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Abstract

Recent cosmological observations suggest the existence of a positive cosmological constant � with the
magnitude �(G˝=c3) ≈ 10−123. This review discusses several aspects of the cosmological constant both from
the cosmological (Sections 1–6) and .eld theoretical (Sections 7–11) perspectives. After a brief introduction
to the key issues related to cosmological constant and a historical overview, a summary of the kinematics
and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for
cosmological constant, especially from the supernova results, and the constraints from the age of the universe,
structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are
described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar .eld, : : :)
from di4erent perspectives. The latter part of the review (Sections 7–11) concentrates on more conceptual
and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological
constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the
geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of
string theory in the cosmological constant problem.
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1. Introduction

This review discusses several aspects of the cosmological constant both from the cosmological
and .eld theoretical perspectives with the emphasis on conceptual and fundamental issues rather than
on observational details. The plan of the review is as follows: This section introduces the key issues
related to cosmological constant and provides a brief historical overview. (For previous reviews of
this subject, from cosmological point of view, see [1–3,139].) Section 2 summarizes the kinematics
and dynamics of the standard Friedmann model of the universe paying special attention to features
involving the cosmological constant. Section 3 reviews the observational evidence for cosmologi-
cal constant, especially the supernova results, constraints from the age of the universe and a few
others. We next study models with evolving cosmological ‘constant’ from di4erent perspectives.
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(In this review, we shall use the term cosmological constant in a generalized sense including the
scenarios in which cosmological “constant” is actually varying in time.) A phenomenological pa-
rameterization is introduced in Section 4.1 to compare theory with observation and is followed up
with explicit models involving scalar .elds in Section 4.2. The emphasis is on quintessence and
tachyonic scalar .eld models and the cosmic degeneracies introduced by them. Section 5 discusses
cosmological constant and dark energy in the context of models for structure formation and Section
6 describes the constraints arising from CMBR anisotropies.

The latter part of the review concentrates on more conceptual and fundamental aspects of the
cosmological constant. (For previous reviews of this subject, from a theoretical physics perspective,
see [4–6].) Section 7 provides some alternative interpretations of the cosmological constant which
might have a bearing on the possible solution to the problem. Several relaxation mechanisms have
been suggested in the literature to reduce the cosmological constant to the currently observed value
and some of these attempts are described in Section 8. Section 9 gives a brief description of the
geometrical structure of the de Sitter spacetime and the thermodynamics of the de Sitter universe
is taken up in Section 10. The relation between horizons, temperature and entropy are presented at
one go in this section and the last section deals with the role of string theory in the cosmological
constant problem.

1.1. The many faces of the cosmological constant

Einstein’s equations, which determine the dynamics of the spacetime, can be derived from the
action (see, e.g. [7]):

A =
1

16�G

∫
R
√−g d4x +

∫
Lmatter(�; 9�)

√−g d4x ; (1)

where Lmatter is the Lagrangian for matter depending on some dynamical variables generically denoted
as �. (We are using units with c=1.) The variation of this action with respect to � will lead to the
equation of motion for matter (�Lmatter=��)=0, in a given background geometry, while the variation
of the action with respect to the metric tensor gik leads to the Einstein’s equation

Rik − 1
2
gikR = 16�G

�Lmatter

�gik ≡ 8�GTik ; (2)

where the last equation de.nes the energy momentum tensor of matter to be Tik ≡ 2(�Lmatter=�gik).
Let us now consider a new matter action L′matter = Lmatter − (�=8�G) where � is a real constant.

Equation of motion for the matter (�Lmatter=��)=0, does not change under this transformation since
� is a constant; but the action now picks up an extra term proportional to �

A=
1

16�G

∫
R
√−g d4x +

∫ (
Lmatter − �

8�G

)√−g d4x

=
1

16�G

∫
(R− 2�)

√−g d4x +
∫

Lmatter
√−g d4x (3)

and Eq. (2) gets modi.ed. This innocuous looking addition of a constant to the matter Lagrangian
leads to one of the most fundamental and fascinating problems of theoretical physics. The nature of
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this problem and its theoretical backdrop acquires di4erent shades of meaning depending which of
the two forms of equations in (3) is used.

The .rst interpretation, based on the .rst line of Eq. (3), treats � as the shift in the matter
Lagrangian which, in turn, will lead to a shift in the matter Hamiltonian. This could be thought of
as a shift in the zero point energy of the matter system. Such a constant shift in the energy does not
a4ect the dynamics of matter while gravity—which couples to the total energy of the system—picks
up an extra contribution in the form of a new term Qik in the energy-momentum tensor, leading to:

Ri
k −

1
2
�i
kR = 8�G(T i

k + Qi
k); Qi

k ≡
�

8�G
�i
k ≡ ���i

k : (4)

The second line in Eq. (3) can be interpreted as gravitational .eld, described by the Lagrangian of
the form Lgrav ˙ (1=G)(R− 2�), interacting with matter described by the Lagrangian Lmatter. In this
interpretation, gravity is described by two constants, the Newton’s constant G and the cosmological
constant �. It is then natural to modify the left hand side of Einstein’s equations and write (4) as:

Ri
k − 1

2 �i
kR− �i

k� = 8�GT i
k : (5)

In this interpretation, the spacetime is treated as curved even in the absence of matter (Tik = 0)
since the equation Rik − (1=2)gikR − �gik = 0 does not admit Pat spacetime as a solution. (This
situation is rather unusual and is related to the fact that symmetries of the theory with and without
a cosmological constant are drastically di4erent; the original symmetry of general covariance cannot
be naturally broken in such a way as to preserve the sub group of spacetime translations.)

In fact, it is possible to consider a situation in which both e4ects can occur. If the gravitational
interaction is actually described by the Lagrangian of the form (R− 2�), then there is an intrinsic
cosmological constant in nature just as there is a Newtonian gravitational constant in nature. If the
matter Lagrangian contains energy densities which change due to dynamics, then Lmatter can pick up
constant shifts during dynamical evolution. For example, consider a scalar .eld with the Lagrangian
Lmatter = (1=2)9i�9i�− V (�) which has the energy momentum tensor

Ta
b = 9a�9b�− �a

b(
1
2 9

i�9i�− V (�)) : (6)

For .eld con.gurations which are constant [occurring, for example, at the minima of the potential
V (�)], this contributes an energy momentum tensor Ta

b =�a
bV (�min) which has exactly the same form

as a cosmological constant. As far as gravity is concerned, it is the combination of these two e4ects—
of very di2erent nature—which is relevant and the source will be T e4

ab = [V (�min) + (�=8�G)]gab,
corresponding to an e4ective gravitational constant

�e4 = � + 8�GV (�min) : (7)

If �min and hence V (�min) changes during dynamical evolution, the value of �e4 can also change
in course of time. More generally, any .eld con.guration which is varying slowly in time will lead
to a slowly varying �e4 .

The extra term Qik in Einstein’s equation behaves in a manner which is very peculiar compared
to the energy momentum tensor of normal matter. The term Qi

k = ���i
k is in the form of the energy

momentum tensor of an ideal Puid with energy density �� and pressure P� =−��; obviously, either
the pressure or the energy density of this “Puid” must be negative, which is unlike conventional
laboratory systems. (See, however, Ref. [8].)
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Such an equation of state, �=−P also has another important implication in general relativity. The
spatial part g of the geodesic acceleration (which measures the relative acceleration of two geodesics
in the spacetime) satis.es the following exact equation in general relativity (see e.g., p. 332 of [9]):

∇ · g = −4�G(� + 3P) ; (8)

showing that the source of geodesic acceleration is (� + 3P) and not �. As long as (� + 3P)¿ 0,
gravity remains attractive while (� + 3P)¡ 0 can lead to repulsive gravitational e4ects. Since the
cosmological constant has (�� + 3P�) = −2��, a positive cosmological constant (with �¿ 0) can
lead to repulsive gravity. For example, if the energy density of normal, nonrelativistic matter with
zero pressure is �NR, then Eq. (8) shows that the geodesics will accelerate away from each other
due to the repulsion of cosmological constant when �NR ¡ 2��. A related feature, which makes the
above conclusion practically relevant is the fact that, in an expanding universe, �� remains constant
while �NR decreases. (More formally, the equation of motion, d(��V )=−P� dV for the cosmological
constant, treated as an ideal Puid, is identically satis.ed with constant ��; P�.) Therefore, �� will
eventually dominate over �NR if the universe expands suQciently. Since |�|1=2 has the dimensions
of inverse length, it will set the scale for the universe when cosmological constant dominates.

It follows that the most stringent bounds on � will arise from cosmology when the expansion
of the universe has diluted the matter energy density suQciently. The rate of expansion of the
universe today is usually expressed in terms of the Hubble constant: H0 =100h km s−1 Mpc−1 where
1 Mpc ≈ 3×1024 cm and h is a dimensionless parameter in the range 0:62 . h. 0:82 (see Section
3.2). From H0 we can form the time scale tuniv ≡ H−1

0 ≈ 1010h−1 yr and the length scale cH−1
0 ≈

3000h−1 Mpc; tuniv characterizes the evolutionary time scale of the universe and H−1
0 is of the order

of the largest length scales currently accessible in cosmological observations. From the observation
that the universe is at least of the size H−1

0 , we can set a bound on � to be |�|¡ 10−56 cm−2. This
stringent bound leads to several issues which have been debated for decades without satisfactory
solutions.

• In classical general relativity, based on the constants G; c and �, it is not possible to construct
any dimensionless combination from these constants. Nevertheless, it is clear that � is extremely
tiny compared to any other physical scale in the universe, suggesting that � is probably zero.
We, however, do not know of any symmetry mechanism or invariance principle which requires
� to vanish. Supersymmetry does require the vanishing of the ground state energy; however,
supersymmetry is so badly broken in nature that this is not of any practical use [10,11].

• We mentioned above that observations actually constrain �e4 in Eq. (7), rather than �. This re-
quires � and V (�min) to be .ne tuned to an enormous accuracy for the bound, |�e4 |¡ 10−56 cm−2,
to be satis.ed. This becomes more mysterious when we realize that V (�min) itself could change
by several orders of magnitude during the evolution of the universe.

• When quantum .elds in a given curved spacetime are considered (even without invoking any
quantum gravitational e4ects) one introduces the Planck constant, ˝, in the description of the
physical system. It is then possible to form the dimensionless combination �(G˝=c3) ≡ �L2

P.
(This equation also de.nes the quantity L2

P; throughout the review we use the symbol ‘≡’ to
de.ne variables.) The bound on � translates into the condition �L2

P . 10−123. As has been
mentioned several times in literature, this will require enormous .ne tuning.
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• All the above questions could have been satisfactorily answered if we take �e4 to be zero and
assume that the correct theory of quantum gravity will provide an explanation for the vanishing
of cosmological constant. Such a view was held by several people (including the author) until
very recently. Current cosmological observations however suggests that �e4 is actually nonzero and
�e4L2

P is indeed of order O(10−123). In some sense, this is the cosmologist’s worst nightmare come
true. If the observations are correct, then �e4 is nonzero, very tiny and its value is extremely
5ne tuned for no good reason. This is a concrete statement of the .rst of the two ‘cosmological
constant problems’.

• The bound on �L2
P arises from the expansion rate of the universe or—equivalently—from the

energy density which is present in the universe today. The observations require the energy density
of normal, nonrelativistic matter to be of the same order of magnitude as the energy density
contributed by the cosmological constant. But in the past, when the universe was smaller, the
energy density of normal matter would have been higher while the energy density of cosmological
constant does not change. Hence we need to adjust the energy densities of normal matter and
cosmological constant in the early epoch very carefully so that �� & �NR around the current
epoch. If this had happened very early in the evolution of the universe, then the repulsive nature of
a positive cosmological constant would have initiated a rapid expansion of the universe, preventing
the formation of galaxies, stars, etc. If the epoch of �� ≈ �NR occurs much later in the future, then
the current observations would not have revealed the presence of nonzero cosmological constant.
This raises the second of the two cosmological constant problems: Why is it that (��=�NR)=O(1)
at the current phase of the universe?

• The sign of � determines the nature of solutions to Einstein’s equations as well as the sign of
(�� +3P�). Hence the spacetime geometry with �L2

P =10−123 is very di4erent from the one with
�L2

P = −10−123. Any theoretical principle which explains the near zero value of �L2
P must also

explain why the observed value of � is positive.

At present we have no clue as to what the above questions mean and how they need to be ad-
dressed. This review summarizes di4erent attempts to understand the above questions from various
perspectives.

1.2. A brief history of cosmological constant

Originally, Einstein introduced the cosmological constant � in the .eld equation for gravity
(as in Eq. (5)) with the motivation that it allows for a .nite, closed, static universe in which
the energy density of matter determines the geometry. The spatial sections of such a universe are
closed 3-spheres with radius l=(8�G�NR)−1=2 =�−1=2 where �NR is the energy density of pressure-
less matter (see Section 2.4) Einstein had hoped that normal matter is needed to curve the geometry;
a demand, which—to him—was closely related to the Mach’s principle. This hope, however, was
soon shattered when de Sitter produced a solution to Einstein’s equations with cosmological constant
containing no matter [12]. However, in spite of two fundamental papers by Friedmann and one by
Lemaitre [13,14], most workers did not catch on with the idea of an expanding universe. In fact,
Einstein originally thought Friedmann’s work was in error but later published a retraction of his
comment; similarly, in the Solvay meeting in 1927, Einstein was arguing against the solutions de-
scribing expanding universe. Nevertheless, the Einstein archives do contain a postcard from Einstein
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to Weyl in 1923 in which he says: “If there is no quasi-static world, then away with the cosmo-
logical term”. The early history following de Sitter’s discovery (see, for example, [15]) is clearly
somewhat confused, to say the least.

