matter comes from the notion of dark energy or phantom energy that are necessary

to explain the present acceleration of the Universe. Some classical fields can be

"oncéived 
to piay the role of exotic matter. They are known to occur, for instance,

in the R+R2 theories [3], Visser's thin shell geometries [4] and, of course, in

scalar-tensor theories ¡51 of which BDT is a prototype. There are several other

situations where the energy conditions could be violated t6l.

BDT describes gravitation through a metric tensor (go) and a massless scalar

field (Q). The BD action for the coupling parameter a= -l can be obtained in the

Jordan,frame from.the vacuum linear string theory in the low energy limit. The

action can be conformally rescaled into what is known as the Einstein frame in

which the scalar field couples minimally to gravity. The last is referred to as the

Einstein minimally couple-d scalar field theory @MS). Static wormhole solutions

in EMS and BDT have been widely investigated in the literature [7]. However,

exact rotating wormhole solutions are relatively scarce, especially, in the BDT

except a recent one in EMS discussed by Matos and Núñez [8]. In this context, we

recall that four classes of'static BDT solutions were derived by Brans [9], and the

coffesponding EMS solutions are known [10]. But recently it is shown that only

two oi the four classes of Brans' solutions are independent [1 1]; the other two can

be derived from them. However, the forms of all the original four classes of Brans'

or EMS solutions are suggestive in their own right and we shall consider all of
them as seed solutions.

In this article, we shall derive three classes of asymptotically flat rotating

wormholes in the EMS and BDT. The remaining class of solutions (class III) is not

asymptotically flat and hence will not be discussed here. Our strategy is to start

fróm the static EMS solutions and then find rotating solutions in the EMS since

they involve less number of identified constants than in the BDT. We shall then

transfer them back into those of the BDT. The BDT solutions can further be

rephrased as solutions of the vacuum low energy string theory (a=-l)' We shall

use the ansatz and and (slightly revised) algorithm of Matos and Núñez l8l.
Throughout the article, we take units such thaf SttG = c =l '

II. The action, ansatz and the modified algorithm



Let us start from the 4-dimensional, low energy effective action of heterotic
string theory compactified on a 6-torus. The tree level string action, keeping only
linear terms in the string tension a' and in the curvature ñ, takes the following
form in the matter free region (5,o,,", = 0):

s,,,i,g = j Ior."[-"-'a [ñ + 4Eo' 6.o6.,), (1)

where Eu, ís the string metric and 6 is the dilaton field. Note that the zero values

of other matter fields do not impose any additional constraints either on the metric
or on the dilation 112). Under the substitution ,-=6 - p, the above action reduces to
the BD action

s¡, = Io',J=Elfi + !g" o,a,,f, (2)

in which the BD coupling parameter @ = -1. This particular value is actually model
independent and it actually arises due to the tar,set space duality. It should be noted
that the BD action has a conformal invariance characterized by a constant gauge
parameter É ll3l.Arbitrary values of ; can actually lead to a shift from the value
a = -1. but we fix this ambigui¡' bv choosng € = 0 . Under a further substitution

in which rve have introduced a constant parameter a that can have any sign. Then
the action (2) goes into the form of EMS action

ds' = - f (l)(dr + a cos 0d rf * 
htdl2 

+ (t2 + tl¡6 e'z + sin 2 H,/r' )1,

where /o is an arbitrary constant, a is the rotational parameter and

solution of the field equations 
r

[{,'.,il+]*ffi=,,
( L)' *o',1 

* o'-{' 
-2e" =0,l¡) Q'*ü)' -Y

(3)

(4)

(s)

Matos-

(6)

"f(t) is a

(7)

(8)

s eus = [at.¡4f* + ago, e,re,,].
The EMS field equations are given by

Ro, =-de.pg,rref =0
We shall choose G = *1 in what follows, choose e = e(l), and adopt the

Núñez ansatz [8]:

I

l;,o, 
=-f"

b"-
'lf'a ¡

where the prime denotes differentiation with respect to /. We slightly modify the
algorithm in the following way: Letfo= f(l;p,q,a=0) be a given solution of the

static configuration in which p,Q are arbitrary constants in the solution.
(Combinations of these constants can be interpreted as the mass and scalar charge
of the configuration.) Then the rotating solution is

2npqffl'
f (l; p,q,a) = 1 11 --7a' +no'Jo'

