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Abstract
This paper reports new interesting features characteristic of wormhole solutions
in the scalar field gravity theories. To demonstrate these, using a slightly
modified form of the Matos–Núñez algorithm, we obtain an extended
class of asymptotically flat wormhole solutions belonging to the Einstein
minimally coupled scalar field theory. Generally, solutions in these theories
do not represent traversable wormholes due to the occurrence of curvature
singularities. However, the Ellis I solution of the Einstein minimally coupled
theory, when Wick rotated, yields an Ellis class III solution representing a
singularity-free traversable wormhole. We see that Ellis I and III are not
essentially independent solutions. The Wick-rotated seed solutions, extended
by the algorithm, contain two new parameters a and δ. The effect of the
parameter a on the geodesic motion of test particles reveals some remarkable
features. By arguing for Sagnac effect in the extended Wick-rotated solution,
we find that the parameter a can indeed be interpreted as a rotation parameter
of the wormhole. The analysis reported here has wide applicability, for it can
be adopted in other scalar field theories, including string theory.

PACS numbers: 04.20.−q, 98.62.Ai, 98.80.−k, 95.30.Sf

1. Introduction

Recently, there has been a revival of interest in the scalar field gravity theories including the
Brans–Dicke theory principally due to the following reasons: such theories naturally occur
in the low energy limit of the effective string theory in four dimensions or the Kaluza–Klein
theory. It is found to be consistent not only with the weak field solar system tests but also with
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recent cosmological observations. Moreover, the theory accommodates Mach’s principle. All
the information is well known.

A less well known yet an important arena where the Brans–Dicke theory has found
immense application is the field of wormhole physics, a field recently re-activated by the
seminal work of Morris, Thorne and Yurtsever (MTY) [1]. The conceptual predecessors of
modern day wormholes could be traced to the geometry of Flamm paraboloid, Wheeler’s
concept of ‘charge without charge’, the Klein bottle or the Einstein–Rosen bridge model of
a charged particle [2]. Wormholes are topological handles that connect two distant regions
of space. These objects are invoked in the investigation of problems ranging from local
to cosmological scales, not to mention the possibility of using these objects as a means of
interstellar travel [1]. Wormholes require for their construction a type of matter—called
‘exotic matter’—that violates some or all of the known energy conditions, the weakest being
the averaged null energy condition. Such matters are known to arise in quantum effects
(Casimir effect, for example). However, the strongest theoretical justification for the existence
of exotic matter comes from the notion of dark energy or phantom energy that is necessary
to explain the present acceleration of the universe. Some classical fields can play the role of
exotic matter. They are known to occur, for instance, in the R + R2 theories [3], Visser’s thin
shell geometries [4] and, of course, in scalar–tensor theories [5] of which the Brans–Dicke
theory is a prototype. There are several other situations where the energy conditions could be
violated [6].

The Brans–Dicke theory describes gravitation through a metric tensor (gµν) and a massless
scalar field (φ). The Brans–Dicke action for the coupling parameter ω = −1 can be obtained
in the Jordan frame from the vacuum linear string theory in the low energy limit. The action
can be conformally rescaled into what is known as the Einstein frame action in which the scalar
field couples minimally to gravity. The latter is referred to as the Einstein minimally coupled
scalar field theory. Several static wormhole solutions in the Einstein minimally coupled scalar
field theory and the Brans–Dicke theory have been investigated in the literature [7]. However,
to our knowledge, exact rotating wormhole solutions are relatively scarce except for a recent
one in the Einstein minimally coupled scalar field theory discussed by Matos and Núñez [8].
In this context, we recall the well known fact that the formal independent solutions of the
Brans–Dicke theory are not unique. (Of course, the black hole solution is unique for which the
Brans–Dicke or minimal scalar field is trivial in virtue of the so-called no scalar hair theorem.)
Four classes of static Brans–Dicke theory solutions were derived by Brans [9] himself way
back in 1962, and the corresponding four classes of Einstein minimally coupled field theory
solutions are also known [10]. But recently it has been shown that only two of the four classes
of Brans’ solutions are independent [11]; the other two can be derived from them. However,
although all the original four classes of Brans or Einstein minimally coupled solutions are
important in their own right, we shall here consider, for illustrative purposes, only one of them
(Ellis I) as seed solution. The same procedure can be easily adopted in the other three classes.

The general motivation in the present paper is to frame a proper algorithm for generating
singularity-free asymptotically flat rotating wormhole solutions from the Ellis seed solutions
and investigate the role of new parameters in the extended solutions. The analysis also answers
a certain long-standing query about wormhole solutions in the Brans–Dicke theory.

In this paper, using a slightly modified algorithm of Matos and Núñez [8], we shall provide
a method for generating wormhole solutions from the known static seed solutions belonging
to the Einstein minimally coupled scalar field theory. The solutions can be transferred to those
of the Brans–Dicke theory via inverse Dicke transformations. For illustration of the method,
only Ellis I seed solution is considered here, others are left out because they can be dealt with
similarly. The Brans–Dicke solutions can be further rephrased as solutions of the vacuum
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four-dimensional low-energy string theory (ω = −1) and section 2 shows how to do that. In
sections 2–5, we shall analyze and compare the behavior of the Ellis III and the Wick-rotated
Ellis I solution pointing out certain interesting differences between these two geometries. In
section 6, the study of the geodesic motion in the extended Wick-rotated Ellis I solution reveals
the role of the Matos–Núñez parameter a. Section 7 shows, via consideration of the Sagnac
effect, that a can indeed be accepted as a rotation parameter. Finally, in section 8, we shall
summarize the results. Throughout the paper, we take the signature (−, +, +, +) and units so
that 8πG = c = 1, unless restored specifically. Greek indices run from 0 to 3 while Roman
indices run from 1 to 3.