It appears that the community accepted the concept of an expanding universe largely due to
the work of Lemaitre. By 1931, Einstein himself had rejected the cosmological term as super-
Pous and unjusti.ed (see Ref. [16], which is a single authored paper; this paper has been mis-cited
in literature often, eventually converting part of the journal name “preuss” to a co-author
“Preuss, S. B”!; see [17]). There is no direct record that Einstein ever called cosmological constant
his biggest blunder. It is possible that this often repeated “quote” arises from Gamow’s recollection
[18]: “When I was discussing cosmological problems with Einstein, he remarked that the introduc-
tion of the cosmological term was the biggest blunder he ever made in his life.” By 1950s the view
was decidedly against � and the authors of several classic texts (like Landau and Liftshitz [7], Pauli
[19] and Einstein [20]) argued against the cosmological constant.

In later years, cosmological constant had a chequered history and was often accepted or rejected
for wrong or insuQcient reasons. For example, the original value of the Hubble constant was nearly
an order of magnitude higher [21] than the currently accepted value thereby reducing the age of
the universe by a similar factor. At this stage, as well as on several later occasions (e.g., [22,23]),
cosmologists have invoked cosmological constant to reconcile the age of the universe with observa-
tions (see Section 3.2). Similar attempts have been made in the past when it was felt that counts of
quasars peak at a given phase in the expansion of the universe [24–26]. These reasons, for the intro-
duction of something as fundamental as cosmological constant, seem inadequate at present. However,
these attempts clearly showed that sensible cosmology can only be obtained if the energy density
contributed by cosmological constant is comparable to the energy density of matter at the present
epoch. This remarkable property was probably noticed .rst by Bondi [27] and has been discussed
by McCrea [28]. It is mentioned in [1] that such coincidences were discussed in Dicke’s gravity
research group in the sixties; it is almost certain that this must have been noticed by several other
workers in the subject.

The .rst cosmological model to make central use of the cosmological constant was the steady
state model [29–31]. It made use of the fact that a universe with a cosmological constant has a time
translational invariance in a particular coordinate system. The model also used a scalar .eld with
negative energy .eld to continuously create matter while maintaining energy conservation. While
modern approaches to cosmology invokes negative energies or pressure without hesitation, steady
state cosmology was discarded by most workers after the discovery of CMBR. The discussion so far
has been purely classical. The introduction of quantum theory adds a new dimension to this problem.
Much of the early work [32,33] as well as the de.nitive work by Pauli [34,35] involved evaluating
the sum of the zero point energies of a quantum .eld (with some cut-o4) in order to estimate the
vacuum contribution to the cosmological constant. Such an argument, however, is hopelessly naive
(inspite of the fact that it is often repeated even today). In fact, Pauli himself was aware of the
fact that one must exclude the zero point contribution from such a calculation. The .rst paper to
stress this clearly and carry out a second order calculation was probably the one by Zeldovich [36]
though the connection between vacuum energy density and cosmological constant had been noted
earlier by Gliner [37] and even by Lemaitre [38]. Zeldovich assumed that the lowest order zero point
energy should be subtracted out in quantum .eld theory and went on to compute the gravitational
force between particles in the vacuum Puctuations. If E is an energy scale of a virtual process
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corresponding to a length scale l = ˝c=E, then l−3 = (E=˝c)3 particles per unit volume of energy E
will lead to the gravitational self energy density of the order of

�� ≈ G(E=c2)2

l
l−3 =

GE6

c8˝4 : (9)

This will correspond to �L2
P ≈ (E=EP)6 where EP = (˝c5=G)1=2 ≈ 1019 GeV is the Planck energy.

Zeldovich took E ≈ 1 GeV (without any clear reason) and obtained a �� which contradicted
the observational bound “only” by nine orders of magnitude. The .rst serious symmetry principle
which had implications for cosmological constant was supersymmetry and it was realized early
on [10,11] that the contributions to vacuum energy from fermions and bosons will cancel in a
supersymmetric theory. This, however, is not of much help since supersymmetry is badly broken in
nature at suQciently high energies (at ESS ¿ 102 Gev). In general, one would expect the vacuum
energy density to be comparable to the that corresponding to the supersymmetry braking scale, ESS.
This will, again, lead to an unacceptably large value for ��. In fact the situation is more complex
and one has to take into account the coupling of matter sector and gravitation—which invariably
leads to a supergravity theory. The description of cosmological constant in such models is more
complex, though none of the attempts have provided a clear direction of attack (see e.g., [4] for a
review of early attempts). The situation becomes more complicated when the quantum .eld theory
admits more than one ground state or even more than one local minima for the potentials. For
example, the spontaneous symmetry breaking in the electro-weak theory arises from a potential of
the form

V = V0 − �2�2 + g�4 (�2; g¿ 0) : (10)

At the minimum, this leads to an energy density Vmin = V0 − (�4=4g). If we take V0 = 0 then
(Vmin=g) ≈ −(300 GeV)4. For an estimate, we will assume that the gauge coupling constant g
is comparable to the electromagnetic coupling constant: g = O( 2), where  ≡ (e2=˝c) is the .ne
structure constant. Then, we get |Vmin| ∼ 106 GeV4 which misses the bound on � by a factor of
1053. It is really of no help to set Vmin =0 by hand. At early epochs of the universe, the temperature
dependent e4ective potential [39,40] will change minimum to �=0 with V (�)=V0. In other words,
the ground state energy changes by several orders of magnitude during the electro-weak and other
phase transitions.

Another facet is added to the discussion by the currently popular models of quantum gravity
based on string theory [41,42]. The currently accepted paradigm of string theory encompasses several
ground states of the same underlying theory (in a manner which is as yet unknown). This could
lead to the possibility that the .nal theory of quantum gravity might allow di4erent ground states for
nature and we may need an extra prescription to choose the actual state in which we live in. The
di4erent ground states can also have di4erent values for cosmological constant and we need to invoke
a separate (again, as yet unknown) principle to choose the ground state in which �L2

P ≈ 10−123 (see
Section 11).

2. Framework of standard cosmology

All the well developed models of standard cosmology start with two basic assumptions: (i) The
distribution of matter in the universe is homogeneous and isotropic at suQciently large scales.



T. Padmanabhan / Physics Reports 380 (2003) 235–320 243

(ii) The large scale structure of the universe is essentially determined by gravitational interactions
and hence can be described by Einstein’s theory of gravity. The geometry of the universe can then
be determined via Einstein’s equations with the stress tensor of matter T i

k(t; x) acting as the source.
(For a review of cosmology, see e.g. [43–47]). The .rst assumption determines the kinematics of
the universe while the second one determines the dynamics. We shall discuss the consequences of
these two assumptions in the next two subsections.

2.1. Kinematics of the Friedmann model

The assumption of isotropy and homogeneity implies that the large scale geometry can be described
by a metric of the form

ds2 = dt2 − a2(t) dx2 = dt2 − a2(t)
[

dr2

1 − kr2 + r2(d$ 2 + sin2 $ d�2)
]

(11)

in a suitable set of coordinates called comoving coordinates. Here a(t) is an arbitrary function of time
(called expansion factor) and k=0;±1. De.ning a new coordinate % through %=(r; sin−1 r; sinh−1 r)
for k = (0;+1;−1) this line element becomes

ds2 ≡ dt2 − a2 dx2 ≡ dt2 − a2(t)[d%2 + S2
k (%)(d$

2 + sin2 $ d�2)] ; (12)

where Sk(%) = (%; sin %; sinh %) for k = (0;+1;−1). In any range of time during which a(t) is a
monotonic function of t, one can use a itself as a time coordinate. It is also convenient to de.ne
a quantity z, called the redshift, through the relation a(t) = a0[1 + z(t)]−1 where a0 is the current
value of the expansion factor. The line element in terms of [a; %; $; �] or [z; %; $; �] is

ds2 = H−2(a)
(

da
a

)2

− a2 dx2 =
1

(1 + z)2 [H−2(z) dz2 − dx2] ; (13)

where H (a) = (ȧ=a), called the Hubble parameter, measures the rate of expansion of the universe.
This equation allows us to draw an important conclusion: The only nontrivial metric function in

a Friedmann universe is the function H (a) (and the numerical value of k which is encoded in the
spatial part of the line element.) Hence, any kind of observation based on geometry of the spacetime,
however complex it may be, will not allow us to determine anything other than this single function
H (a). As we shall see, this alone is inadequate to describe the material content of the universe and
any attempt to do so will require additional inputs.

Since the geometrical observations often rely on photons received from distant sources, let us con-
sider a photon traveling a distance rem(z) from the time of emission (corresponding to the redshift z)
till today. Using the fact that ds = 0 for a light ray and the second equality in Eq. (13) we .nd
that the distance traveled by light rays is related to the redshift by dx = H−1(z) dz. Integrating this
relation, we get

rem(z) = Sk( );  ≡ 1
a0

∫ z

0
H−1(z) dz : (14)

All other geometrical distances can be expressed in terms of rem(z) (see e.g., [44]). For example, the
Pux of radiation F received from a source of luminosity L can be expressed in the form F=L=(4�d2

L)
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where

dL(z) = a0rem(z)(1 + z) = a0(1 + z)Sk( ) (15)

is called the luminosity distance. Similarly, if D is the physical size of an object which subtends an
angle � to the observer, then—for small �—we can de.ne an angular diameter distance dA through
the relation � = D=dA. The angular diameter distance is given by

dA(z) = a0rem(z)(1 + z)−1 (16)

with dL = (1 + z)2 dA.
If we can identify some objects (or physical phenomena) at a redshift of z having a characteristic

transverse size D, then measuring the angle � subtended by this object we can determine dA(z).
Similarly, if we have a series of luminous sources at di4erent redshifts having known luminosity L,
then by observing the Pux from these sources L, one can determine the luminosity distance dL(z).
Determining any of these functions will allow us to use relations (15) [or (16)] and (14) to obtain
H−1(z). For example, H−1(z) is related to dL(z) through

H−1(z) =
[
1 − kd2

L(z)
a2

0(1 + z)2

]−1=2 d
dz

[
dL(z)
1 + z

]
→ d

dz

[
dL(z)
1 + z

]
; (17)

where second equality holds if the spatial sections of the universe are Pat, corresponding to k = 0;
then dL(z), dA(z); rem(z) and H−1(z) all contain the (same) maximal amount of information about
the geometry. The function rem(z) also determines the proper volume of the universe between the
redshifts z and z + dz subtending a solid angle d+ in the sky. The comoving volume element can
be expressed in the form

dV
dz d+

˙ r2
em

dr
dz
˙

d3
L

(1 + z)4

[
(1 + z)d′

L

dL
− 1
]

; (18)

where the prime denotes derivative with respect to z. Based on this, there has been a suggestion [48]
that future observations of the number of dark matter halos as a function of redshift and circular
velocities can be used to determine the comoving volume element to within a few percent accuracy.
If this becomes possible, then it will provide an additional handle on constraining the cosmological
parameters.

The above discussion illustrates how cosmological observations can be used to determine the metric
of the spacetime, encoded by the single function H−1(z). This issue is trivial in principle, though
enormously complicated in practice because of observational uncertainties in the determination of
dL(z); dA(z), etc. We shall occasion to discuss these features in detail later on.

2.2. Dynamics of the Friedmann model

Let us now turn to the second assumption which determines the dynamics of the universe. When
several noninteracting sources are present in the universe, the total energy momentum tensor which
appear on the right hand side of the Einstein’s equation will be the sum of the energy momentum
tensor for each of these sources. Spatial homogeneity and isotropy imply that each Ta

b is diagonal
and has the form Ta

b = dia[�i(t);−Pi(t);−Pi(t);−Pi(t)] where the index i = 1; 2; : : : ; N denotes N
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di4erent kinds of sources (like radiation, matter, cosmological constant etc.). Since the sources do
not interact with each other, each energy momentum tensor must satisfy the relation Ta

b;a = 0 which
translates to the condition d(�ia3) =−Pida3. It follows that the evolution of the energy densities of
each component is essentially dependent on the parameter wi ≡ (Pi=�i) which, in general, could be
a function of time. Integrating d(�ia3) = −wi�ida3, we get

�i = �i(a0)
(a0

a

)3
exp

[
−3
∫ a

a0

d Wa
Wa

wi( Wa)
]

(19)

which determines the evolution of the energy density of each of the species in terms of the
functions wi(a).

This description determines �(a) for di4erent sources but not a(t). To determine the latter we can
use one of the Einstein’s equations:

H 2(a) =
ȧ2

a2 =
8�G
3

∑
i

�i(a) − k
a2 : (20)

This equation shows that, once the evolution of the individual components of energy density �i(a) is
known, the function H (a) and thus the line element in Eq. (13) is known. (Evaluating this equation
at the present epoch one can determine the value of k; hence it is not necessary to provide this
information separately.) Given H0, the current value of the Hubble parameter, one can construct a
critical density, by the de.nition:

�c =
3H 2

0

8�G
= 1:88h2 × 10−29 gm cm−3 = 2:8 × 1011h2M� Mpc−3

= 1:1 × 104h2 eV cm−3 = 1:1 × 10−5h2 protons cm−3 (21)

and parameterize the energy density, �i(a0), of di4erent components at the present epoch in terms of
the critical density by �i(a0) ≡ +i�c. [Observations [49,50] give h = 0:72 ± 0:03 (statistical) ±0:07
(systematic).] It is obvious from Eq. (20) that k = 0 corresponds to +tot =

∑
i +i = 1 while +tot ¿ 1

and +tot ¡ 1 correspond to k = ±1. When +tot �= 1, Eq. (20), evaluated at the current epoch, gives
(k=a2

0) = H 2
0 (+tot − 1), thereby .xing the value of (k=a2

0); when, +tot = 1, it is conventional to take
a0 = 1 since its value can be rescaled.