(e)



where n is a real number specific to a given static solution and á is a free

parameter allowed by the rotating solution. The scalar field rp is remarkably given

by the static solution of the massless Klein-Gordon equation 9:! = 0. The static

solution (a = 0) following from Eq.(9) gives 6 =2pQ. For the rotating solution, the

value of ámay be fixed either by the condition of asymptotic flatness or via the

matching 
"otráitiotrr 

at specified boundaries. Eq.(10) is a modified version of the

original Matos-Núíez algorithm [8] in which they defined the free parameter á as

6=JD. The diffrculty is that the field Eqs.(7) and (8) then identically fix D=0
rendering the algorithm meaningless'

III. BD Class I rotating solution

Let us now consider the Class I EMS solution due to Buchdahl [14]:

( ,-Y)'o / ,,2(t-f) r --- 12(r+B)

dr, =-l 2r I ar |F+ I f I *+l ldrz +r',aa)1
lt*Ll-'- \. 2') \ 2')
\ 2r)

(11)

The metric (6) can be exPanded to

(10)

(r4)

where
give

m and B are two

B' >l.For the choice d = rI, the quantity

scalar charge o from Eq.(10) given by

real throat is guaranteed bY

is real such that there is a real

a,' = -lt-ry.+. "G)l* .l'-'T. "é))br 
+,' aatf, oz)

by rhe throat occurring at rf =+lp+"tg -l Thus

from which one can read off the Keplerian mass

M =mf . (13)

The metric has a naked singularity at r=ml2' For F=f it reduces to the

Schwarzschild solution in isotropic coordinates. For a = +l and f > 1 , it represents

a traversable wormhole. It is symmetric under inversion of the radial coordinate

,-L andwehavetwo asymptotically flatregions (at r=0 and r=-) connected
r

6 z*l B'-tl'
(P =- -;- Ir rl ¿ J

But, in this case, we have violated almost all energy conditions in importing by

hantd a negative sign before the kinetic term in Eq.(5). Alternatively, we could

have chosen a=-i itt Eq.(10), giving an imaginary charge o. In both cases,

however, we end up with the same equation: Rr, = -Q,rQ,,. There is absolutely no



problem in accommodating an imaginary scalar charge in the wormhole
configuration [15,16].

Using the transformation I = r tfi, tU" solution (10) and (11) can be expressed
- .1 & ^ ffaS 3z .*"s - *s e Y'

ds' =-foQ)dt2 +fiVf +(t'-m'¡1de'+sin2 Hv/z)l,fo(r=(H) , (15)

eol)=E^(m)
v*6.e' 

P'W 1ta)

The variable le (--,-) gives two asymptotic flat solutions coffesponding to r=0
and r = o". The / coordinate has a minimum value at the throat /o* given by

ti = rí .# = *f . Thus the minimum surfac e ateaat the throat is 4mn2 82. For this

solution n= 4,p = nt,Q = p and using the algorithm (9), the rotating EMS solution is

To achieve asymptotic flatness, that is, f (l) -+ I as I + **, we note that fo(f -+ I as

/ -+ *oo. Therefore, we must fix

^ zM4¿,M'-7A_

2

s*l t - *)-'
\l+m)

(t7)

In the above, we should retain only the positive sign before the square root. The
reason is the following: For a=0, the negative sign gives á=0 which implies
,f = 0 which is meaningless. On the other hand, the positive root gives 6 =2M and

.f = .fn, as desired.

For the special oase B = l, we have, 6 =
zm+J+m'-o'

and

(1 8)

(1e)

(20)

f (l;m,a) =
o' * ou'(t -*\-'

\l+m)
This is an asymptotically flat rotating solution without scalar field rp = 0, but it is
not immediately clear if it could be interpreted as Kerr solution in some
coordinates. The coordinate system in the metric (6) or (15) is itself rotating in the
asymptotic region (l -+ t "¡ where it is represented by

¿s2 = -(dt + acos*dry)2 +fdtz + 12 7de'+ sinz Mrlr')1.
We can retain terms to first order in a and using Eq.(19) in Eq.(6) , we get the

cross term as (r-4)"2acoswrdty. Now, we can subtract the rotatio nalpartof the
[ /) '

coordinate system which is given by 2acosTdtdty . Thenwe are left with 4o* 
"oreI

which is not quite the Lense-Thirring term 
4o,* 

sinz 0. However, such a subtraction
I



is not a valid procedure as the field equations are essentially nonlinear. Still, the

Eq.(l9) is aformal solution of the field equations (7) and (8), and it needs a more

detailed investigation. It will be done elsewhere.