2. The action, ansatz and the algorithm

Let us start from the four-dimensional, low energy effective action of heterotic string theory
compactified on a 6-torus. The tree level string action, keeping only linear terms in the
string tension α′ and in the curvature R̃, takes the following form in the matter free region
(Smatter = 0):

Sstring = 1

α′

∫
d4x

√
−g̃ e−2�̃[R̃ + 4̃gµν�̃,µ�̃,ν], (1)

where g̃µν is the string metric and �̃ is the dilaton field. Note that the zero values of other
matter fields do not impose any additional constraints either on the metric or on the dilaton
[12]. Under the substitution e−2�̃ = φ, the above action reduces to the Brans–Dicke action

SBD =
∫

d4x
√

−g̃

[
φR̃ +

1

φ
g̃µνφ,µφ,ν

]
, (2)

in which the Brans–Dicke coupling parameter ω = −1. This particular value is actually model
independent and it actually arises due to the target space duality. It should be noted that the
Brans–Dicke action has a conformal invariance characterized by a constant gauge parameter
ξ [13]. Arbitrary values of ξ can actually lead to a shift from the value ω = −1, but we fix
this ambiguity by choosing ξ = 0. Under a further substitution

gµν = φg̃µν

dϕ =
√

2ω + 3

2α

dφ

φ
; α �= 0; ω �= 3

2
,

(3)

in which we have introduced, on purpose, a constant parameter α that can have any sign. Then
the action (2) becomes that of Einstein minimally coupled scalar field theory

SEMS =
∫

d4x
√−g[R + αgµνϕ,µϕ,ν]. (4)

The field equations are given by

Rµν = −αϕ,µϕ,ν (5)

ϕ
:µ
;µ = 0. (6)

We shall choose α = +1, ϕ = ϕ(l) in what follows. The negative sign on the right-hand side
of equation (5) implies that the source stress–energy violates some energy conditions. The
ansatz we take is the following:

ds2 = −f (l) (dt + a cos θ dψ)2 + f −1(l)
[
dl2 +

(
l2 + l2

0

)
(dθ2 + sin2 θ dψ2)

]
, (7)
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where l0 is an arbitrary constant, the constant a is interpreted in [8] as a rotational parameter of
the wormhole. We call it the Matos–Núñez parameter. The ansatz in (7) is actually a subclass
of the more general class of stationary metrics given by [14, 15]

ds2 = −f (dt − ωidxi)2 + f −1hij dxi dxj , (8)

where the metric function f , the vector potential ωi and the reduced metric hij depend only on
space coordinates xi . We shall see below that the parameter a can be so adjusted as to make
a symmetric wormhole out of an asymmetric one. Note also that the replacement of a → −a

does not alter the field equations.
The function f (l) of the ansatz (7) is a solution of the field equations (5) and (6) if it

satisfies the following:[(
l2 + l2

0

) f ′

f

]′
+

a2f 2

l2 + l2
0

= 0, (9)

(
f ′

f

)2

+
4l2

0 + a2f 2(
l2 + l2

0

)2 − 2ϕ′2 = 0, (10)

where the prime denotes differentiation with respect to l.

Algorithm. Let f0 ≡ f0(l;p, q; a = 0) and ϕ0 = ϕ0(l;p, q; a = 0) be a known seed
solution set in which p, q are arbitrary constants interpreted as the mass and scalar charge of
the static configuration. Then the new generated (or extended) solution set (f, ϕ) is

f (l;p, q; a) = 2npqδf −1
0

a2 + nδ2f −2
0

, ϕ(l;p, q; a) = ϕ0, (11)

where n is a natural number and the parameters p, q are specific to a given seed solution
set (f0, ϕ0) while δ is a free parameter allowed by the generated solution in the sense that
it cancels out of the nonlinear field equations. The scalar field ϕ0 is remarkably given by
the same static solution of the massless Klein–Gordon equation ϕ

:µ
;µ = 0. The seed solution

(a = 0) following from equations (9) and (10) gives δ = 2pq. For the generated solution
(a �= 0), the value of δ may be fixed either by the condition of asymptotic flatness or via the
matching conditions at specified boundaries. Equation (11) is the algorithm we propose. This
is similar to, but not quite the same as, the Matos–Núñez [8] algorithm. The difference is that
they defined the free parameter as δ = √

D. The difficulty in this case is that, for our seed
solution set (f0, ϕ0) below, the field equations (9) and (10) identically fix δ2 = D = 0 giving
f = 0, which is obviously meaningless. The other difference is that we have introduced
a real number n that now designates each seed solution f0 and likewise the corresponding
new solution f . With the known parameters n, p and q plugged into the right-hand side of
equation (11), the new solution set (f, ϕ) identically satisfies equations (9) and (10). One also
sees that the algorithm can be applied with the set (f, ϕ) as the new seed solution and the
process can be indefinitely iterated to generate any number of new solutions. This is a notable
generality of the algorithm.

3. Ellis I solution and its geometry

The study of the solutions of Einstein minimally coupled scalar field system has a long history.
Static spherically symmetric solutions have been independently discovered in different forms
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by many authors and their properties are well known [16–18]. We start from the following
form of class I solution, due to Buchdahl [16]3, of the Einstein minimally coupled theory,

ds2 = −
(

1 − m
2r

1 + m
2r

)2β

dt2 +

(
1 − m

2r

)2(1−β)(
1 +

m

2r

)2(1+β)

× [dr2 + r2 dθ2 + r2 sin2 θ dψ2]

(12)

ϕ(r) =
√

2(β2 − 1)

α
ln

[
1 − m

2r

1 + m
2r

]
, (13)

where m and β are two arbitrary constants. The same solution, in harmonic coordinates, has
been obtained and analyzed also by Bronnikov [17]4.

The metric (12) can be expanded which gives

ds2 = −
[

1 − 2M

r
+

2M2

r2
+ O

(
1

r3

)]
dt2 +

[
1 +

2M

r
+ O

(
1

r2

)]
× [dr2 + r2 dθ2 + r2 sin2 θ dψ2], (14)

from which one can read off the Keplerian mass

M = mβ. (15)

Solution (12) describes all weak field tests in the solar system because it exactly reproduces the
post-Newtonian parameters. (Higher order post-Newtonian effects are analyzed in [19].) For
β = 1, it reduces to the Schwarzschild black hole solution in isotropic coordinates. For α = +1
and β > 1, it represents a naked singularity. The metric is invariant in form under inversion
of the radial coordinate r → m2

4r
and consequently we have two asymptotically flat regions (at

r = 0 and r = ∞), the minimum area radius (throat) occurring at r0 = m
2

[
β+

√
β2 − 1

]
. Thus,

a real throat is guaranteed by the condition β2 > 1, which might be called here the wormhole
condition. However, despite these facts, since a naked singularity occurs at r = m/2, it is
not traversable and so Visser [4] called it a ‘diseased’ wormhole. (See the appendix for the
definition of traversability.) For the choice α = +1, the quantity

√
2(β2 − 1) is real such that

there is a real scalar charge σ from equation (13) given by

ϕ = σ

r
= −2m

r

√
β2 − 1

2
. (16)

But, in this case, we have violated almost all energy conditions importing by hand a negative
sign before the kinetic term in equation (5). Alternatively, we could have chosen α = −1
in equation (13), for which the stress tensor would satisfy all energy conditions but then we
would have had to allow an imaginary scalar field ϕ. In either case, however, we end up
with the same equation Rµν = −ϕ,µϕ,ν . There is absolutely no problem in accommodating
an imaginary scalar charge in lieu of having a configuration with violating energy conditions
[20, 21].