2.3. Composition of the universe

It is important to stress that absolutely no progress in cosmology can be made until a relationship
between � and P is provided, say, in the form of the functions wi(a)s. This fact, in turn, brings
to focus two issues which are not often adequately emphasized: (i) If we assume that the source is
made of normal laboratory matter, then the relationship between � and P depends on our knowledge
of how the equation of state for matter behaves at di4erent energy scales. This information needs
to be provided by atomic physics, nuclear physics and particle physics. Cosmological models can
at best be only as accurate as the input physics about T i

k is; any de.nitive assertion about the state
of the universe is misplaced, if the knowledge about T i

k which it is based on is itself speculative or
nonexistent at the relevant energy scales. At present we have laboratory results testing the behavior
of matter up to about 100 GeV and hence we can, in principle, determine the equation of state for
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matter up to 100 GeV. By and large, the equation of state for normal matter in this domain can be
taken to be that of an ideal Puid with � giving the energy density and P giving the pressure; the
relation between the two is of the form P = w� with w = 0 for nonrelativistic matter and w = (1=3)
for relativistic matter and radiation.

(ii) The situation becomes more complicated when we realize that it is entirely possible for the
large scale universe to be dominated by matter whose presence is undetectable at laboratory scales.
For example, large scale scalar .elds dominated either by kinetic energy or nearly constant potential
energy could exist in the universe and will not be easily detectable at laboratory scales. We see
from (6) that such systems can have an equation of state of the form P=w� with w=1 (for kinetic
energy dominated scalar .eld) or w = −1 (for potential energy dominated scalar .eld). While the
conservative procedure for doing cosmology would be to use only known forms of T i

k on the right
hand side of Einstein’s equations, this has the drawback of preventing progress in our understanding
of nature, since cosmology could possibly be the only testing ground for the existence of forms of
T i
k which are diQcult to detect at laboratory scales.
One of the key issues in modern cosmology has to do with the conPict in principle between (i)

and (ii) above. Suppose a model based on conventional equation of state, adequately tested in the
laboratory, fails to account for a cosmological observation. Should one treat this as a failure of the
cosmological model or as a signal from nature for the existence of a source T i

k not seen at laboratory
scales? There is no easy answer to this question and we will focus on many facets of this issue in
the coming sections.

Fig. 1 provides an inventory of the density contributed by di4erent forms of matter in the universe.
The x-axis is actually a combination +hn of + and the Hubble parameter h since di4erent components
are measured by di4erent techniques. (Usually n = 1 or 2; numerical values are for h = 0:7.) The
density parameter contributed today by visible, nonrelativistic, baryonic matter in the universe is
about +B ≈ (0:01–0.2) (marked by triangles in the .gure; di4erent estimates are from di4erent
sources; see for a sample of Refs. [51–60]). The density parameter due to radiation is about +R ≈
2 × 10−5 (marked by squares in the .gure). Unfortunately, models for the universe with just these
two constituents for the energy density are in violent disagreement with observations. It appears to
be necessary to postulate the existence of:

• Pressure-less (w = 0) nonbaryonic dark matter which does not couple with radiation and having
a density of about +DM ≈ 0:3. Since it does not emit light, it is called dark matter (and marked
by a cross in the .gure). Several independent techniques like cluster mass-to-light ratios [61]
baryon densities in clusters [62,63] weak lensing of clusters [64,65] and the existence of massive
clusters at high redshift [66] have been used to obtain a handle on +DM. These observations are
all consistent with +NR = (+DM + +B) ≈ +DM ≈ (0:2–0.4).

• An exotic form of matter (cosmological constant or something similar) with an equation of state
p ≈ −� (that is, w ≈ −1) having a density parameter of about +� ≈ 0:7 (marked by a .lled
circle in the .gure). The evidence for +� will be discussed in Section 3.

So in addition to H0, at least four more free parameters are required to describe the background
universe at low energies (say, below 50 GeV). These are +B; +R ; +DM and +� describing the fraction
of the critical density contributed by baryonic matter, radiation (including relativistic particles like
e.g., massive neutrinos; marked by a cross in the .gure), dark matter and cosmological constant
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Fig. 1. Cosmic inventory of energy densities. See text for description (.gure adapted from [46]).

respectively. The .rst two certainly exist; the existence of last two is probably suggested by obser-
vations and is de.nitely not contradicted by any observations. Of these, only +R is well constrained
and other quantities are plagued by both statistical and systematic errors in their measurements. The
top two positions in the contribution to + are from cosmological constant and nonbaryonic dark
matter. It is unfortunate that we do not have laboratory evidence for the existence of the .rst two
dominant contributions to the energy density in the universe. (This feature alone could make most of
the cosmological paradigm described in this review irrelevant at a future date!) The simplest model
for the universe is based on the assumption that each of the sources which populate the universe
has a constant wi; then Eq. (20) becomes

ȧ2

a2 = H 2
0

∑
i

+i

(a0

a

)3(1+wi) − k
a2 ; (22)

where each of these species is identi.ed by density parameter +i and the equation of state char-
acterized by wi. The most familiar form of energy densities are those due to pressure-less matter
with wi = 0 (that is, nonrelativistic matter with rest mass energy density �c2 dominating over the
kinetic energy density, �v2=2) and radiation with wi=(1=3). Whenever any one component of energy
density dominates over others, P � w� and it follows from Eq. (22) (taking k = 0, for simplicity)
that

�˙ a−3(1+w); a˙ t2=[3(1+w)] : (23)
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For example, � ˙ a−4; a ˙ t1=2 if the source is relativistic and � ˙ a−3; a ˙ t2=3 if the source
is nonrelativistic. This result shows that the past evolution of the universe is characterized by two
important epochs (see e.g. [43,44]): (i) The .rst is the radiation dominated epoch which occurs at
redshifts greater than zeq ≈ (+DM=+R) ≈ 104. For z & zeq the energy density is dominated by hot
relativistic matter and the universe is very well approximated as a k = 0 model with a(t) ˙ t1=2.
(ii) The second phase occurs for z�zeq in which the universe is dominated by nonrelativistic matter
and—in some cases—the cosmological constant. The form of a(t) in this phase depends on the
relative values of +DM and +�. In the simplest case, with +DM ≈ 1, +�=0, +B�+DM the expansion
is a power law with a(t) ˙ t2=3. (When cosmological constant dominates over matter, a(t) grows
exponentially.) During all the epochs, the temperature of the radiation varies as T ˙ a−1. When
the temperature falls below T ≈ 103 K, neutral atomic systems form in the universe and photons
decouple from matter. In this scenario, a relic background of such photons with Planckian spectrum
at some nonzero temperature will exist in the present day universe. The present theory is, however,
unable to predict the value of T at t = t0; it is therefore a free parameter related +R ˙ T 4

0 .

2.4. Geometrical features of a universe with a cosmological constant

The evolution of the universe has di4erent characteristic features if there exists sources in the
universe for which (1+3w)¡ 0. This is obvious from equation (8) which shows that if (�+3P)=
(1 + 3w)� becomes negative, then the gravitational force of such a source (with �¿ 0) will be
repulsive. The simplest example of this kind of a source is the cosmological constant with w� =−1.

To see the e4ect of a cosmological constant let us consider a universe with matter, radiation and
a cosmological constant. Introducing a dimensionless time coordinate 2=H0t and writing a= a0q(2)
Eq. (20) can be cast in a more suggestive form describing the one dimensional motion of a particle
in a potential

1
2

(
dq
d2

)2

+ V (q) = E ; (24)

where

V (q) = −1
2

[
+R

q2 +
+NR

q
+ +�q2

]
; E =

1
2
(1 − +) : (25)

This equation has the structure of the .rst integral for motion of a particle with energy E in a
potential V (q). For models with +=+R ++NR ++�=1, we can take E=0 so that (dq=d2)=

√
V (q).

Fig. 2 is the phase portrait of the universe showing the velocity (dq=d2) as a function of the position
q=(1+z)−1 for such models. At high redshift (small q) the universe is radiation dominated and q̇ is
independent of the other cosmological parameters; hence all the curves asymptotically approach each
other at the left end of the .gure. At low redshifts, the presence of cosmological constant makes a
di4erence and—in fact—the velocity q̇ changes from being a decreasing function to an increasing
function. In other words, the presence of a cosmological constant leads to an accelerating universe
at low redshifts.

For a universe with nonrelativistic matter and cosmological constant, the potential in (25) has a
simple form, varying as (−a−1) for small a and (−a2) for large a with a maximum in between
at q = qmax = (+NR=2+�)1=3. This system has been analyzed in detail in literature for both constant
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Fig. 2. The phase portrait of the universe, with the “velocity” of the universe (dq=d2) plotted against the “position”
q = (1 + z)−1 for di4erent models with +R = 2:56 × 10−5h−2; h = 0:5; +NR + +� + +R = 1. Curves are parameterized by
the value of +NR = 0:1; 0:2; 0:3; 0:5; 0:8; 1:0 going from bottom to top as indicated. (Figure adapted from [46].)

cosmological constant [67] and for a time dependent cosmological constant [68]. A wide variety
of explicit solutions for a(t) can be provided for these equations. We briePy summarize a few
of them.

• If the “particle” is situated at the top of the potential, one can obtain a static solution with
Xa= ȧ=0 by adjusting the cosmological constant and the dust energy density and taking k=1. This
solution,

�crit = 4�G�NR =
1
a2

0
; (26)

was the one which originally prompted Einstein to introduce the cosmological constant (see Section
1.2).

• The above solution is, obviously, unstable and any small deviation from the equilibrium position
will cause a → 0 or a → ∞. By .ne tuning the values, it is possible to obtain a model for the
universe which “loiters” around a = amax for a large period of time [69–71,24–26].

• A subset of models corresponds to those without matter and driven entirely by cosmological
constant �. These models have k = (−1; 0;+1) and the corresponding expansion factors being
proportional to [sinh(Ht); exp(Ht); cosh(Ht)] with �2 = 3H 2. These line elements represent three
di4erent characterizations of the de Sitter spacetime. The manifold is a four dimensional hyper-
boloid embedded in a Pat, .ve dimensional space with signature (+−−−). We shall discuss this
in greater detail in Section 9.

• It is also possible to obtain solutions in which the particle starts from a=0 with an energy which
is insuQcient for it to overcome the potential barrier. These models lead to a universe which
collapses back to a singularity. By arranging the parameters suitably, it is possible to make a(t)
move away or towards the peak of the potential (which corresponds to the static Einstein universe)
asymptotically [67].
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Fig. 3. The left panel gives the angular diameter distance in units of cH−1
0 as a function of redshift. The right panel gives

the luminosity distance in units of cH−1
0 as a function of redshift. Each curve is labelled by (+NR ; +�).

• In the case of +NR + +� = 1, the explicit solution for a(t) is given by

a(t) ˙
(

sinh
3
2
Ht
)2=3

; k = 0; 3H 2 = � : (27)

This solution smoothly interpolates between a matter dominated universe a(t) ˙ t2=3 at early
stages and a cosmological constant dominated phase a(t) ˙ exp(Ht) at late stages. The transition
from deceleration to acceleration occurs at zacc = (2+�=+NR)1=3 − 1, while the energy densities of
the cosmological constant and the matter are equal at z�m = (+�=+NR)1=3 − 1.

The presence of a cosmological constant also a4ects other geometrical parameters in the universe.
Fig. 3 gives the plot of dA(z) and dL(z); (note that angular diameter distance is not a monotonic
function of z). Asymptotically, for large z, these have the limiting forms,

dA(z) ∼= 2(H0+NR)−1z−1; dL(z) ∼= 2(H0+NR)−1z : (28)

The geometry of the spacetime also determines the proper volume of the universe between the red-
shifts z and z + dz which subtends a solid angle d+ in the sky. If the number density of sources
of a particular kind (say, galaxies, quasars, : : :) is given by n(z), then the number count of sources
per unit solid angle per redshift interval should vary as

dN
d+ dz

= n(z)
dV

d+ dz
=

n(z)a2
0r

2
em(z)H−1(z)

(1 + z)3 : (29)

Fig. 4 shows (dN=d+ dz); it is assumed that n(z) = n0(1 + z)3. The y-axis is in units of n0H−3
0 .

3. Evidence for a nonzero cosmological constant

There are several cosmological observations which suggests the existence of a nonzero cosmo-
logical constant with di4erent levels of reliability. Most of these determine either the value of +NR

or some combination of +NR and +�. When combined with the strong evidence from the CMBR
observations that the +tot = 1 (see Section 6) or some other independent estimate of +NR, one is led
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Fig. 4. The .gure shows (dN=d+ dz): it is assumed that n(z) = n0(1 + z)3. The y-axis is in units of n0H−3
0 . Each curve

is labelled by (+NR ; +�).

to a nonzero value for +�. The most reliable ones seem to be those based on high redshift supernova
[72–74] and structure formation models [75–77]. We shall now discuss some of these evidence.

3.1. Observational evidence for accelerating universe

Fig. 2 shows that the evolution of a universe with +� �= 0 changes from a decelerating phase to
an accelerating phase at late times. If H (a) can be observationally determined, then one can check
whether the real universe had undergone an accelerating phase in the past. This, in turn, can be done
if dL(z), say, can be observationally determined for a class of sources. Such a study of several high
redshift supernova has led to the data which is shown in Figs. 5, 9.