To obtain the rotating BD solution, we follow the following steps: Note from
Eq.(3) that

ff^* e=,^l'=)^ = Q=l:A* et)- t'-.H 
+Y-l'.#)

Now using the constraint from the BD field equations l),viz.,

4(B' -t) = -(Zat+tl# , Q2)

where C,). are two arbitrary constants and a is the coupling parameter, we get

(,-*\7 , c
|'-; I (t-.rr.\n

a=1 ,:#l =lu*)
\'* *)

The Eq.(22) canbe rephrased in the familiar form [9]

)j = (c+ r)2 - ,( t-99) .\ 2)

(23)

However, the wormhole condition p2 >t requires that the right hand side of

Eq.(22)be positive. This is possible if either ,.-1 or 2 beimaginary. Let us first
2

consider ,.-1 so that the exponents are real. Then, the final step consists in
2

using the relatiofl Ep,=Q-}go, together with replacing B in the exponents in the

so, bY l7l

B =1('.i)

(24)

(2s)

This means, from Eq.(I7), we have the BD rotating wormhole class I solution for

,.-las follows:
2

dr' = -[r1)@t + acosnry)2 +frg¡¡aP +Q' -mt¡7de' +sin2 Hw\l Q6)

s-l J-tc *zt\(t- *1-i('.Í)

7rQ) = /,11;m,c,)',a) = f(l;m, f,a)Q' -""'"\z'1"'"''' )\t + Y) -- 
"( 

!-y)t' (27)

a, +462¡t-*¡il"? 
\t+n)

\l+m)



az+462¡t-*¡i!) , c

7r(t)=7r(t;^,c,A,,a)=¡'ql;m,p,')Qt= 
- ' '- \t+*) -- --"(*)-'frf>

s*d( f--rc *zt)( t- *'¡-il'.iJ \/ +

\r^ , 
')\t+n)

QQ) =(+!\' . (2e)
\l+m)

It can be verified that the BD field equations again yield the expression (23). Using

the relation t=r+#, it can be easily expressed in the familiar (t,r,O,ry)

coordinates with the value of ó given by Eq.(18) in which p should have the

value as in Eq.(25). For instance, when q=0,we have U =1<, +2) andidentiffing

!: a, one retrieves the static BD metric in the original notation:
2

(r-!\i 
"( ,-!\T

ds2 = l= | 
0,, *('.i)'l 

=l 

,u +rz(dez+sin2 Hv,)t (30)

['-;J (',-;/
C

l'-4)'
QC I rl

'-lt.¿ 
I

\ r)
The condition for the above solution to represenf atraversable wormhole is [6]

(C+\2>fr.

(3 1)

(32)

For p2 > I , and a = *1, the negative kinetic term in the field equations (5) shows

that the energy density is negative violating the Weak Energy Condition (WEC) so

that the Eqs.(6), (15) and (17) provide a class of rotating EMS wormhole solution.
This solution is then mapped into the BD regime given by the Eqs.(2a)-(27) for the

range of coupling values ,.-1. Same classes of solutions will be obtained by'2
alternative calculations with P'>l and a=-I (imaginary scalar charge). One

could also consider Eq.(11) with the values a=-r (positive kinetic term) and

B'<1. Then the above procedure would produce a rotating naked singularity in

EMS and BD theory. The above calculations represent the basic scheme to be

followed in other classes of EMS or BD solutions.

IV. BD Class II rotating solution

Next consider the imaginary value of )" in Eq.(21) with a¡t-:. Let us take'2
)"=-it\. We prefer to start with the BD solutions (29), (30) and then obtain

therefrom the EMS seed solution. The reason is to show that BD class I and II



solutions are not independent. Thus, to make Eq.(30) rca| it is now necessary to

fake e: ib anduse the identity

arctanr"l = 1rnll- o), (33)
2 \1+ix)'

where x is real. Using fuither , -!, we can finally rewrite (29) and(30) as

ds2 = - Expl ro, * ! *o^r( +\]ot^l " A (áil

* a*nlz F,- 
o,'f 

', ".""[;) - r^(#)]'*' + r, aatl
(34)

Q@)=,*lT*"*(;)],
where ao and po arc two adjustable constants to be determined by the asymptotic

flatness. Defining ,=l(t*$l unO following the procedure as described above,2 ' A[ 2)
we obtain the EMS class II solution:

dsz = -nxp[(zan + 4yarctan(r tb¡)]at'

. 
[, 

. 5)' *oArpo -  yarctan(r / fi)ldr' + r'del1,

e?) = JW * jf) ^rcfan(r 
I b) .