The Ricci scalar R for the solution (12) is

R = 2m2r4(1 − β2)

(r − m/2)2(2−β)(r + m/2)2(2+β)
, (17)

which diverges at r = m/2 showing a curvature singularity there. For β � 2, the divergence in
the Ricci scalar is removed, but then the metric becomes singular. However, metric singularity
is often removable when one redefines the metric in better coordinates and parameters.
3 The original solution was discovered in Fisher I Z 1948 Zh. Eksp. Teor. Fiz. 18 636 (Preprint gr-qc/991108.)
These solutions have been independently rediscovered in different forms afterwards.
4 The form of the solution here is in ‘harmonic’ coordinates (t, u, θ, ϕ). It can be easily transferred to the Janis–
Newman–Winnicour (JNW) ‘standard’ form (t, ρ, θ, ϕ) which, in turn, is equivalent to the Buchdahl ‘isotropic’ form
used in equation (12) in the text.

5
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Using the coordinate transformation l = r + m2

4r
, solutions (12) and (13) can be expressed

as

ds2 = −f0(l) dt2 +
1

f0(l)
[dl2 + (l2 − m2)(dθ2 + sin2 θ dψ2)],

f0(l) =
(

l − m

l + m

)β

,

(18)

ϕ0(l) =
√

β2 − 1

2
ln

[
l − m

l + m

]
. (19)

In this form, it is exactly the Ellis I solution that has also been discussed by Bronnikov and
Shikin [22]. Equations (18) and (19) identically satisfy the field equations (9) and (10) for
a = 0. This is our seed solution set, but we still need to redefine it because of the appearance of
a naked singularity at l = m. The throat l0 appears at l0 = r0 + m2

4r0
= mβ > m corresponding

to r = r0. Thus the minimum surface area now has a value 4πm2β2. For this solution,
p = m, q = β, and the seed solutions (18), (19) turn out to correspond to n = 4 so that the
generated solution in the Einstein minimally coupled theory identically satisfying the field
equations (9) and (10) for a �= 0 is

f (l;m,β, a) = 8mβδf −1
0

a2 + 4δ2f −2
0

; ϕ(l) =
√

β2 − 1

2
ln

[
l − m

l + m

]
. (20)

To achieve asymptotic flatness at both sides, that is, f (l) → 1 as l → ±∞, we note that
f0(l) → 1 as l → ±∞. Therefore, we must fix

δ = 2M ± √
4M2 − a2

2
. (21)

In the above, we should retain only the positive sign before the square root. The reason is that,
for a = 0, the negative sign gives δ = 0 implying f = 0, which is meaningless. On the other
hand, the positive root gives δ = 2M and f = f0, as desired. Note that β = 1 does not lead
to Kerr black hole solution from the generated metric. However, solution (20) might represent
the spacetime of a rotating wormhole [8].

Let us now examine wormhole geometries in the static and generated solutions in the
Einstein minimally coupled theory.

(a) Static seed case (a = 0)

The first observation is that the metric functions in equation (18) diverge at the singularity
l = ±m as does the Ricci scalar. The next observation relates to the behavior of the area
radius. It exhibits certain peculiar properties for the metric in (18) for β > 1. For the segments
l � m and l � −m, we have the area radius ρI

0 (l) =
√

f −1
0 (l2 − m2). Then, the area 4πρ2

0(l)

decreases from +∞ at one asymptotic flat end to a minimum value ρ0 min = ρ0(l0) at the
throat l = l0 = mβ, and then becomes asymptotically large, but not flat, at a radial point
l = m. In the remaining segment, we have |l| < m, and the area now has to be redefined as
ρII

0 (l) =
√

f −1
0 |m2 − l2|. It then decreases to zero at l = −m (another throat, zero radius!)

and then opens asymptotically out to −∞ at the other asymptotic flat end. Though in the
r-coordinate version, the metric is inversion symmetric, there are now two asymptotically flat,
isometric universes with their own throats and they are actually disconnected by the naked
singularity at l = m. They are also asymmetric around l = 0 due to the fact that the throat
radii in the two universes are different.

6
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(b) Generated case (a �= 0)

Here again, the metric function given by equation (20) diverges at l = ±m. The throat of the
rotating wormhole can be found from the roots of the equation for l,

a2
[
l
(
f 2

0 − 1
)

+ mβ
((

f 2
0 + 1

)]
+ 4mβ(l − mβ)

(
2mβ +

√
4m2β2 − a2

) = 0. (22)

They can be computed only numerically for given values of the parameters m and β. However,
the area radius ρ(l) =

√
f −1(l2 − m2) for the solution f shows that, for a �= 0, the area jumps

to infinity for β > 1 at l = ±m but flares out asymptotically to ±∞ on both sides. Now one
has three disconnected universes, that is, a one-sided asymptotically flat universe, a both-sided
non-flat but asymptotically large ‘sandwich universe’ and another one-sided asymptotically
flat universe. For the extreme case a = 2mβ, the picture is the same except that the behavior
of ρ(l) is now symmetric around l = 0. A natural question arises if metric (20) can be made
free of the singularity manifesting itself in the infinite jump in the area at l = ±m as well as
in the curvature. We shall address this question in the following section.

4. Ellis III solution via Wick rotation

We can remove the aforementioned singularities by analytical continuation of Ellis I solutions
(f0, ϕ0) using Wick rotation of the parameters, while maintaining the real numerical value of
the throat radius. In the solution set (f0, ϕ0), we choose

m → −im, β → iβ, (23)

so that l0 = mβ is invariant in sign and magnitude.