Bright supernova explosions are brief explosive stellar events which are broadly classi.ed as two
types. Type-Ia supernova occurs when a degenerate dwarf star containing CNO enters a stage of rapid
nuclear burning cooking iron group elements (see e.g., Chapter 7 of [78]). These are the brightest
and most homogeneous class of supernova with hydrogen poor spectra. An empirical correlation has
been observed between the sharply rising light curve in the initial phase of the supernova and its
peak luminosity so that they can serve as standard candles. These events typically last about a month
and occurs approximately once in 300 years in our galaxy. (Type II supernova, which occur at the
end of stellar evolution, are not useful as standard candles.)

For any supernova, one can directly observe the apparent magnitude m [which is essentially the
logarithm of the Pux F observed] and its redshift. The absolute magnitude M of the supernova is
again related to the actual luminosity L of the supernova in a logarithmic fashion. Hence the relation
F = (L=4�d2

L) can be written as

m−M = 5 log10

(
dL

Mpc

)
+ 25 : (30)

The numerical factors arise from the astronomical conventions used in the de.nition of m and M .
Very often, one will use the dimensionless combination (H0dL(z)=c) rather than dL(z) and the above



252 T. Padmanabhan / Physics Reports 380 (2003) 235–320

Fig. 5. The luminosity distance of a set of type Ia supernova at di4erent redshifts and three theoretical models with
+NR + +� = 1. The best .t curve has +NR = 0:32; +� = 0:68.

equation will change to m(z) =M+ 5 log10(H0dL(z)=c) with the quantity M being related to M by

M = M + 25 + 5 log10

(
cH−1

0

1 Mpc

)
= M − 5 log10 h + 42:38 : (31)

If the absolute magnitude of a class of Type I supernova can be determined from the study of its
light curve, then one can obtain the dL for these supernova at di4erent redshifts. (In fact, we only
need the low-z apparent magnitude at a given z which is equivalent to knowing M.) Knowing dL,
one can determine the geometry of the universe.

To understand this e4ect in a simple context, let us compare the luminosity distance for a matter
dominated model (+NR = 1; +� = 0)

dL = 2H−1
0 [(1 + z) − (1 + z)1=2] ; (32)

with that for a model driven purely by a cosmological constant (+NR = 0; +� = 1)

dL = H−1
0 z(1 + z) : (33)

It is clear that at a given z, the dL is larger for the cosmological constant model. Hence, a given
object, located at a .xed redshift, will appear brighter in the matter dominated model compared
to the cosmological constant dominated model. Though this sounds easy in principle, the statistical
analysis turns out to be quite complicated. The supernova cosmology project (SCP) has discovered
[74] 42 supernova in the range (0.18–0.83). The high-z supernova search team (HSST) discovered
14 supernova in the redshift range (0.16–0.62) and another 34 nearby supernova [73] and used two
separate methods for data .tting. (They also included two previously published results from SCP.)
Assuming +NR + +� = 1, the analysis of this data gives +NR = 0:28 ± 0:085 (stat) ±0:05 (syst).
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Fig. 6. Con.dence contours corresponding to 68%, 90% and 99% based on SN data in the +NR −M plane for the Pat
models with +NR + +� = 1. Frame (a) on the left uses all data while frame (b) in the middle uses low redshift data
and the frame (c) in the right uses high redshift data. While neither the low-z or high-z data alone can exclude the
+NR = 1; +� = 0 model, the full data excludes it to a high level of signi.cance.

Fig. 5 shows the dL(z) obtained from the supernova data and three theoretical curves all of which
are for k =0 models containing nonrelativistic matter and cosmological constant. The data used here
is based on the redshift magnitude relation of 54 supernova (excluding 6 outliers from a full sample
of 60) and that of SN 19974 at z = 1:755; the magnitude used for SN 19974 has been corrected
for lensing e4ects [79]. The best .t curve has +NR ≈ 0:32; +� ≈ 0:68. In this analysis, one had
treated +NR and the absolute magnitude M as free parameters (with +NR ++� = 1) and has done a
simple best .t for both. The corresponding best .t value for M is M = 23:92± 0:05. Frame (a) of
Fig. 6 shows the con.dence interval (for 68%, 90% and 99%) in the +NR −M for the Pat models.
It is obvious that most of the probability is concentrated around the best .t value. We shall discuss
frame (b) and frame (c) later on. (The discussion here is based on [80].)

The con.dence intervals in the +�−+NR plane are shown in Fig. 7 for the full data. The con.dence
regions in the top left frame are obtained after marginalizing over M. (The best .t value with 16
error is indicated in each panel and the con.dence contours correspond to 68%, 90% and 99%.)
The other three frames show the corresponding result with a constant value for M rather than by
marginalizing over this parameter. The three frames correspond to the mean value and two values in
the wings of 16 from the mean. The dashed line connecting the points (0,1) and (1,0) correspond to
a universe with +NR ++� = 1. From the .gure we can conclude that: (i) The results do not change
signi.cantly whether we marginalize over M or whether we use the best .t value. This is a direct
consequence of the result in frame (a) of Fig. 6 which shows that the probability is sharply peaked.
(ii) The results exclude the +NR = 1; +� = 0 model at a high level of signi.cance in spite of the
uncertainty in M.

The slanted shape of the probability ellipses shows that a particular linear combination of +NR

and +� is selected out by these observations [81]. This feature, of course, has nothing to do with su-
pernova and arises purely because the luminosity distance dL depends strongly on a particular linear
combination of +� and +NR, as illustrated in Fig. 8. In this .gure, +NR ; +� are treated as free param-
eters [without the k =0 constraint] but a particular linear combination q ≡ (0:8+NR − 0:6+�) is held
.xed. The dL is not very sensitive to individual values of +NR ; +� at low redshifts when (0:8+NR −
0:6+�) is in the range of (−0:3;−0:1). Though some of the models have unacceptable parameter
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Fig. 7. Con.dence contours corresponding to 68%, 90% and 99% based on SN data in the +NR − +� plane. The top
left frame is obtained after marginalizing over M while the other three frames uses .xed values for M. The values are
chosen to be the best-.t value for M and two others in the wings of 16 limit. The dashed line corresponds to the Pat
model. The unbroken slanted line corresponds to H0dL(z = 0:63) = constant. It is clear that: (i) The data excludes the
+NR =1; +� =0 model at a high signi.cance level irrespective of whether we marginalize over M or use an accepted 16
range of values for M. (ii) The shape of the con.dence contours are essentially determined by the value of the luminosity
distance at z ≈ 0:6.

values (for other reasons), supernova measurements alone cannot rule them out. Essentially the data
at z¡ 1 is degenerate on the linear combination of parameters used to construct the variable q.
The supernova data shows that most likely region is bounded by −0:3 . (0:8+NR −0:6+�) . −0:1.
In Fig. 7 we have also over plotted the line corresponding to H0dL(z = 0:63)= constant. The coin-
cidence of this line (which roughly corresponds to dL at a redshift in the middle of the data) with
the probability ellipses indicates that it is this quantity which essentially determines the nature of
the result.

We saw earlier that the presence of cosmological constant leads to an accelerating phase in the
universe which—however—is not obvious from the above .gures. To see this explicitly one needs
to display the data in the ȧ vs a plane, which is done in Fig. 9. Direct observations of supernova is
converted into dL(z) keeping M a free parameter. The dL is converted into dH (z) assuming k = 0
and using (17). A best .t analysis, keeping (M;+NR) as free parameters now lead to the results
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Fig. 8. The luminosity distance for a class of models with widely varying +NR ; +� but with a constant value for
q ≡ (0:8+NR −0:6+�) are shown in the .gure. It is clear that when q is .xed, low redshift observations cannot distinguish
between the di4erent models even if +NR and +� vary signi.cantly.

Fig. 9. Observations of SN are converted into the ‘velocity’ ȧ of the universe using a .tting function. The curves which
are over-plotted corresponds to a cosmological model with +NR + +� = 1. The best .t curve has +NR = 0:32; +� = 0:68.
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shown in Fig. 9, which con.rms the accelerating phase in the evolution of the universe. The curves
which are over-plotted correspond to a cosmological model with +NR + +� = 1. The best .t curve
has +NR = 0:32; +� = 0:68.

In the presence of the cosmological constant, the universe accelerates at low redshifts while
decelerating at high redshift. Hence, in principle, low redshift supernova data should indicate the
evidence for acceleration. In practice, however, it is impossible to rule out any of the cosmological
models using low redshift (z . 0:2) data as is evident from Fig. 9. On the other hand, high redshift
supernova data alone cannot be used to establish the existence of a cosmological constant. The data
for (z & 0:2) in Fig. 9 can be moved vertically up and made consistent with the decelerating += 1
universe by choosing the absolute magnitude M suitably. It is the interplay between both the high
redshift and low redshift supernova which leads to the result quoted above.

This important result can be brought out more quantitatively along the following lines. The data
displayed in Fig. 9 divides the supernova into two natural classes: low redshift ones in the range
0¡z . 0:25 (corresponding to the accelerating phase of the universe) and the high redshift ones
in the range 0:25 . z . 2 (in the decelerating phase of the universe). One can repeat all the
statistical analysis for the full set as well as for the two individual low redshift and high redshift
data sets. Frame (b) and (c) of Fig. 6 shows the con.dence interval based on low redshift data and
high redshift data separately. It is obvious that the +NR = 1 model cannot be ruled out with either
of the two data sets! But, when the data sets are combined—because of the angular slant of the
ellipses—they isolate a best .t region around +NR ≈ 0:3. This is also seen in Fig. 10 which plots
the con.dence intervals using just the high-z and low-z data separately. The right most frame in the
bottom row is based on the low-z data alone (with marginalization over M) and this data cannot
be used to discriminate between cosmological models e4ectively. This is because the dL at low-z
is only very weakly dependent on the cosmological parameters. So, even though the acceleration of
the universe is a low-z phenomenon, we cannot reliably determine it using low-z data alone. The
top left frame has the corresponding result with high-z data. As we stressed before, the +NR = 1
model cannot be excluded on the basis of the high-z data alone either. This is essentially because
of the nature of probability contours seen earlier in frame (c) of Fig. 6. The remaining 3 frames
(top right, bottom left and bottom middle) show the corresponding results in which .xed values
of M—rather than by marginalizing over M. Comparing these three .gures with the corresponding
three frames in 7 in which all data was used, one can draw the following conclusions: (i) The
best .t value for M is now M = 24:05 ± 0:38; the 16 error has now gone up by nearly eight
times compared to the result (0.05) obtained using all data. Because of this spread, the results are
sensitive to the value of M that one uses, unlike the situation in which all data was used. (ii)
Our conclusions will now depend on M. For the mean value and lower end of M, the data can
exclude the +NR =1; +� =0 model [see the two middle frames of Fig. 10]. But, for the high-end of
allowed 16 range of M, we cannot exclude the +NR = 1; +� = 0 model [see the bottom left frame
of Fig. 10]. While these observations have enjoyed signi.cant popularity, certain key points which
underly these analysis need to be stressed. (For a sample of views which goes against the main
stream, see [82,83].)

• The basic approach uses the supernova type I light curve as a standard candle. While this is
generally accepted, it must be remembered that we do not have a sound theoretical understanding
of the underlying emission process.
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Fig. 10. Con.dence contours corresponding to 68%, 90% and 99% based on SN data in the +NR −+� plane using either
the low-z data (bottom right frame) or high-z data (the remaining four frames). The bottom right and the top left frames
are obtained by marginalizing over M while the remaining three uses .xed values for M. The values are chosen to be the
best-.t value for M and two others in the wings of 16 limit. The dashed line corresponds to the Pat model. The unbroken
slanted line corresponds to H0dL(z = 0:63)= constant. It is clear that: (i) The 16 error in top left frame (0.38) has gone
up by nearly eight times compared to the value (0.05) obtained using all data (see Fig. 7) and the results are sensitive
to the value of M. (ii) The data can exclude the +NR = 1; +� = 0 model if the mean or low-end value of M is used
[see the two middle frames]. But, for the high-end of allowed 16 range of M, we cannot exclude the +NR = 1; +� = 0
model [see the bottom left frame]. (iii) The low-z data [bottom right] cannot exclude any of the models.

• The supernova data and .ts are dominated by the region in the parameter space around (+NR ; +�) ≈
(0:8; 1:5) which is strongly disfavoured by several other observations. If this disparity is due to
some other unknown systematic e4ect, then this will have an e4ect on the estimate given above.

• The statistical issues involved in the analysis of this data to obtain best .t parameters are nontrivial.
As an example of how the claims varied over time, let us note that the analysis of the .rst 7 high
redshift SNe Ia gave a value for +NR which is consistent with unity: +NR = (0:94+0:34

−0:28). However,
adding a single z = 0:83 supernova for which good HST data was available, lowered the value
to +NR = (0:6 ± 0:2). More recently, the analysis of a larger data set of 42 high redshift SNe Ia
gives the results quoted above.

3.2. Age of the universe and cosmological constant

From Eq. (24) we can also determine the current age of the universe by the integral

H0t0 =
∫ 1

0

dq√
2(E − V )

: (34)
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Fig. 11. Lines of constant H0t0 in the +NR−+� plane. The eight lines are for H0t0 =(1:08; 0:94; 0:9; 0:85; 0:82; 0:8; 0:7; 0:67)
as shown. The diagonal line is the contour for models with +NR + +� = 1.

Since most of the contribution to this integral comes from late times, we can ignore the radiation
term and set +R ≈ 0. When both +NR and +� are present and are arbitrary, the age of the universe
is determined by the integral

H0t0 =
∫ ∞

0

dz

(1 + z)
√

+NR(1 + z)3 + +�
≈ 2

3
(0:7+NR − 0:3+� + 0:3)−0:3 : (35)

The integral, which cannot be expressed in terms of elementary functions, is well approximated by
the numerical .t given in the second line. Contours of constant H0t0 based on the (exact) integral
are shown in Fig. 11. It is obvious that, for a given +NR, the age is higher for models with +� �= 0.