Asymptotic flatness requires that do =-tL,fo - iry This also represents a

traversable wormhole with the throat appearing at rd =uV*¡;fl The metric

functions expand exactly as in Eq.(12) and the mass of the wormhole is M =2by.

The solution can be rephrased using , = , -l as the seed solution like in Eqs.(15),

(16):

(3 5)

' (36)

(37)

(3 8)

eoD) = Jat * i4 ^r"r^ f' 
* E* ),lzb)

(3e)

(40)

where b,y are the constant parameters of the solution. The minimum surface area

in the i coordinate is 4n(2by)2. The field Eqs.(7) and (8) are satisfied by the

solution (39), (40) and we have also seen how the class II solution can be derived

from the class I solution. For this solution ,=tr,0-2b,q=4T and using the
4

algorithm (9), the rotating EMS solution is



(4r)

To achieve asymptotic flatness, that is, f (l) -+ l as I -+ 1-*, we note that fo(f -+ I as

/ -+ *-. Thus, we must fix
d =zQu +"[4M'-F). (42)

(44)

(4s)

It is also possible to confine the rotating matter within fixed limits I = I u' In that

case, we need to have a matching on two sides aL I = /u*. We first do the static case

by defininB, for leflr*,lr-l

.foQ)=*,|-,{'-*o^,(#J}],-g¡=.$(|¡^,",,,(*#),@3)
butfor leflu*,**), wechoos€ É= +nlZandfor lellu-,-*\ we choose s= -n/2.
Thus, at the upper boundary I = lu*,

fo * = .ro (t u*) = *l^ r{. ; * 
^, "r^'lbt

and atthe lower boundary , ='ru¡, 
,

.fo- = f (t,*l= n*rl-A-:."**"[,',- .€ .* '',t.1,

r\-b+' -.1 ,lr'*^-'*.,[. 2b II

tll

Now to match the rotating EMS solution to those boundaries, we need:

-f, = f (l rt,b, T, a, 5t) = fo,
in which case the constants 5, are determined by

(46)

(47)6,=zlzu -,FM;:znl
which reduce to the same expression for á as in Eq.(42) above if /u* -+ +o".

In the intermediate region I eflu*,lu-f, we have

¡=f(t;b,y,a,e,6) (48)

where 5- < 6 1 6*,-n /2 < e < n /2.

To obtain the rotating BD wormhole class II solution, one has to replace y by

y=L(t*9) in the solution (38) and use l '=c(t-+l-(c*t)'. The last relation' A['Z)- - \ / \ 2)
follows directly from Eq.(22)when ).=-it\. The final solution can be obtained by
using Eqs.(34), (38) and (40) as

ds' = -|r(t)(dt + a cosMty)2 + /r¡t¡¡a? + (12 + 4b\(de2 + sin2 wV\l



7r(t) = frqt;n,c,tt,o) = f -'(t;b,y,a)Q-l

o' * ! 6' Errl - 
o"- !ur"runl t .'tr . qb' 

)]4 'L A A \ 2b ))

(50)

(5 1)

(s2)

(53)

(54)

* r.rl - ?9 ur"ruo( !-* ^F*¡41
^ 
o*pl- n r.",'"[ z 

.J_]

where á is given by Eq.(a2) b ensure asymptotic flatness. Below we first derive
the class IV rotating BD solution.

V. BD Class IV rotating solution

We start with the static EMS class IV solution as the seed solution

ds' = - fo (l)(dt + a cos 0d ry)z * firfaf + F 1d 0' + sin' H V' )1,

fo4)=*rl-#1, QoQ)=-h, ' =#.

For this solution, n = 4, p = T,n = j. This solution represents an asymptotically flat

traversable wormhole with the minimum surfac e area 
^r(#)'. 

Thus the rotating

EMS solution is:

-f(l;b,T,a)= , o'*# 
,rr;p(l)=-+

u[ o' * q6'"# I 42bl

\./
Thus to achieve f (l) -+las I -+ *oo, we note that fo(l) -+ I as / -+ 1o". Therefore, we

must fix / 
^[4¡42 -713=!2M* ,.