(a) a = 0

Then the metric resulting from the seed equation (18) is our redefined seed solution,

ds2 = −f ′
0(l) dt2 +

1

f ′
0(l)

[dl2 + (l2 + m2)(dθ2 + sin2 θ dψ2)] (24)

f ′
0(l) = exp

[
−2β arccot

(
l

m

)]
(25)

ϕ′
0(l) = [√

2
√

1 + β2
]

arccot

(
l

m

)
. (26)

This is not a new solution but just the Ellis III solution [18], which can be obtained in the
original form by using the relation5

arccot(x) + arctan(x) = +
π

2
; x > 0 (27)

= −π

2
; x < 0 (28)

and the function on the left shows a finite jump (of magnitude π ) at x = 0. Thus, from
equations (25) and (26), we get two branches, the +ve sign corresponds to the side l > 0 and

5 We thank an anonymous referee for pointing this out.
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the −ve sign to l < 0,6

f Ellis
0± (l) = exp

[
−2β

{
± π

2
− arctan

(
l

m

)}]
(29)

ϕEllis
0± (l) = [√

2
√

1 + β2
] (

±π

2
− arctan

(
l

m

))
. (30)

We have thus demonstrated that the Ellis I and IIII solutions are not essentially independent
as one can be derived from the other. We might study the solutions (25) and (26) per se, or
equivalently, study the two restricted branches taken together, while allowing a discontinuity
at the origin l = 0. Alternatively, we might disregard (25), (26) and treat each of the ± set in
equations (29) and (30) as independently derived exact solution valid in the unrestricted range
of l with no discontinuity at l = 0. The two alternatives are not quite the same. In fact, each
individual branch represents a geodesically complete, asymptotically flat wormhole (termed
as ‘drainholes’ by Ellis) having different masses, one positive and the other negative, at two
mouths respectively. The known Ellis III solution is the +ve branch which is continuous over
the entire interval l ∈ (−∞, +∞). The −ve branch can be similarly interpreted.

It is of interest to compare the behavior of the Ellis III solution (29) with the Wick
rotated Ellis I solution (25): (i) the Ellis III metric function f Ellis

0+ (l) → 1 as l → +∞
but f Ellis

0+ (l) → e−2πβ as l → −∞. These two limits correspond to a Schwarzschild mass
M at one mouth and −Meπβ at the other. There is no discontinuity at the origin because
f Ellis

0+ (l) → e−πβ as l → ±0. In the solution (25), on the other hand, there is a discontinuity
at the origin because f0(l) → e±πβ as l → ±0, while there is no asymptotic mass jump since
f0(l) → 1 as l → ±∞. The curvature scalars for both (25) and (29) are formally the same
and given by

R′
0 = −2m2(1 + β2)

(l2 + m2)2
exp

[
−2β arccot

(
l

m

)]
(31)

REllis
0+ = −2m2(1 + β2)

(l2 + m2)2
exp

[
−2β

{
π

2
− arctan

(
l

m

) }]
(32)

which go to zero as l → ±∞. That means, the spacetime is flat on two sides for both the
solutions. Next, we verify what happens to these scalars at the singular coordinate radius
(r = m/2) that has now been shifted to the origin l = r − m2

4r
= 0. (ii) The Ellis curvature

scalar REllis
0+ → − 2(1+β2)

m2 e−πβ as l → ±0 whereas the curvature scalar R′
0 exhibits a finite

jump from − 2(1+β2)

m2 e−πβ to − 2(1+β2)

m2 e+πβ as l → ±0. (iii) The area radius ρEllis
0+ (l) =√

f
−1(Ellis)
0+ (l2 + m2) → m

√
eπβ as l → ±0 whereas ρ ′

0(l) =
√

f ′−1
0 (l2 + m2) shows a finite

jump from m
√

eπβ to m
√

e−πβ as l → ±0. All the above shows that the behavior of (29) is
better than that of (25) at the origin. However, for both the solutions, the throat appears at the
same radius l0 = M = mβ. Similar considerations apply for the −ve branch.

Ellis III static wormhole (29) can be straightforwardly extended to its rotating form via
algorithm (11) and this has actually been done in [8]. Hence, we would concentrate on the
Wick rotated Ellis I solution (25) rather than the solution (29) and see if we can remove the
discontinuity in it by using the new parameter a. Let us examine the case when a �= 0.

6 An extra factor
√

2 appears in equations (26) and (30) because we took α = +1 in our equation (5) instead of
+2. Our parameters are to be identified with those appearing in the Ellis solution as follows: (m, a, n) of [18] are
(M, m, m

√
1 + β2) of the present paper.

8



Class. Quantum Grav. 25 (2008) 165020 K K Nandi et al

(b) a �= 0

The minimum area radius of the extended solution is obtained from the equation dρ ′
dl

= 0,

where ρ ′(l) =
√

f ′−1(l2 + m2) is the area radius. From numerical study of the resulting
equation we find that the minimum area occurs at l < mβ and it decreases with the increase of
a for fixed values of m and β. We also note that the finite jump persists in the area radius of the
extended solution f ′(l;m,β, a), δ being still given by equation (21). Surprisingly however,
when a = 2mβ, the area function ρ ′(l) decreases from +∞ to the minimum value at the throat,
then increases to a finite value at l = 0, undergoes no jump at l = 0 but passes continuously,
though not with C2 smoothness, across l = 0 on to −∞. The Ricci scalar R′ for f ′(l;m,β, a)

is given by

R′ = 8β(1 + β2)
(
2mβ +

√
4m2β2 − a2

)
exp

[
2β arccot

(
l
m

)]
m

(
1 + l2

m2

)2[
a2 +

(
2mβ +

√
4m2β2 − a2

)2
exp

[
4β arccot

(
l
m

)]] (33)

and it approaches the value 4(1+β2)eπβ

m2(1+e2πβ )
as l → ±0, that is, no jump occurs in it.

The area behavior shows that, for the extreme case a = 2mβ we do have a wormhole
with a single metric covering both the asymptotically flat universes (l → ±∞) connected by a
finite wedge-like protrusion in the shape function at l = 0. This wedge prevents C2 continuity
across l = 0 in the area function but sews up two exactly symmetrical asymptotically flat
universes on both sides. The numerical values of the free parameters m and β can always be
suitably controlled to make the curvature tensor and hence the tidal force finite.

For a �= 2mβ, a single coordinate chart cannot cover the entire spacetime as the area
radius has a jump at l = 0. However, we can artificially circumvent this jump by multiple
metric choices on different segments with C0 continuity at the junctions. We can get a cue
for this construction from the static case. Consider the Wick-rotated metric (25) on the right
segment (AB) and the metric form (18) on the left segment (BC) so that the areas match at a
radial point l = l1. The radius l = l1 is a root of the equation (area from right (AB) = area
from left (BC))

(m2 − l2) ×
(

l − m

l + m

)−β

= (m2 + l2) × exp

[
2β arccot

(
l

m

)]
. (34)

By numerical computation, we find that 0 < l1 < m such that the two otherwise disjoint
universes, one represented by the branch AB and the other by BC, can be connected at
B(l = l1). The point l = 0 is covered by the segment BC which has no jump there. At the
joining point B, there is C0 continuity in the area function and the tidal forces can be shown
to be finite throughout the generator curve ABC. Similar arguments hold true in the rotating
case. Branch AB belongs to the Wick-rotated solution (f ′), while the sector BC belongs to
the original solution (f ). Numerical calculations show that the matching occurs at either of
the two points: B(l1) or B(l2) such that −m < l1, l2 < m.