Observationally, there is a consensus [49,50] that h ≈ 0:72 ± 0:07 and t0 ≈ 13:5 ± 1:5 Gyr [84].
This will give H0t0 = 0:94 ± 0:14. Comparing this result with the .t in (35), one can immediately
draw several conclusions:

• If +NR ¿ 0:1, then +� is nonzero if H0t0 ¿ 0:9. A more reasonable assumption of +NR ¿ 0:3
we will require nonzero +� if H0t0 ¿ 0:82.

• If we take +NR = 1; +� = 0 and demand t0 ¿ 12 Gyr (which is a conservative lower bound from
stellar ages) will require h¡ 0:54. Thus a purely matter dominated + = 1 universe would require
low Hubble constant which is contradicted by most of the observations.
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• An open model with +NR ≈ 0:2; +� = 0 will require H0t0 ≈ 0:85. This still requires ages on the
lower side but values like h ≈ 0:6; t0 ≈ 13:5 Gyr are acceptable within error bars.

• A straightforward interpretation of observations suggests maximum likelihood for H0t0=0:94. This
can be consistent with a + = 1 model only if +NR ≈ 0:3; +� ≈ 0:7.

If the universe is populated by dust-like matter (with w=0) and another component with an equation
of state parameter wX , then the age of the universe will again be given by an integral similar to the
one in Eq. (35) with +� replaced by +X (1 + z)3(1+wX ). This will give

H0t0 =
∫ ∞

0

dz

(1 + z)
√

+NR(1 + z)3 + +X (1 + z)3(1+wX )

=
∫ 1

0
dq
(

q
+NR + +Xq−3wX

)1=2

: (36)

The integrand varies from 0 to (+NR ++X )−1=2 in the range of integration for w¡ 0 with the rapidity
of variation decided by w. As a result, H0t0 increases rapidly as w changes from 0 to −3 or so
and then saturates to a plateau. Even an absurdly negative value for w like w =−100 gives H0t0 of
only about 1.48. This shows that even if some exotic dark energy is present in the universe with a
constant, negative w, it cannot increase the age of the universe beyond about H0t0 ≈ 1:48.

The comments made above pertain to the current age of the universe. It is also possible to obtain
an expression similar to (34) for the age of the universe at any given redshift z

H0t(z) =
∫ ∞

z

dz′

(1 + z′)h(z′)
; h(z) =

H (z)
H0

(37)

and use it to constrain +�. For example, the existence of high redshift galaxies with evolved stellar
population, high redshift radio galaxies and age dating of high redshift QSOs can all be used in
conjunction with this equation to put constrains on +� [85–90]. Most of these observations require
either +� �= 0 or +tot ¡ 1 if they have to be consistent with h& 0:6. Unfortunately, the interpretation
of these observations at present requires fairly complex modeling and hence the results are not
water tight.

3.3. Gravitational lensing and the cosmological constant

Consider a distant source at redshift z which is lensed by some intervening object. The lensing
is most e4ective if the lens is located midway between the source and the observer (see, e.g.,
p. 196 of [46]). This distance will be (rem=2) if the distance to the source is rem. (To be rigorous,
one should be using angular diameter distances rather than rem for this purpose but the essential
conclusion does not change.) To see how this result depends on cosmology, let us consider a source
at redshift z = 2, and a lens, located optimally, in: (a) + = 1 matter dominated universe, (b) a very
low density matter dominated universe in the limit of + → 0, (c) vacuum dominated universe with
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+� = +tot. In case (a), dH ≡ H−1(z) ˙ (1 + z)−3=2, so that

rem(z) ˙
∫ z

0
dH (z) dz ˙

(
1 − 1√

1 + z

)
: (38)

The lens redshift is determined by the equation(
1 − 1√

1 + zL

)
=

1
2

(
1 − 1√

1 + z

)
: (39)

For z = 2, this gives zL = 0:608. For case (b), a˙ t giving dH ˙ (1 + z)−1 and rem(z) ˙ ln(1 + z).
The equation to be solved is (1 + zL) = (1 + z)1=2 which gives zL = 0:732 for z = 2. Finally, in
the case of (c), dH is a constant giving rem(z) ˙ z and zL = (1=2)z. Clearly, the lens redshift is
larger for vacuum dominated universe compared to the matter dominated universe of any +. When
one considers a distribution of lenses, this will a4ect the probability for lensing in a manner which
depends on +�. From the observed statistics of lensing, one can put a bound on +�. More formally,
one can compute the probability for a source at redshift zs being lensed in a +� ++NR =1 universe
(relative to the corresponding probability in a +NR = 1; +� = 0 model). This relative probability is
nearly .ve times larger at zs=1 and about 13 times larger for zs=2 in a purely cosmological constant
dominated universe [91–95,2,3]. This e4ect quanti.es the fact that the physical volume associated
with unit redshift interval is larger in models with cosmological constant and hence the probability
that a light ray will encounter a galaxy is larger in these cases.

Current analysis of lensing data gives somewhat di4ering constraints based on the assumptions
which are made [96–99]; but typically all these constraints are about +� . 0:7. The result [100] from
cosmic lens all sky survey (CLASS), for example, gives +NR = 0:31+0:27

−0:14 (68%) +0:12
−0:10 (systematic)

for a k = 0 universe.

3.4. Other geometrical tests

The existence of a maximum for dA(z) is a generic feature of cosmological models with +NR ¿ 0.
For a k=0; +NR=1 model, the maximum occurs at zmax ≈ 1:25 and zmax increases as +� is increased.
To use this as a cosmological test, we require a class of objects with known transverse dimension
and redshift. The most reliable quantity used so far corresponds to the physical wavelength acoustic
vibrations in the baryon–photon gas at z ≈ 103. This length scale is imprinted in the temperature
anisotropies of the CMBR and the angular size of these anisotropies will depend on dA and hence on
the cosmological parameters; this is discussed in Section 6. In principle, one could also use angular
sizes of galaxies, clusters of galaxies, or radio galaxies [101–103]. Unfortunately, understanding of
di4erent physical e4ects and the redshift evolution of these sources make this a diQcult test in
practice.

There is another geometrical feature of the universe in which angular diameter distance plays an
interesting role. In a closed Friedmann model with k = +1, there is possibility that an observer at
% = 0 will be able to receive the light from the antipodal point % = �. In a purely matter dominated
universe, it is easy to see that the light ray from the antipodal point % = � reaches % = 0 exactly at
the time of maximum expansion; therefore, in a closed, matter dominated universe, in the expanding
phase, no observer can receive light from the antipodal point. The situation, however, is di4erent in
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the presence of cosmological constant. In this case, dA(z) ˙ (1 + z)−1 sin � where

� = |+tot − 1|1=2
∫ z

0

dz′

h(z′)
; h(z) =

H (z)
H0

: (40)

It follows that dA → 0 when � → �. Therefore, the angular size of an object near the antipodal point
can diverge making the object extremely bright in such a universe. Assuming that this phenomena
does not occur up to, say z = 6, will imply that the redshift of the antipodal point za(+�;+NR) is
larger than 6. This result can be used to constrain the cosmological parameters [104,105,68] though
the limits obtained are not as tight as some of the other tests.

Another test which can be used to obtain a handle on the geometry of the universe is usually called
Alcock–Paczynski curvature test [106]. The basic idea is to use the fact that when any spherically
symmetric system at high redshift is observed, the cosmological parameters enter di4erently in the
characterization of radial and transverse dimensions. Hence any system which can be approximated
a priori to be intrinsically spherical will provide a way of determining cosmological parameters. The
correlation function of SDSS luminous red galaxies seems to be promising in terms of both depth
and density for applying this test (see for a detailed discussion, [107,108]). The main sources of
error arises from nonlinear clustering and the bias of the red galaxies, either of which can be a
source of systematic error. A variant of this method was proposed using observations of Lyman- 
forest and compare the correlation function along the line of sight and transverse to the line of sight.
In addition to the modeling uncertainties, successful application of this test will also require about
30 close quasar pairs [109,110].

4. Models with evolving cosmological “constant”

The observations which suggest the existence of nonzero cosmological constant—discussed in
the last section—raises serious theoretical problems which we mentioned in Section 1.1. These
diQculties have led people to consider the possibility that the dark energy in the universe is not
just a cosmological constant but is of more complicated nature, evolving with time. Its value today
can then be more naturally set by the current expansion rate rather than predetermined earlier on—
thereby providing a solution to the cosmological constant problems. Though a host of models have
been constructed based on this hope, none of them provides a satisfactory solution to the problems
of .ne-tuning. Moreover, all of them involve an evolving equation of state parameter wX (a) for the
unknown (“X ”) dark energy component, thereby taking away all predictive power from cosmology
[166]. Ultimately, however, this issue needs to settled observationally by checking whether wX (a)
is a constant [equal to −1, for the cosmological constant] at all epochs or whether it is indeed
varying with a. We shall now discuss several observational and theoretical issues connected with
this theme. While the complete knowledge of the Ta

b [that is, the knowledge of the right hand side
of (20)] uniquely determines H (a), the converse is not true. If we know only the function H (a), it
is not possible to determine the nature of the energy density which is present in the universe. We
have already seen that geometrical measurements can only provide, at best, the functional form of
H (a). It follows that purely geometrical measurements of the Friedmann universe will never allow
us to determine the material content of the universe. [The only exception to this rule is when we
assume that each of the components in the universe has constant wi. This is fairly strong assumption
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and, in fact, will allow us to determine the components of the universe from the knowledge of the
function H (a). To see this, we .rst note that the term (k=a2) in equation (22) can be thought of as
contributed by a hypothetical species of matter with w = −(1=3). Hence Eq. (22) can be written in
the form

ȧ2

a2 = H 2
0

∑
i

+i

(a0

a

)3(1+wi)
(41)

with a term having wi = −(1=3) added to the sum. Let  ≡ 3(1 + w) and +( ) denote the fraction
of the critical density contributed by matter with w = ( =3) − 1. (For discrete values of wi and
 i, the function +( ) will be a sum of Dirac delta functions.) In the continuum limit, Eq. (41)
can be rewritten as

H 2 = H 2
0

∫ ∞

−∞
d +( )e− q ; (42)

where (a=a0)=exp(q). The function +( ) is assumed to have .nite support (or decrease fast enough)
for the expression on the right hand side to converge. If the observations determine the function
H (a), then the left hand side can be expressed as a function of q. An inverse Laplace transform
of this equation will then determine the form of +( ) thereby determining the composition of the
universe, as long as all matter can be described by an equation of state of the form pi = wi�i

with wi = constant for all i = 1; : : : ; N .] More realistically one is interested in models which has a
complicated form of wX (a) for which the above analysis is not applicable. Let us divide the source
energy density into two components: �k(a), which is known from independent observations and a
component �X (a) which is not known. From (20), it follows that

8�G
3

�X (a) = H 2(a)(1 − Q(a)); Q(a) ≡ 8�G�k(a)
3H 2(a)

: (43)

Taking a derivative of ln �X (a) and using (19), it is easy to obtain the relation

wX (a) = −1
3

d
d ln a

ln[(1 − Q(a))H 2(a)a3] : (44)

If geometrical observations of the universe give us H (a) and other observations give us �k(a)
then one can determine Q and thus wX (a). While this is possible, in principle the uncertainties in
measuring both H and Q makes this a nearly impossible route to follow in practice. In particular,
one is interested in knowing whether w evolves with time or a constant and this turns out to be a
very diQcult task observationally. We shall now briePy discuss some of the issues.

4.1. Parametrized equation of state and cosmological observations

One simple, phenomenological, procedure for comparing observations with theory is to parameter-
ize the function w(a) in some suitable form and determine a .nite set of parameters in this function
using the observations. Theoretical models can then be reduced to a .nite set of parameters which
can be determined by this procedure. To illustrate this approach, and the diQculties in determining
the equation of state of dark energy from the observations, we shall assume that w(a) is given by
the simple form: w(a)=w0 +w1(1− a); in the k =0 model (which we shall assume for simplicity),
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Fig. 12. Con.dence interval contours in the w0 − w1 plane arising from the full supernova data, for Pat models with
+NR + +� = 1. The three frames are for +NR = (0:2; 0:3; 0:4). The data cannot rule out cosmological constant with
w0 = −1; w1 = 0. The slanted line again corresponds to H0dL(z = 0:63)=constant and shows that the shape of the
probability ellipses arises essentially from this feature.

w0 measures the current value of the parameter and −w1 gives its rate of change at the present
epoch. In addition to simplicity, this parameterization has the advantage of giving .nite w in the
entire range 0¡a¡ 1.

Fig. 12 shows con.dence interval contours in the w0 − w1 plane arising from the full supernova
data, obtained by assuming that +NR + +� = 1. The three frames are for +NR = (0:2; 0:3; 0:4).
The following features are obvious from the .gure: (i) The cosmological constant corresponding
to w0 = −1; w1 = 0 is a viable candidate and cannot be excluded. (In fact, di4erent analysis of
many observational results lead to this conclusion consistently; in other words, at present there is no
observational motivation to assume w1 �= 0.) (ii) The result is sensitive to the value of +NR which is
assumed. This is understandable from Eq. (44) which shows that wX (a) depends on both Q ˙ +NR

and H (a). (We shall discuss this dependence of the results on +NR in greater detail below). (iii)
Note that the axes are not in equal units in Fig. 12. The observations can determine w0 with far
greater accuracy than w1. (iv) The slanted line again corresponds to H0dL(z = 0:63) = constant and
shows that the shape of the probability ellipses arises essentially from this feature.