[2)
Now, redefine the EMS constants as

(5 5)



y _C+2
b B'

and then use the BD constraint (2 = 0 in Eq.Q$):

(c +z)' = -(2a+ 3)C' >, = -*#,
such that, following similar arguments surrounding Eqs.(21)-(25), for

have real values for C and

o=*ol-f*ffi1=*,1-*l
The rotating BD IV solution is:

ds' = -|,(t)(dt + acos *dty)z + 7r(t)t¿P + (tz + 4b2)(d0'z + sin2 Mrtt\l

(56)

(s7)

3o)<--rwe

(58)

|r(t) = f,1t; B,c, a) = f (t;b, T, a)Q-' =

dst = -fo(l)dt2 + g.(l)ldl'z + l'7de' + sin2 Hr/t')],

fol)= *ol-I), r,0=(l) E.ewf, ,,u,=h
The above solution is not asymptotically flaf though it is flat at I -s 0. Therefore it
does not meet the requirement of the asymptotic "flaring out" condition of
traversable wormholes. Hence, we do not discuss this solution further including its
rotating BD version.

VI. Rotating wormholes in string theory

Formal rotating solutions in the string theory can also be obtained via the
conformal trans formation

hil) = Q' fo = 
"-J1t ¡g¡, hr(l) = Q-t J:-t U) = "-ñt fu(l), (63)

where Q(t)and f(t) are the BD and EMS rotating solutions respectively. The

complete solution is
ds2 = -hr(l)(dt + acos*dty)' + hr(l)[dt'z + (12 + \il@et + sin2 HV')],

6=-Lt.
Jz'

"*,1*1, (se)

"*'l#l (60)

(61)

(62)

(64)

(6s)

ir(t) = ir(l; B,e, a) = f I (t;b, y, a)Q-t -
ff"*rr)**,1+]

There is not much to say about the class III solution. The EMS solution can be
obtained from the class IV EMS solution under the same constraint (56). All that

one has to do is invert t -! so that
I



The values of ff are - m' , 4b' and 0 for classes I, II and IV string solutions

respectively. The coffesponding values for /(/) and g can be taken from the above

Eq.(17). We display only class I rotating string solution here:

'*Pa('; 
'''-tr.#-r

hJr)= \'-t*),,_uu ; h2(r)=

a'+4[t-* | 6'
\l+m)

. , -)B

o, ++(t-m\-' 5z
\l+m)

s*86(t - *1-0.^[o'-t 
'

' \l+m)

(66)

(67)

where á is given by Eq.(18) with M =mF. Consider the static case, a=0. Using

the identities retrieve the

solution for static stringy wormholes derived in Ref.[12]. Identif,zing the exponents

a p=tF and q=x"[P'-t, we have p'-q' =1. This is actually the constraint

provided by the string field equations in the wormhole case. In the case of naked

singularity, p=tF and q=tFT and in this case, the field equations give

p' + q' = 1, as can be confirmed from the works in Ref.[l2].

Other classes of solutions can be derived likewise. The rotating solution for
naked singularity can be obtained simply by choosing B' <t without any extra

effort.

VII. Conclusions

Asymptotically flat rotating solutions are rather rare in the literature, be it of a
wormhole or naked singularity. The present article has provided formal
asymptotically flat rotating solutions in the EMS and BD theories with extensions

to string theory. The solutions are not the result ofjust writing down a known static

metric in rotating coordinate systems, but more - they do contain information
about the rotation of the physical configurations in question.

The solutions represent mathematically interesting features of EMS and BD f,reld

equations. The string solutions are just the BD solutions with a = -1. As we saw,

the solutions admit two arbitrary parameters a and á. The quantity a has been

interpreted by Matos and Núñez [8] as a rotation parameter of the gravity field.
However, we think that the ansatz represents a nonlinear mixture of the rotation of
coordinate frame and the rotation of the gravity field due to wormhole or naked

singularity. The other parameter á is fixed either by asymptotic flatness or by the

desired matching conditions. Further investigations into the nature of solutions

with a view to separating the real rotational effects from the fictitious effects

6=-^[p'-t h(l-*\.2 \i +m)'

arising out of the coordinate rotation mi ht !e1g\Mardi!&
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