Wormholes can also be constructed by employing the ‘cut-and-paste’ procedure [4]. One
takes two copies of the static wormholes and joins them at a radius l = lb > l0. The interface
between the two copies will then be described by a thin shell of exotic matter. The shape
functions on both sides will be symmetric. However, when rotation is introduced, numerical
calculation shows that the throat radius decreases from the static value while the flaring out
occurs faster. It is of some interest to note that Crisóstomo and Olea [23, 24] developed
a Hamiltonian formalism to obtain the dynamics of a massive rotating thin shell in (2+1)
dimensions. There, the matching conditions are understood as continuity of the Hamiltonian
functions for an ADM foliation of the metric. Of course, this procedure can be trivially

9
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extended to deal with axially symmetric solutions in (3+1) dimensions. For soliton solutions,
see [25].

5. Extended Brans–Dicke I solution

To obtain the rotating Brans–Dicke solution, we pursue the following steps: note from
equation (3) that√

2ω + 3

2
ln φ = ϕ = ln

[
1 − m

2r

1 + m
2r

]√
2(β2−1)

⇒ φ =
[

1 − m
2r

1 + m
2r

]√
4(β2−1)/(2ω+3)

. (35)

Now using the constraint from the Brans–Dicke [9] field equations, namely,

4(β2 − 1) = −(2ω + 3)
C2

λ2
, (36)

where C, λ are two new arbitrary constants and ω is the coupling parameter, we get

φ =
[

1 − m
2r

1 + m
2r

] C
λ

=
[
l − m

l + m

] C
2λ

. (37)

Equation (36) can be rephrased in the familiar form [9]

λ2 = (C + 1)2 − C

(
1 − ωC

2

)
. (38)

However, the minimum area condition β2 > 1 requires that the right-hand side of equation (36)
be positive. This is possible if either ω < − 3

2 or λ be imaginary. Let us first consider ω < − 3
2

so that the exponents are real. Then, the final step consists in using the relation g̃µν = φ−1gµν

together with replacing β in the exponents in the gµν by [7]

β = 1

λ

(
1 +

C

2

)
. (39)

Thus the extended Brans–Dicke class I solution for ω < − 3
2 becomes

ds2 = −f̃ 1(l) dt2 + f̃ 2(l)[dl2 + (l2 − m2)(dθ2 + sin2 θ dψ2)], (40)

f̃ 1(l) ≡ f̃ 1(l;m,C, λ, a) = f (l;m,β, a)φ−1

= 8mδ
[

1
2λ

(C + 2)
] [

l−m
l+m

]− 1
λ (1+ C

2 )

a2 + 4δ2
[

l−m
l+m

]− 2
λ (1+ C

2 )
×

[
l − m

l + m

]− C
2λ

, (41)

f̃ 2(l) ≡ f2(l;m,C, λ, a) = f −1(l;m,β, a)φ−1

= a2 + 4δ2
[

l−m
l+m

]− 2
λ (1+ C

2 )

8mδ
[

1
2λ

(C + 2)
] [

l−m
l+m

]− 1
λ (1+ C

2 )
×

[
l − m

l + m

]− C
2λ

, (42)

φ(l) =
[
l − m

l + m

] C
2λ

. (43)

It can be verified that the Brans–Dicke field equations again yield the expression (38). Using
the relation l = r + m2

4r
, it can be easily expressed in the familiar (t, r, θ, ψ) coordinates with

10
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the value of δ given by equation (21) in which β should have the value as in equation (39).
For instance, when a = 0, we have δ = m

λ
(C + 2) and identifying m

2 = B, one retrieves the
static Brans–Dicke metric in the original notation,

ds2 = −
(

1 − B
r

1 + B
r

)2
λ

dt2 +

(
1 +

B

r

)4
(

1 − B
r

1 + B
r

)2(λ−C−1)

λ

× [dr2 + r2 dθ2 + r2 sin2 θ dψ2] (44)

φ(r) =
(

1 − B
r

1 + B
r

) C
λ

. (45)

The solution (44) represents a naked singularity at r = B and the condition for the existence
of a minimum area is [6, 7]

(C + 1)2 > λ2. (46)

For β2 > 1, and α = +1, the negative kinetic term in the field equations (5) shows that the
energy density is negative, which violates at least the weak energy condition. The solution
(40) still does not represent a rotating wormhole in the Brans–Dicke theory. For this purpose,
one has first to make a change

m → im, λ → −iλ (47)

in equations (41)–(43) to get the Wick-rotated counterpart. The next step is to use the
relations (27) and (28) obtaining two branches as obtained in section 4. Either of the branches
would then represent rotating wormholes in the Brans–Dicke theory for the range of coupling
parameter ω < − 3

2 . The same class of solutions may be obtained by alternative calculations
with β2 > 1 and α = −1 with an imaginary scalar charge. The above steps represent the basic
scheme that can be followed in other classes of solutions in the Einstein minimally coupled or
Brans–Dicke theory.

The discussion about wormholes in the Einstein minimally coupled theory can be
transferred almost in verbatim into that of the Brans–Dicke theory, once we use the crucial
relation (39) connecting the parameters in both the theories.

6. Geodesic motion in the extended solution

As an illustration, we consider the class of solution (25) generated from the Wick-rotated seed
solution (18) of the Einstein minimally coupled scalar field theory. Thus our solution set is
given by (dropping primes)

f (l;m,β, a) = 8mβδ exp
[
2β arccot

(
l
m

)]
a2 + 4δ2 exp

[
4β arccot

(
l
m

)] (48)

ϕ(l) = [√
2(1 + β2)

]
arccot

(
l

m

)
, (49)

so that the metric components gνλ are

g00 = −f, (50)

g11 = f −1, (51)

g22 = f −1
(
l2 + l2

0

)
, (52)

11
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g33 = f −1
(
l2 + l2

0

)
sin2 θ − f a2 cos2 θ, (53)

g03 = g30 = −f a cos θ. (54)

The four velocity is defined by

Uµ = dxµ

dp
, xµ ≡ (t, l, θ, φ), dp = m0 ds (55)

in which p is the new affine parameter and m0 is the invariant rest mass of the test particle.
The geodesic equations are given by

dUµ

dp
− 1

2

∂gνλ

∂xµ
UνUλ = 0, gνλU

νUλ = m2
0 = ε. (56)