In summary, the current data de.nitely supports a negative pressure component with w0 ¡− (1=3)
but is completely consistent with w1 = 0. If this is the case, then the cosmological constant is the
simplest candidate for this negative pressure component and there is very little observational mo-
tivation to study other models with varying w(a). On the other hand, the cosmological constant
has well known theoretical problems which could possibly be alleviated in more sophisticated mod-
els with varying w(a). With this motivation, there has been extensive amount of work in the last
few years investigating whether improvement in the observational scenario will allow us to deter-
mine whether w1 is nonzero or not. (For a sample of references, see [111–126].) In the context
of supernova based determination of dL, it is possible to analyze the situation along the following
lines [80].

Since the supernova observations essentially measure dL(a), accuracy in the determination of w0

and w1 from (both the present and planned future [127]) supernova observations will crucially depend
on how sensitive dL is to the changes in w0 and w1. A good measure of the sensitivity is provided
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Fig. 13. Sensitivity of dL to the parameters w0; w1. The curves correspond to constant values for the percentage of change
in dLH0 for unit change in w0 (top frames), and w1 (bottom frames). Comparison of the top and bottom frames shows
that dLH0 varies by few tens of percent when w0 is varied but changes by much lesser amount when w1 is varied.

by the two parameters

A(z; w0; w1) ≡ d
dw0

ln(dL(z; w0; w1)H0) ;

B(z; w0; w1) ≡ d
dw1

ln(dL(z; w0; w1)H0) : (45)

Since dL(z; w0; w1) can be obtained from theory, the parameters A and B can be computed form
theory in a straight forward manner. At any given redshift z, we can plot contours of constant A
and B in the w0 − w1 plane. Fig. 13 shows the result of such an analysis [80]. The two frames on
the left are at z = 1 and the two frames on the right are at z = 3. The top frames give contours
of constant A and bottom frame give contours of constant B. From the de.nition in Eq. (45) it is
clear that A and B can be interpreted as the fractional change in dL for unit change in w0; w1. For
example, along the line marked A = 0:2 (in the top left frame) dL will change by 20 percent for
unit change in w0. It is clear from the two top frames that for most of the interesting region in
the w0 − w1 plane, changing w0 by unity changes dL by about 10 percent or more. Comparison of
z = 1 and z = 3 (the two top frames) shows that the sensitivity is higher at high redshift, as to be
expected. The shaded band across the picture corresponds to the region in which −16w(a)6 0
which is of primary interest in constraining dark energy with negative pressure. One concludes that
determining w0 from dL fairly accurately will not be too daunting a task.

The situation, however, is quite di4erent as regards w1 as illustrated in the bottom two frames.
For the same region of the w0 − w1 plane, dL changes only by a few percent when w1 changes
by unity. That is, dL is much less sensitive to w1 than to w0. It is going to be signi.cantly more
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Fig. 14. Contours of constant H0dL in the +NR − w0 and +NR − w1 planes at two redshifts z = 1 and 3. The two top
frames shows that a small variation of +NR in the allowed range of, say, (0:2; 0:4) corresponds to fairly large variation in
w1 along the curve of constant dL.

diQcult to determine a value for w1 from observations of dL in the near future. Comparison of z=1
and z = 3 again shows that the sensitivity is somewhat better at high redshifts but only marginally.

The situation is made worse by the fact that dL also depends on the parameter +NR. If varying
+NR mimics the variation of w1 or w0, then, one also needs to determine the sensitivity of dL to
+NR. Fig. 14 shows contours of constant H0dL in the +NR −w0 and +NR −w1 planes at two redshifts
z = 1 and 3. The two top frames shows that if one varies the value of +NR in the allowed range
of, say, (0:2; 0:4) one can move along the curve of constant dL and induce fairly large variation
in w1. In other words, large changes in w1 can be easily compensated by small changes in +NR

while maintaining the same value for dL at a given redshift. This shows that the uncertainty in
+NR introduces further diQculties in determining w1 accurately from measurements of dL. The two
lower frames show that the situation is better as regards w0. The curves are much less steep and
hence varying +NR does not induce large variations in w0. We are once again led to the conclusion
that unambiguous determination of w1 from data will be quite diQcult. This is somewhat disturbing
since w1 �= 0 is a clear indication of a dark energy component which is evolving. It appears that
observations may not be of great help in ruling out cosmological constant as the major dark energy
component. (The results given above are based on [80]; also see [128] and references cited therein.)

4.2. Theoretical models with time dependent dark energy: cosmic degeneracy

The approach in the last section was purely phenomenological and one might like to construct
some physical model which leads to varying w(a). It turns out that this is fairly easy, and—in
fact—it is possible to construct models which will accommodate virtually any form of evolution.
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We shall now discuss some examples. A simple form of the source with variable w are scalar .elds
with Lagrangians of di4erent forms, of which we will discuss two possibilities:

Lquin = 1
2 9a�9

a�− V (�); Ltach = −V (�)[1 − 9a�9a�]1=2 : (46)

Both these Lagrangians involve one arbitrary function V (�). The .rst one, Lquin, which is a natural
generalisation of the Lagrangian for a nonrelativistic particle, L = (1=2)q̇2 − V (q), is usually called
quintessence (for a sample of models, see [129–139]). When it acts as a source in Friedman universe,
it is characterized by a time dependent w(t) with

�q(t) =
1
2
�̇2 + V ; Pq(t) =

1
2
�̇2 − V ; wq =

1 − (2V=�̇2)

1 + (2V=�̇2)
: (47)

The structure of the second scalar .eld can be understood by a simple analogy from special relativity.
A relativistic particle with (one dimensional) position q(t) and mass m is described by the Lagrangian
L=−m

√
1 − q̇2. It has the energy E=m=

√
1 − q̇2 and momentum p=mq̇=

√
1 − q̇2 which are related

by E2 =p2 +m2. As is well known, this allows the possibility of having massless particles with .nite
energy for which E2 =p2. This is achieved by taking the limit of m → 0 and q̇ → 1, while keeping
the ratio in E = m=

√
1 − q̇2 .nite. The momentum acquires a life of its own, unconnected with

the velocity q̇, and the energy is expressed in terms of the momentum (rather than in terms of q̇)
in the Hamiltonian formulation. We can now construct a .eld theory by upgrading q(t) to a .eld �.
Relativistic invariance now requires � to depend on both space and time [� = �(t; x)] and q̇2 to
be replaced by 9i�9i�. It is also possible now to treat the mass parameter m as a function of �,
say, V (�) thereby obtaining a .eld theoretic Lagrangian L=−V (�)

√
1 − 9i�9i�. The Hamiltonian

structure of this theory is algebraically very similar to the special relativistic example we started with.
In particular, the theory allows solutions in which V → 0, 9i�9i� → 1 simultaneously, keeping the
energy (density) .nite. Such solutions will have .nite momentum density (analogous to a massless
particle with .nite momentum p) and energy density. Since the solutions can now depend on both
space and time (unlike the special relativistic example in which q depended only on time), the
momentum density can be an arbitrary function of the spatial coordinate. This provides a rich gamut
of possibilities in the context of cosmology [140–166]. This form of scalar .eld arises in string
theories [167] and—for technical reasons—is called a tachyonic scalar .eld. (The structure of this
Lagrangian is similar to those analyzed in a wide class of models called K-essence; see for example,
[160]. We will not discuss K-essence models in this review.) The stress tensor for the tachyonic
scalar .eld can be written in a perfect Puid form

T i
k = (� + p)uiuk − p�i

k (48)

with

uk =
9k�√
9i�9i�

; � =
V (�)√

1 − 9i�9i�
; p = −V (�)

√
1 − 9i�9i� : (49)

The remarkable feature of this stress tensor is that it could be considered as the sum of a pressure
less dust component and a cosmological constant [165]. To show this explicitly, we break up the
density � and the pressure p and write them in a more suggestive form as

� = �� + �DM; p = pV + pDM ; (50)
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where

�DM =
V (�)9i�9i�√

1 − 9i�9i�
; pDM = 0; �� = V (�)

√
1 − 9i�9i�; pV = −�� : (51)

This means that the stress tensor can be thought of as made up of two components—one behaving
like a pressure-less Puid, while the other having a negative pressure. In the cosmological context,
the tachyonic .eld is described by

�t(t) = V [1 − �̇2]−1=2; Pt = −V [1 − �̇2]1=2; wt = �̇2 − 1 : (52)

When �̇ is small (compared to V in the case of quintessence or compared to unity in the case of
tachyonic .eld), both these sources have w → −1 and mimic a cosmological constant. When �̇�V ,
the quintessence has w ≈ 1 leading to �q ˙ (1 + z)6; the tachyonic .eld, on the other hand, has
w ≈ 0 for �̇ → 1 and behaves like nonrelativistic matter. In both the cases, −1¡w¡ 1, though
it is possible to construct more complicated scalar .eld Lagrangians with even w¡ − 1. (See for
example, [168]; for some other alternatives to scalar .eld models, see for example, [169].)

Since the quintessence .eld (or the tachyonic .eld) has an undetermined free function V (�), it
is possible to choose this function in order to produce a given H (a). To see this explicitly, let
us assume that the universe has two forms of energy density with �(a) = �known(a) + ��(a) where
�known(a) arises from any known forms of source (matter, radiation, : : :) and ��(a) is due to a scalar
.eld. When w(a) is given, one can determine the V (�) using either (47) or (52). For quintessence,
(47) along with (43) gives

�̇2(a) = �(1 + w) =
3H 2(a)
8�G

(1 − Q)(1 + w) ;

2V (a) = �(1 − w) =
3H 2(a)
8�G

(1 − Q)(1 − w) : (53)

For tachyonic scalar .eld, (52) along with (43) gives

�̇2(a) = (1 + w); V (a) = �(−w)1=2 =
3H 2(a)
8�G

(1 − Q)(−w)1=2 : (54)

Given Q(a), w(a) these equations implicitly determine V (�). We have already seen that, for any
cosmological evolution speci.ed by the functions H (a) and �k(a), one can determine w(a); see Eq.
(44). Combining (44) with either (53) or (54), one can completely solve the problem. Let us .rst
consider quintessence. Here, using (44) to express w in terms of H and Q, the potential is given
implicitly by the form [170,166]

V (a) =
1

16�G
H (1 − Q)

[
6H + 2aH ′ − aHQ′

1 − Q

]
; (55)

�(a) =
[

1
8�G

]1=2 ∫ da
a

[
aQ′ − (1 − Q)

d lnH 2

d ln a

]1=2

; (56)
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where Q(a) ≡ [8�G�known(a)=3H 2(a)]. We shall now discuss some examples of this result:

• Consider a universe in which observations suggest that H 2(a) = H 2
0 a

−3. Such a universe could
be populated by nonrelativistic matter with density parameter +NR = + = 1. On the other hand,
such a universe could be populated entirely by a scalar .eld with a potential V (�) = V0 exp[ −
(16�G=3)1=2�]. One can also have a linear combination of nonrelativistic matter and scalar .eld
with the potential having a generic form V (�) = A exp[ − B�].

• Power law expansion of the universe can be generated by a quintessence model with V (�)=�− .
In this case, the energy density of the scalar .eld varies as �� ˙ t−2 =(2+ ); if the background
density �bg varies as �bg ˙ t−2, the ratio of the two energy densities changes as (��=�bg=t4=(2+ )).
Obviously, the scalar .eld density can dominate over the background at late times for  ¿ 0.

• A di4erent class of models arise if the potential is taken to be exponential with, say, V (�) ˙
exp(−:�=MPl). When k = 0, both �� and �bg scale in the same manner leading to

��

�bg + ��
=

3(1 + wbg)
:2 ; (57)

where wbg refers to the background parameter value. In this case, the dark energy density is said
to “track” the background energy density. While this could be a model for dark matter, there are
strong constraints on the total energy density of the universe at the epoch of nucleosynthesis. This
requires +� . 0:2 requiring dark energy to be subdominant at all epochs.

• Many other forms of H (a) can be reproduced by a combination of nonrelativistic matter and a
suitable form of scalar .eld with a potential V (�). As a .nal example [68], suppose H 2(a) =
H 2

0 [+NRa−3+(1−+NR)a−n]. This can arise, if the universe is populated with nonrelativistic matter
with density parameter +NR and a scalar .eld with the potential, determined using Eqs. (55), (56).
We get

V (�) = V0 sinh2n=(n−3)[ (�−  )] ; (58)

where

V0 =
(6 − n)H 2

0

16�G

[
+n

NR

(1 − +NR)3

]1=(n−3)

;  = (3 − n)(2�G=n)1=2 (59)

and  is a constant.

Similar results exists for the tachyonic scalar .eld as well [166]. For example, given any H (t), one
can construct a tachyonic potential V (�) so that the scalar .eld is the source for the cosmology.
The equations determining V (�) are now given by:

�(a) =
∫

da
aH

(
aQ′

3(1 − Q)
− 2

3
aH ′

H

)1=2

; (60)

V =
3H 2

8�G
(1 − Q)

(
1 +

2
3

aH ′

H
− aQ′

3(1 − Q)

)1=2

: (61)
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Eqs. (60) and (61) completely solve the problem. Given any H (t), these equations determine V (t)
and �(t) and thus the potential V (�). As an example, consider a universe with power law expansion
a = tn. If it is populated only by a tachyonic scalar .eld, then Q = 0; further, (aH ′=H) in Eq. (60)
is a constant making �̇ a constant. The complete solution is given by

�(t) =
(

2
3n

)1=2

t + �0; V (t) =
3n2

8�G

(
1 − 2

3n

)1=2 1
t2

; (62)

where n¿ (2=3). Combining the two, we .nd the potential to be

V (�) =
n

4�G

(
1 − 2

3n

)1=2

(�− �0)−2 : (63)

For such a potential, it is possible to have arbitrarily rapid expansion with large n. (For the cosmo-
logical model, based on this potential, see [159].)

A wide variety of phenomenological models with time dependent cosmological constant have been
considered in the literature. They involve power law decay of cosmological constant like � ˙ t− 

[171–176,68] or �˙ a− , [177–192], exponential decay �˙ exp(− a) [193] and more complicated
models (for a summary, see [68]). Virtually all these models can be reverse engineered and mapped
to a scalar .eld model with a suitable V (�). Unfortunately, all these models lack predictive power
or clear particle physics motivation.

This discussion also illustrates that even when w(a) is known, it is not possible to proceed further
and determine the nature of the source. The explicit examples given above shows that there are
at least two di4erent forms of scalar .eld Lagrangians (corresponding to the quintessence or the
tachyonic .eld) which could lead to the same w(a). A theoretical physicist, who would like to know
which of these two scalar .elds exist in the universe, may have to be content with knowing w(a).
The accuracy of the determination of w(a) depends on the prior assumptions made in determining
Q, as well as on the observational accuracy with which the quantities H (a) can be measured. Direct
observations usually give the luminosity distance dL or angular diameter distance dA. To obtain
H (a) from either of these, one needs to calculate a derivative [see, for example, (17)] which further
limits the accuracy signi.cantly. As we saw in the last section, this is not easy.

5. Structure formation in the universe

The conventional paradigm for the formation of structures in the universe is based on the growth
of small perturbations due to gravitational instabilities. In this picture, some mechanism is invoked to
generate small perturbations in the energy density in the very early phase of the universe. These per-
turbations grow due to gravitational instability and eventually form the di4erent structures which we
see today. Such a scenario can be constrained most severely by observations of cosmic microwave
background radiation (CMBR) at z ≈ 103. Since the perturbations in CMBR are observed to be small
(10−5–10−4 depending on angular scales), it follows that the energy density perturbations were small
compared to unity at the redshift of z ≈ 1000. The central quantity one uses to describe the growth
of structures during 0¡z¡ 103 is the density contrast de.ned as �(t; x) = [�(t; x) − �bg(t)]=�bg(t)
which characterizes the fractional change in the energy density compared to the background.
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(Here �bg(t) is the mean background density of the smooth universe.) Since one is often interested
in the statistical behavior of structures in the universe, it is conventional to assume that � and other
related quantities are elements of an ensemble. Many popular models of structure formation suggest
that the initial density perturbations in the early universe can be represented as a Gaussian random
variable with zero mean (that is, 〈�〉= 0) and a given initial power spectrum. The latter quantity is
de.ned through the relation P(t; k)= 〈|�k(t)|2〉 where �k is the Fourier transform of �(t; x) and 〈· · ·〉
indicates averaging over the ensemble. It is also conventional to de.ne the two-point correlation
function <(t; x) as the Fourier transform of P(t; k) over k. Though gravitational clustering will make
the density contrast non Gaussian at late times, the power spectrum and the correlation function
continue to be of primary importance in the study of structure formation.

When the density contrast is small, its evolution can be studied by linear perturbation theory and
each of the spatial Fourier modes �k(t) will grow independently. It follows that �(t; x) will have the
form �(t; x) = D(t)f(x) in the linear regime where D(t) is the growth factor and f(x) depends on
the initial con.guration. When � ≈ 1, linear perturbation theory breaks down and one needs to either
use some analytical approximation or numerical simulations to study the nonlinear growth. A simple
but e4ective approximation is based on spherical symmetry in which one studies the dynamics of a
spherical region in the universe which has a constant over-density compared to the background. As
the universe expands, the over-dense region will expand more slowly compared to the background,
will reach a maximum radius, contract and virialize to form a bound nonlinear system. If the proper
coordinates of the particles in a background Friedmann universe is given by r = a(t)x we can take
the proper coordinates of the particles in the over-dense region to be r = R(t)x where R(t) is the
expansion rate of the over-dense region. The relative acceleration of two geodesics in the over-dense
region will be g = XRx = ( XR=R)r. Using (8) and ∇ · r = 3, we get

XR = −4�G
3

(� + 3P)R = −GM
R2 − 4�G

3
(� + 3P)nondustR ; (64)

where the subscript ‘nondust’ refers to all components of matter other than the one with equation
of state P = 0; the dust component is taken into account by the .rst term on the right hand side
with M =(4�=3)�NRR3. The density contrast is related to R by (1+ �)= (�=�bg)= (a=R)3. Given the
equation (64) satis.ed by R and (20), it is easy to determine the equation satis.ed by the density
contrast. We get (see p. 404 of [9]):

X� + 2
ȧ
a
�̇ = 4�G�b(1 + �)� +

4
3

�̇2

(1 + �)
: (65)

This is a fully nonlinear equation satis.ed by the density contrast in a spherically symmetric
over-dense region in the universe.

5.1. Linear evolution of perturbations

When the perturbations are small, one can ignore the second term in the right hand side of (65)
and replace (1+�) by unity in the .rst term on the right hand side. The resulting equation is valid in
the linear regime and hence will be satis.ed by each of the Fourier modes �k(t) obtained by Fourier
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transforming �(t; x) with respect to x. Taking �(t; x) = D(t)f(x), the D(t) satis.es the equation

XD + 2
ȧ
a
Ḋ = 4�G�bD : (66)

The power spectra P(k; t) = 〈|�k(t)|2〉 at two di4erent redshifts in the linear regime are related by

P(k; zf) = T 2(k; zf; zi; bg)P(k; zi) ; (67)

where T (called transfer function) depends only on the parameters of the background universe
(denoted by ‘bg’) but not on the initial power spectrum and can be computed by solving (66). It is
now clear that the only new input which structure formation scenarios require is the speci.cation of
the initial perturbation at all relevant scales, which requires one arbitrary function of the wavenumber
k = 2�=:.

Let us .rst consider the transfer function. The rate of growth of small perturbations is essen-
tially decided by two factors: (i) The relative magnitudes of the proper wavelength of perturbation
:prop(t) ˙ a(t) and the Hubble radius dH (t) ≡ H−1(t) = (ȧ=a)−1 and (ii) whether the universe is
radiation dominated or matter dominated. At suQciently early epochs, the universe will be radiation
dominated and dH (t) ˙ t will be smaller than the proper wavelength :prop(t) ˙ t1=2. The density
contrast of such modes, which are bigger than the Hubble radius, will grow as a2 until :prop =dH (t).
[When this occurs, the perturbation at a given wavelength is said to enter the Hubble radius. One
can use (66) with the right hand side replaced by 4�(1 + w)(1 + 3w)G� in this case; this leads
to D ˙ t ˙ a2.] When :prop ¡dH and the universe is radiation dominated, the perturbation does
not grow signi.cantly and increases at best only logarithmically [194]. Later on, when the universe
becomes matter dominated for t ¿ teq, the perturbations again begin to grow. It follows from this re-
sult that modes with wavelengths greater than deq ≡ dH (teq)—which enter the Hubble radius only in
the matter dominated epoch—continue to grow at all times while modes with wavelengths smaller
than deq su4er lack of growth (in comparison with longer wavelength modes) during the period
tenter ¡t¡ teq. This fact leads to a distortion of the shape of the primordial spectrum by suppressing
the growth of small wavelength modes in comparison with longer ones. Very roughly, the shape of
T 2(k) can be characterized by the behavior T 2(k) ˙ k−4 for k ¿keq and T 2 ≈ 1 for k ¡keq. The
wave number keq corresponds to the length scale

deq = dH (zeq) = (2�=keq) ≈ 13(+h2)−1Mpc (68)

(e.g., [44, p. 75]). The spectrum at wavelengths :�deq is undistorted by the evolution since T 2 is
essentially unity at these scales. Further evolution can eventually lead to nonlinear structures seen
today in the universe.

At late times, we can ignore the e4ect of radiation in solving (66). The linear perturbation equation
(66) has an exact solution (in terms of hyper-geometric functions) for cosmological models with
nonrelativistic matter and dark energy with a constant w. It is given by

D(a)
a

=2F1

[
− 1

3w
;
w − 1
2w

; 1 − 5
6w

;−a−3w 1 − +NR

+NR

]
: (69)

[This result can be obtained by direct algebra. If the independent variable in Eq. (66) is changed
from t to a−3w and the dependent variable is changed from D to (D=a), the resulting equation has
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Fig. 15. The growth factor for di4erent values of w including the one for cosmological constant (corresponding to w=−1)
and an open model (with w = −1=3).

the standard form of hypergeometric equation for a universe with dark energy and nonrelativistic
matter as source.] Fig. 15 shows the growth factor for di4erent values of w including the one for
cosmological constant (corresponding to w = −1) and an open model (with w = −1=3.)

For small values of a, D ≈ a which is an exact result for +� = 0; +NR = 1 model. The growth
rate slows down in the cosmological constant dominated phase (in models with +NR + +� = 1
with w = −1) or in the curvature dominated phase (open models with +NR ¡ 1 corresponding to
w = −1=3). Between the two cases, there is less growth in open models compared to models with
cosmological constant.

It is possible to rewrite Eq. (65) in a di4erent form to .nd an approximate solution for even
variable w(a). Converting the time derivatives into derivatives with respect to a (denoted by a
prime) and using the Friedmann equations, we can write (65) as

a2�′′ +
3
2

(
1 − p

�

)
a�′ =

3
2

�NR

�
�(1 + �) +

4
3

a2�′2

(1 + �)
: (70)

In a universe populated by only nonrelativistic matter and dark energy characterized by an equation of
state function w(a), this equation can be recast in a di4erent manner by introducing a time dependent
+ [as in Eq. (43)] by the relation Q(t) = (8�G=3)[�NR(t)=H 2(t)] so that (dQ=d ln a) = 3wQ(1−Q).
Then Eq. (65) becomes in terms of the variable f ≡ (d ln �=d ln a)

3wQ(1 − Q)
df
dQ

+ f2 + f
[
1
2
− 3

2
w(1 − Q)

]
=

3
2
Q(1 + �) +

4
3

(
�

1 + �

)
f2 : (71)
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Unfortunately this equation is not closed in terms of f and Q since it also involves �=exp[
∫

(da=a)f].
But in the linear regime, we can ignore the second term on the right hand side and replace (1 + �)
by unity in the .rst term thereby getting a closed equation:

3wQ(1 − Q)
df
dQ

+ f2 + f
[
1
2
− 3

2
w(1 − Q)

]
=

3
2
Q : (72)

This equation has approximate power law solutions [190] of the form f = Qn when |dw=dQ|�1=
(1 − Q). Substituting this ansatz, we get

n =
3

5 − w=(1 − w)
+

3
125

(1 − w)(1 − 3w=2)
(1 − 6w=5)3 (1 − Q) + O[(1 − Q)2] : (73)

[Note that Q(t) → 1 at high redshifts, which is anyway the domain of validity of the linear per-
turbation theory]. This result shows that n is weakly dependent on +NR; further, n ≈ (4=7) for
open Friedmann model with nonrelativistic matter and n ≈ (6=11) ≈ 0:6 in a k = 0 model with
cosmological constant.

Let us next consider the initial power spectrum P(k; zi) in (67). The following points need to be
emphasized regarding the initial Puctuation spectrum.

(1) It can be proved that known local physical phenomena, arising from laws tested in the lab-
oratory in a medium with (P=�)¿ 0, are incapable producing the initial Puctuations of required
magnitude and spectrum (e.g., [9, p. 458]). The initial Puctuations, therefore, must be treated as
arising from physics untested at the moment. (2) Contrary to claims sometimes made in the litera-
ture, inPationary models are not capable of uniquely predicting the initial Puctuations. It is possible
to come up with viable inPationary potentials ([197, Chapter 3]) which are capable of producing any
reasonable initial Puctuation. A prediction of the initial Puctuation spectrum was indeed made by
Harrison [198] and Zeldovich [199], who were years ahead of their times. They predicted—based on
very general arguments of scale invariance—that the initial Puctuations will have a power spectrum
P = Akn with n = 1. Considering the simplicity and importance of this result, we shall briePy recall
the arguments leading to the choice of n=1. If the power spectrum is P ˙ kn at some early epoch,
then the power per logarithmic band of wave numbers is >2 ˙ k3P(k) ˙ k(n+3). Further, when
the wavelength of the mode is larger than the Hubble radius, dH (t) = (ȧ=a)−1, during the radiation
dominated phase, the perturbation grows as a2 making >2 ˙ a4k(n+3). We need to determine how >
scales with k when the mode enters the Hubble radius dH (t). The epoch aenter at which this occurs
is determined by the relation 2�aenter=k = dH . Using dH ˙ t ˙ a2 in the radiation dominated phase,
we get aenter ˙ k−1 so that

>2(k; aenter) ˙ a4
enterk

(n+3) ˙ k(n−1) : (74)

It follows that the amplitude of Puctuations is independent of scale k at the time of entering the
Hubble radius, only if n=1. This is the essence of Harrison-Zeldovich and which is independent of
the inPationary paradigm. It follows that veri.cation of n=1 by any observation is not a veri.cation
of inPation. At best it veri.es a far deeper principle of scale invariance. We also note that the power
spectrum of gravitational potential P� scales as P� ˙ P=k4 ˙ k(n−4). Hence the Puctuation in the
gravitational potential (per decade in k) >2

� ˙ k3P� is proportional to >2
� ˙ k(n−1). This Puctuation

in the gravitational potential is also independent of k for n=1 clearly showing the special nature of
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this choice. [It is not possible to take n strictly equal to unity without specifying a detailed model;
the reason has to do with the fact that scale invariance is always broken at some level and this
will lead to a small di4erence between n and unity]. Given the above description, the basic model
of cosmology is based on seven parameters. Of these 5 parameters (H0; +B; +DM; +�; +R) determine
the background universe and the two parameters (A; n) specify the initial Puctuation spectrum.