Since the metric functions gνλ do not contain t and φ, the corresponding momenta are
conserved, that is, the µ = 0 and µ = 3 equations give, respectively,

U0 = −f.U 0 − f aU 3 cos θ = k (57)

U3 = −f aU 0 cos θ + U 3[f −1(l2 + l2
0

)
sin2 θ − f a2 cos2 θ

] = h, (58)

where k and h are arbitrary constants. From the above, it follows that the ‘angular momentum’
of the particle is

r2(l)U 3 = h − ka cos θ

sin2 θ
≡ η (59)

r2(l) ≡ f −1
(
l2 + l2

0

)
. (60)

The µ = 2 component of the geodesic equation gives

d

dp

(
r2(l)

dθ

dp

)
+

1

2
f aU 0U 3 sin θ − (U 3)2[r2(l) + f a2] cos θ sin θ = 0. (61)

Instead of the µ = 1 equation, we take the second of equation (56) which gives

ε = −f [U 0 + U 3a cos θ ]2 + f −1(U 1)2 + r2(l)[(U 2)2 + (U 3)2 sin2 θ ]. (62)

Looking at equation (61), we see that two solutions are possible. One is

U 3 = 0 ⇒ θ = arccos

(
h

ka

)
= const. ⇒ U 2 = 0 (63)

which means θ can assume any constant value depending on the independent values of h, k

and a. But such motions will only be radial since U 2 = 0 and U 3 = 0. In other words the
gravitating source acts like a radial sink! The radial equation of motion (62) reduces to(

dl

dp

)2

= εf (l;m,β, a) + k2. (64)

This can be rewritten very succinctly as

d2l

dp2
= ε

2

df

dl
. (65)

The other solution of equation (61) is θ = 0, which implies that the test particle motion is
restricted to polar planes. However, we can always choose the pole perpendicular to this plane

12
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so that the angle ϕ varies in that plane with the particle motion. Moreover, from equation (59),
we must have h = ka so that r2(l)U 3 = η �= 0. Then, we end up again with the same metric
function but without the explicit appearance of a as an arbitrarily regulated free parameter.
Thus, in the equation of motion, we have f = f (l;m,β, h/k) so that a, which is a parameter
of the gravitating source, is obtained from the motional characteristics like h and k of the test
particle itself. This intriguing feature is somewhat analogous to the fact that the mass of the
gravitating Sun can be determined from the motion of a test particle (planet) around it. As a
special case, the parameter a can be so chosen as to completely mask the angular momentum
η of the test particle, that is, as h → ka, there is a possibility that η → 0 too. Physically, it
is like choosing the parameter a to coincide with the orbital ϕ-angular momentum of the test
particle. The equation of motion is again exactly the same as equation (62) since U 2 = 0
even though U 3( �= 0) does not appear explicitly. This is due to the fact that, in the last term
of equation (62), (U 3)2 sin2 θ = 0 but the signature of orbiting (non-radial) test particle is
manifest in the presence of h,(

dl

dp

)2

= εf (l;m,β, h/k) + k2. (66)

The turning points of the orbit will occur when εf = −k2 and df

dl
�= 0. From these conditions,

we have the turning points occurring at

l = l0 = m cot

(
ln x0

β

)
(67)

where

x0 = −2mβε ±
√

4m2β2ε2 − k4a2

2k2δ
. (68)

Circular orbits will occur if εf = −k2 and df

dl
= 0 and they will be stable if d2f

dl2 < 0 and

unstable if d2f

dl2 > 0.

7. Sagnac effect

The best way to assess the effect of a nonzero U 3 (or dϕ �= 0) and of the Matos–Núñez
parameter a is through the Sagnac effect [26] analyzing the orbit in the plane θ = 0. The
effect stems from the basic physical fact that the round trip time of light around a closed
contour, when the source is fixed on a turntable, depends on the angular velocity, say �, of
the turntable. Using special theory of relativity and assuming �r 	 c, one obtains the proper
time δτs , when the two beams meet again at the starting point as

δτs
∼= 4�

c2
S, (69)

where S (≡πr2) is the projected area of the contour perpendicular to the axis of rotation.
Without any loss of rigor, we take a → −a for notational convenience although it is not

mandatory. Suppose that the source/receiver of two oppositely directed light beams is moving
along a circumference l = R = constant. Suitably placed mirrors reflect both beams back to
their origin after a circular trip about the central rotating wormhole. (The motion is thus not
geodesic or force free!) Let us further assume that the source/receiver is moving with uniform
orbital angular speed ω0 with respect to distant stars such that the rotation angle is

ϕ0 = ω0t. (70)

13
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Under these conditions, the metric becomes

dτ 2 = −f (R;m,β, a)[1 − aω0]2 dt2. (71)

The trajectory of a light ray is dτ 2 = 0, which gives

[1 − aω]2 = 0 (72)

where ω is the angular speed. The roots of the above equation coincide so that

ω1± = 1

a
. (73)

Therefore, the rotation angle for the light rays is

ϕ = ω1±t = ω1±
ϕ0

ω0
. (74)

The first intersection of the world lines of the two light rays with the world line of the orbiting
observer after emission at time t = 0 occurs when

ϕ+ = ϕ0 + 2π, ϕ− = ϕ0 − 2π, (75)

so that
ϕ0

ω0
ω1± = ϕ0 ± 2π (76)

where ± refer to co-rotating and counter-rotating beams respectively. Solving for ϕ0, we
get

ϕ0± = ± 2πω0

ω1± − ω0
. (77)

The proper time as measured by the orbiting observer is found from equation (71) by using
dt = dϕ0/ω0 and integrating between ϕ0+ and ϕ0−. The final result is the Sagnac delay given
by

|δτs | =
√

f (R;m,β, a)

[
1 − aω0

ω0

]
(ϕ0+ − ϕ0−)

=
√

f (R;m,β, a)

[
1 − aω0

ω0

] [
4πω0

1
a

− ω0

]
.

=
√

f (R;m,β, a)(4πa). (78)

This shows remarkably that the Sagnac delay depends only on the Matos–Núñez parameter
a. Interestingly, the result is independent of ω0 meaning that it is independent of the motional
state of the source/receiver, be it static with respect to the frame of distant stars or moving
with regard to it. When a = 0, there is no delay because the wormhole spacetime is
then nonrotating (no turntable!). The above result supports the conclusion of [8] from an
altogether different viewpoint that a can indeed be interpreted as a rotational parameter of the
wormhole.

8. Summary

Asymptotically flat rotating solutions are rather rare in the literature, be they of wormholes
or naked singularities. Algorithm (11) together with some operations provides a method for
generating new wormhole solutions in the Einstein minimally coupled theory and, further on,
in the Brans–Dicke theory. Ellis III wormhole or its rotating counterpart is more elegant than
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the matched solutions due to the lack of C∞ continuity at the junctions. Nevertheless, the
present study opens up possibilities to explore in more detail new solutions in other theories
too. For instance, the string solutions are just the Brans–Dicke solutions with ω = −1. As
we saw, the asymptotically flat wormhole solutions admit two arbitrary parameters a and δ.
The Matos–Núñez parameter a has been interpreted by the authors [8] as a rotation parameter.
Here we have shown how the parameter makes its appearance in the Sagnac effect.

Static Ellis I wormholes do not appear traversable due to the singularity manifested in the
behavior of the area function and curvature. To tackle this problem, we analytically continued
it via Wick rotation and rederived singularity free, asymptotically flat, Ellis III traversable
wormholes as one of its branches. This showed, contrary to the general belief, that the two
classes of solutions are not independent. Comparative features of the Wick-rotated and Ellis
III solutions are pointed out. In the extended Wick rotated solution, numerical graphics show
that the wormhole can be covered by a single metric with C0 continuity. That is, the jumps
can be sewed up at the origin for the extreme value of a (=2mβ) or can be avoided by
choosing multiple metric patches for nonextreme values of a, the junctions again having only
C0 continuity. In either case, the tidal forces can depend on adjustable free parameters m,β

and a. As an illustrative seed solution, we considered only the Ellis I solution in the Einstein
minimally coupled scalar field theory and finally mapped the extended solution into that of
Brans–Dicke theory.

In connection with the static Brans–Dicke I solution, we recall a long-standing query by
Visser and Hochberg [27] which has been the guiding motivation in sections 2–5: ‘It would be
interesting to know a little bit more about what this region actually looks like, and to develop
a better understanding of the physics on the other side (that is, across the naked singularity) of
this class of Brans–Dicke wormholes.’ The above analyses answer how one could achieve a
both-sided asymptotically flat traversable singularity free wormhole via Wick rotation of the
Ellis I solution, which is merely the conformally rescaled Brans–Dicke I solution. Because of
the fact that Ellis III is rederivable from Ellis I, and the former is a traversable wormhole (see
the appendix), we can say that the Brans–Dicke I solution is also a traversable wormhole, but
only in its Ellis III reincarnation. We believe that this argument provides some understanding
of the ‘other side’: the mathematical operations of conformal rescaling plus Wick rotation,
plus a trigonometric relation eases out the naked singularity and converts the Brans–Dicke I
solution into a traversable wormhole.

The next task was to investigate the extended solutions containing new parameters.
Accordingly, in section 6, we studied the geodesic motion in the extended geometry and
obtained remarkable results in the Einstein minimally coupled theory: for nonzero values of
constant θ , the spacetime acts like a radial sink. For θ = 0, the spacetime allows nonradial
motions (U 3 �= 0) but the Matos–Núñez parameter a can be entirely expressed in terms of the
constants of motion. In section 7, we calculated the Sagnac effect in the extended spacetime
and found that the delay depends on a. If a = 0, the delay is zero implying that a could be
interpreted as a rotation parameter thus supporting the conclusion of Matos and Núñez [8]
from an altogether different viewpoint.

A pertinent question is whether the wormholes under consideration are stable. It is not
unlikely that the passage of a hypothetical traveler could destabilize them. We do not deal
with this issue here.
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Appendix

A wormhole is defined to be traversable by a hypothetical traveler if it satisfies some general
constraints [1]. We shall demonstrate that the Ellis III wormhole satisfies all of these. It can
be made traversable even by a human traveler under suitable choices of constants m and β.
Accordingly, let us put one branch, say, the +ve branch of equation (29) in the metric (24).
That is, let us put f ′

0(l) = f Ellis
0+ (l) in metric (24) and rewrite it in the standard MTY form [1]

by defining a radial variable ρ as

ρ2 = (l2 + m2) exp

[
2β

{
π

2
− arctan

(
l

m

)}]
. (A.1)

(Note that l → ±∞ implies ρ → ±∞ and l → ±0 implies ρ → ±meπβ .) Then the metric
(24) in the coordinates (t, ρ, θ, ψ) becomes

ds2 = −e2�(ρ) dt2 +
dρ2

1 − b(ρ)

ρ

+ ρ2(dθ2 + sin2 θ dψ2), (A.2)

where �(ρ) is the redshift function given by

�(ρ) = β

[
arctan

{
l(ρ)

m

}
− π

2

]
(A.3)

and b(ρ) is the shape function given by

b(ρ) = ρ

[
1 − [l(ρ) − mβ]2

ρ2
exp

[
2β

{
π

2
− arctan

(
l(ρ)

m

)}]]
. (A.4)

General constraints on b and � to produce a traversable wormhole, as enumerated in (C1)–
(C5), are satisfied by the functions in (A3) and (A4). It may be verified that: (C1) throughout
the spacetime, 1 − b(ρ)

ρ
� 0 and b(ρ)

ρ
→ 0 as ρ → ±∞. (C2) throat occurs at the minimum

of ρ where b(ρ0) = ρ0. This minimum ρ0 corresponds to l0 = mβ so that, from (A1), we find

ρ0 = m(1 + β2)
1
2 exp

[
β

{
π

2
− arctan β

}]
. (A.5)

(C3) The spacetime (A2) has no horizon, that is, � is everywhere finite. (C4) The coordinate
time t measures proper time in asymptotically flat regions because � → 0 as ρ → ±∞. (C5)
The spacetime has no singularities, as already discussed in section 4.

Some additional constraints, as enumerated in (H1)–(H4), are necessary if the trip is to
be undertaken by a human traveler. These are also satisfied by the functions in (A3) and (A4):
(H1) trip begins and ends at stations located on either side of the throat where gravity field
should be weak. This demands that (i) the geometry at the stations must be nearly flat, or,
b(ρ)

ρ
	 1, (ii) the gravitational redshift of signals sent from stations to infinity must be small,

or, |�| 	 1 and (iii) the acceleration of gravity at the stations must be less than one Earth

gravity g⊕ = 980 cm s−2, or,
∣∣c2

(
1 − b

ρ

) 1
2 d�

dρ

∣∣ � g⊕. While the first two constraints (i) and
(ii) are easily met in virtue of the general constraints (C1) and (C4) respectively, (iii) gives∣∣∣∣ mβ

l2 + m2
e�

∣∣∣∣ � .
g⊕
c2

. (A.6)

For fixed finite values of m and β, e� → 1 for large l and hence this constraint can be easily
satisfied at the stations. (H2) The tidal forces suffered by a human traveler should be tolerable,
which means that the magnitude of the differential of four acceleration |�−→a | should be less
than g⊕ in the orthonormal frame (ê0′ , ê1′ , ê2′ ê3′) of the traveler. This constraint translates,
for a traveler of length (head to foot) ∼2 m, to the following bounds on the curvature tensor
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computed in his/her frame. The radial stretch along the human body has to be constrained by
the inequality,

|R1̂′̂0′̂1′̂0′ | =
∣∣∣∣∣
(

1 − b

ρ

) (
−d2�

dρ2
+

ρ db
dρ

− b

2ρ(ρ − b)

d�

dρ
−

(
d�

dρ

)2
)∣∣∣∣∣

� g⊕
c2 × 2 m

� 1

(1010 cm)2
. (A.7)

This bound is essentially meant to constrain the redshift function �(ρ). We see that, at the
throat its value is �(ρ0) = β

[
arctan β − π

2

]
, which tends to −1 as β → ∞, and to 0 as

β → 0. In general, as ρ → ±∞,� and all its derivatives vanish. Thus the function �(ρ) is
well behaved everywhere and consequently the constraint (A7) is easily satisfied. This result
is expected since all the curvature components fall off with distance and vanish at infinity [18].
Let us look at the lateral bounds given by

|R2̂′̂0′̂2′̂0′ | = |R3̂′̂0′̂3′̂0′ | =
∣∣∣∣ γ 2

2ρ2

[(v

c

)2
(

db

dρ
− b

ρ

)
+ 2(ρ − b)

d�

dρ

]∣∣∣∣
� g⊕

c2 × 2 m
� 1

(1010 cm)2
. (A.8)

These bounds constrain the speed v with which the traveler crosses the wormhole, γ =
(1 − v2/c2)−

1
2 . For the metric (A2), the above work out to

|R2̂′̂0′̂2′̂0′ | = |R3̂′̂0′̂3′̂0′ | =
∣∣∣∣ γ 2

2ρ2

[(v

c

)2
(

2m(m + lβ)

l2 + m2

)
+

(
2mβ(l − mβ)

l2 + m2

)]∣∣∣∣
� g⊕

c2 × 2 m
� 1

(1010 cm)2
. (A.9)

The maximum tidal force experienced by the traveler should occur at the throat l = mβ or
equivalently at ρ = ρ0. Hence the velocity v at the throat is determined by the inequality
(A9),

γ 2

ρ2
0

[(
v

c

)2
]

� 1

(1010 cm)2
. (A.10)

It is possible to adjust m and β such that we have any throat radius, ρ0 ∼ 10 m (say). Assuming
that v 	 c or γ ∼ 1, we obtain v � 30 m s−1(

ρ0

10 m ). This shows that the speed v across the
hole could be made reasonably small and easily achievable. (H3) The traveler should feel less
than g⊕ acceleration throughout the trip, which requires∣∣∣∣e−�

(
1 − b

ρ

) 1
2 d

dρ
(γ e�)

∣∣∣∣ � g⊕
c2

. (A.11)

With γ ∼ 1, this works out to the same constraint as in (A6), which is already satisfied. (H4)
The total proper time interval �τ measured by the traveler and the coordinate time interval
�t measured at the stations should not exceed a year (say) for the entire trip, that is,

�τ =
∫ L2

−L1

dL

vγ
� 1 year (A.12)

�t =
∫ L2

−L1

dL

ve�
� 1 year, (A.13)
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where L = −L1 and L = +L2 are the proper radial distances of the stations measured from
the throat at L = 0. The element dL of proper radial distance L is defined by

dL = dρ√
1 − b(ρ)

ρ

. (A.14)

Let us locate the two stations at large enough radii ρ so that 1 − b(ρ)

ρ
∼ 1 and � ∼ 0.

Accordingly, we take ρ1 = ρ2 ∼ 104ρ0 corresponding to L1 = L2 ∼ 104ρ0. Since γ ∼ 1, we
can write

�τ ≈ �t ≈
∫ L2

−L1

dL

v
� 2 × 104 ρ0

v
sec . (A.15)

Hence, with velocity not exceeding 30 m s−1 between stations, a traveler can complete the trip
across a 10 m throat in comfortable 1.7 h.

The rotating wormhole is also expected to be traversable, the only difference being that
the traveler might feel an additional centrifugal force determined by the adjustable parameter
a. A detailed mathematical treatment of this case will be presented elsewhere.
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[23] Crisóstomo J and Olea R 2004 Phys. Rev. D 69 104023
[24] Olea R 2005 Mod. Phys. Lett. A 20 2649
[25] Bertolami O 1990 Phys. Lett. B 234 258
[26] Tartaglia A 1998 Phys. Rev. D 58 064009

Nandi K K, Alsing P M, Evans J C and Nayak T B 2001 Phys. Rev. D 63 084027
Bhadra A, Nayak T B and Nandi K K 2002 Phys. Lett. A 295 1

[27] Visser M and Hochberg D 1997 Proc. Haifa Workshop on the Internal Structure of Black Holes and Space Time
Singularities (Jerusalem, Israel, June, 1997) p 20 (Preprint gr-qc/970001)

19

http://dx.doi.org/10.1103/PhysRevD.70.044040
http://dx.doi.org/10.1103/PhysRevD.70.127503
http://dx.doi.org/10.1103/PhysRevD.69.104023
http://dx.doi.org/10.1142/S021773230501827X
http://dx.doi.org/10.1016/0370-2693(90)91924-Z
http://dx.doi.org/10.1103/PhysRevD.58.064009
http://dx.doi.org/10.1103/PhysRevD.63.084027
http://dx.doi.org/10.1016/S0375-9601(02)00132-9
http://www.arxiv.org/abs/gr-qc/970001

	1. Introduction
	2. The action, ansatz and the algorithm
	3. Ellis I solution and its geometry
	(a) Static seed case
	(b) Generated case

	4. Ellis III solution via Wick rotation
	(a) a = 0
	(b) a ne 0

	5. Extended Brans--Dicke I solution
	6. Geodesic motion in the extended solution
	7. Sagnac effect
	8. Summary
	Acknowledgments
	Appendix
	References