It is possible to provide simple analytic .tting functions for the transfer function, incorporating
all the above e4ects. For models with a cosmological constant, the transfer function is well .tted
by [195]

T 2
�(p) =

ln2(1 + 2:34p)
(2:34p)2 [1 + 3:89p + (16:1p)2 + (5:46p)3 + (6:71p)4]−1=2 ; (75)

where p = k=(?h Mpc−1) and ? = +NRh exp[ − +B(1 +
√

2h=+NR)] is called the ‘shape factor’.
The presence of dark energy, with a constant w, will also a4ect the transfer function and hence the
.nal power spectrum. An approximate .tting formula can be given along the following lines [196].
Let the power spectrum be written in the form

P(k; a) = AQknT 2
Q(k)

(
agQ

gQ;0

)2

; (76)

where AQ is a normalization, TQ is the modi.ed transfer function and gQ=(D=a) is the ratio between
linear growth factor in the presence of dark energy compared to that in + = 1 model. Writing TQ

as the product TQ�T� where T� is given by (75), numerical work shows that

TQ�(k; a) ≡ TQ

T�
=

 +  q2

1 +  q2 ; q =
k

?Qh
; (77)

where k is in Mpc−1, and  is a scale-independent but time-dependent coeQcient well approximated
by  = (−w)s with

s = (0:012 − 0:036w − 0:017=w)[1 − +NR(a)] + (0:098 + 0:029w − 0:085=w)ln+NR(a) (78)

where the matter density parameter is +NR(a) =+NR=[+NR + (1−+NR)a−3w]. Similarly, the relative
growth factor can be expressed in the form gQ� ≡ (gQ=g�) = (−w)t with

t = −(0:255 + 0:305w + 0:0027=w)[1 − +NR(a)] − (0:366 + 0:266w − 0:07=w)ln+NR(a) : (79)

Finally the amplitude AQ can be expressed in the form AQ = �2
H (c=H0)n+3=(4�), where

�H = 2 × 10−5 −1
0 (+NR)c1+c2 ln +NR exp[c3(n− 1) + c4(n− 1)2] (80)

and  0 =  (a = 1) of Eq. (78), and

c1 = −0:789|w|0:0754−0:211 ln |w|; c2 = −0:118 − 0:0727w ;

c3 = −1:037; c4 = −0:138 : (81)

This .t is valid for −1 . w . −0:2.
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5.2. Nonlinear growth of perturbations

In a purely matter dominated universe, Eq. (64) reduces to XR = −GM=R2. Solving this equation
one can obtain the nonlinear density contrast � as a function of the redshift z:

(1 + z) =
(

4
3

)2=3 �i(1 + zi)
($− sin $)2=3 =

(
5
3

)(
4
3

)2=3 �0

($− sin $)2=3 ; (82)

� =
9
2

($− sin $)2

(1 − cos $)3 − 1 : (83)

Here, �i ¿ 0 is the initial density contrast at the redshift zi and �0 is the density contrast at present
if the initial density contrast was evolved by linear approximation. In general, the linear density
contrast �L is given by

�L =
W�L

�b
− 1 =

3
5

(
3
4

)2=3

($− sin $)2=3 : (84)

When $ = (2�=3); �L = 0:568 and � = 1:01 � 1. If we interpret � = 1 as the transition point to
nonlinearity, then such a transition occurs at $=(2�=3), �L � 0:57. From (82), we see that this occurs
at the redshift (1+znl)=(�0=0:57). The spherical region reaches the maximum radius of expansion at
$=�. This corresponds to a density contrast of �m ≈ 4:6 which is de.nitely in the nonlinear regime.
The linear evolution gives �L = 1:063 at $ = �. After the spherical over dense region turns around
it will continue to contract. Eq. (83) suggests that at $ = 2� all the mass will collapse to a point.
A more detailed analysis of the spherical model [200], however, shows that the virialized systems
formed at any given time have a mean density which is typically 200 times the background density
of the universe at that time in a +NR = 1. This occurs at a redshift of about (1 + zcoll) = (�0=1:686).
The density of the virialized structure will be approximately �coll � 170�0(1+ zcoll)3 where �0 is the
present cosmological density. The evolution is described schematically in Fig. 16.

In the presence of dark energy, one cannot ignore the second term in Eq. (64). In the case of a
cosmological constant, w=−1 and �=constant and this extra term is independent of time. This allows
one to obtain the .rst integral to Eq. (64) and reduce the problem to quadrature (see, for example
[201–203]). For a more general case of constant w with w �= −1, the factor (� + 3P) = �(1 + 3w)
will be time dependent because � will be time dependent even for a constant w if w �= −1. In this
case, one cannot obtain an energy integral for Eq. (64) and the dynamics has to be determined by
actual numerical integration. Such an analysis leads to the following results [190,204,205]:

(i) In the case of matter dominated universe, it was found that the linear theory critical threshold
for collapse, �c, was about 1.69. This changes very little in the presence of dark energy and an
accurate .tting function is given by

�c =
3(12�)2=3

20
[1 +  log10 +NR] ;

 = 0:353w4 + 1:044w3 + 1:128w2 + 0:555w + 0:131 : (85)
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Fig. 16. Evolution of an over dense region in spherical top-hat approximation.

(ii) The over density of a virialized structure as a function of the redshift of virialization, however,
depends more sensitively on the dark energy component. For −16w6− 0:3, this can be .tted by
the function

>vir(z) = 18�2[1 + a@b(z)] ; (86)

where

a = 0:399 − 1:309(|w|0:426 − 1); b = 0:941 − 0:205(|w|0:938 − 1) ; (87)

and @(z) = 1=+NR(z) − 1 = (1=+0 − 1)(1 + z)3w. The importance of �c and >vir arises from the
fact that these quantities can be used to study the abundance of nonlinear bound structures in the
universe. The basic idea behind this calculation [206] is as follows: Let us consider a density .eld
�R(x) smoothed by a window function WR of scale radius R. As a .rst approximation, we may
assume that the region with �(R; t)¿�c (when smoothed on the scale R at time t) will form a
gravitationally bound object with mass M ˙ W�R3 by the time t. The precise form of the M − R
relation depends on the window function used; for a step function M = (4�=3) W�R3, while for a
Gaussian M = (2�)3=2 W�R3. Here �c is a critical value for the density contrast given by (85). Since
�(t) = D(t) for the growing mode, the probability for the region to form a bound structure at t is
the same as the probability �¿�c[D(ti)=D(t)] at some early epoch ti. This probability can be easily
estimated since at su=ciently early ti, the system is described by a Gaussian random .eld. This fact
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can be used to calculate the number density of bound objects leading to the result

N (M) dM = − W�
M

(
2
�

)1=2 �c

62

(
96
9M

)
exp
(
− �2

c

262

)
dM : (88)

The quantity 6 here refers to the linearly extrapolated density contrast. We shall now describe the
constraints on dark energy arising from structure formation.

5.3. Structure formation and constraints on dark energy

Combining the initial power spectrum, P(k) = Akn, n ≈ 1, with the transfer function in (75)
we .nd that the .nal spectrum has the approximate form

P(k) ˙

{
Ak−3 ln2 k (k�keq)

Ak (k�keq)
(89)

with 2�k−1
eq ≈ dH (zeq) ≈ 13(+NRh2)−1 Mpc = 13(?h)−1h−1 Mpc [see Eq. (68)] where ? ≡ +NRh is

the shape parameter (see Eq. (75); we have assumed +B ≈ 0 for simplicity.) From Eq. (89), it is
clear that P(k) changes from an increasing function to a decreasing function at keq, the numerical
value of which is decided by the shape parameter ?. Smaller values of +NR and ? will lead to more
power at longer wavelengths.

One of the earliest investigations which used power spectrum to determine +� was based on the
APM galaxy survey [207]. This work showed that the existence of large scale power requires a
nonzero cosmological constant. This result was con.rmed when the COBE observations .xed the
amplitude of the power spectrum unequivocally (see Section 6). It was pointed out in [208,209] that
the COBE normalization led to a wrong shape for the power spectrum if we take +NR = 1; +� = 0,
with more power at small scales than observed. This problem could be solved by reducing +NR and
changing the shape of the power spectrum. Current observations favour ? ≈ 0:25. In fact, an analysis
of a host of observational data, including those mentioned above suggested [210] that +� �= 0 even
before the SN data came up.

Another useful constraint on the models for structure formation can be obtained from the abun-
dance of rich clusters of galaxies with masses M ≈ 1015M�. This mass scale corresponds to a length
scale of about 8h−1 Mpc and hence the abundance of rich clusters is sensitive to the root-mean-square
Puctuation in the density contrast at 8h−1 Mpc. It is conventional to denote this quantity 〈(��=�)2〉1=2,
evaluated at 8h−1 Mpc, by 68. To be consistent with the observed abundance of rich clusters,
Eq. (88) requires 68 ≈ 0:5+−1=2

NR . This is consistent with COBE normalization for +NR ≈ 0:3;
+� ≈ 0:7. [Unfortunately, there is still some uncertainty about the 68 − +NR relation. There is a
claim [211] that recent analysis of SDSS data gives 68 ≈ 0:33 ± 0:03+−0:6

NR .]
The e4ect of dark energy component on the growth of linear perturbations changes the value of

68. The results of Section 5.1 translate into the .tting function [190]

68 = (0:50 − 0:1@)+−B(+;@) ; (90)

where @ = (n − 1) + (h − 0:65) and B(+;@) = 0:21 − 0:22w + 0:33+ + 0:25@. For constant w
models with w=−1;−2=3 and −1=3, this gives 68=0:96; 0:80 and 0.46, respectively. Because of this
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e4ect, the abundance of clusters can be used to put stronger constraints on cosmology when the data
for high redshift clusters improves. As mentioned before, linear perturbations grow more slowly in
a universe with cosmological constant compared to the +NR = 1 universe. This means that clusters
will be comparatively rare at high redshifts in a +NR = 1 universe compared to models with cosmo-
logical constant. Only less than 10 percent of massive clusters form at z¿ 0:5 in a +NR =1 universe
whereas almost all massive clusters would have formed by z ≈ 0:5 in a universe with cosmological
constant [212–215,75]. (A simple way of understanding this e4ect is by noting that if the clusters
are not in place by z ≈ 0:5, say, they could not have formed by today in models with cosmo-
logical constant since there is very little growth of Puctuation between these two epochs.) Hence
the evolution of cluster population as a function of redshift can be used to discriminate between
these models.

An indirect way of measuring this abundance is through the lensing e4ect of a cluster of galaxy
on extended background sources. Typically, the foreground clusters shears the light distribution of
the background object and leads to giant arcs. Numerical simulations suggest [216] that a model
with +NR = 0:3; +� = 0:7 will produce about 280 arcs which is nearly an order of magnitude larger
than the number of arcs produced in a +NR = 1; +� = 0 model. (In fact, an open model with
+NR = 0:3; +� = 0 will produce about 2400 arcs.) To use this e4ect, one needs a well de.ned data
base of arcs and a controlled sample. At present it is not clear which model is preferred though this
is one test which seems to prefer open model rather than a �-CDM model.

Given the solution to (64) in the presence of dark energy, we can repeat the above analysis and
obtain the abundance of di4erent kinds of structures in the universe in the presence of dark energy.
In particular this formalism can be used to study the abundance of weak gravitational lenses and
virialized X-ray clusters which could act as gravitational lenses. The calculations again show [205]
that the result is highly degenerate in w and +NR. If +NR is known, then the number count of
weak lenses will be about a factor 2 smaller for w = −2=3 compared to the �CDM model with
a cosmological constant. However, if +NR and w are allowed to vary in such a way that the mat-
ter power spectrum matches with both COBE results and abundance of X-ray clusters, then the
predicted abundance of lenses is less than 25 percent for −16w6 − 0:4. It may be possible to
constrain the dark energy better by comparing relative abundance of virialized lensing clusters with
the abundance of X-ray under luminous lensing halos. For example, a survey covering about 50
square degrees of sky may be able to di4erentiate a �CDM model from w = −0:6 model at a
36 level.

The value of 68 and cluster abundance can also be constrained via the Sunyaev–Zeldovich (S–Z)
e4ect which is becoming a powerful probe of cosmological parameters [217]. The S–Z angular power
spectrum scales as 67

8(+Bh)2 and is almost independent of other cosmological parameters. Recently
the power spectrum of CMBR determined by CBI and BIMA experiments (see Section 6) showed
an excess at small scales which could be interpreted as due to S–Z e4ect. If this interpretation is
correct, then 68(+Bh=0:035)0:29 =1:04±0:12 at 95 percent con.dence level. This 68 is on the higher
side and only future observations can decide whether the interpretation is correct or not. The WMAP
data, for example, leads to a more conventional value of 68 = 0:84 ± 0:04.

Constraints on cosmological models can also arise from the modeling of damped Lyman- sys-
tems [75,109,110,218–220] when the observational situation improves. At present these observations
are consistent with +NR = 0:3; +� = 0:7 model but do not exclude other models at a high signi-
.cance level.
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Finally, we comment on a direct relation between �(a) and H (a). Expressing Eq. (65) in terms
of H (a) will lead to the form

a2H 2�′′ + (3H 2 + aHH ′)a�′ =
3
2

H 2
0+NR

a3 �(1 + �) +
4
3

a2H 2

(1 + �)
�′2 : (91)

This can be used to determine H 2(a) from �(a) since this equation is linear and .rst order in
Q(a) ≡ H 2(a) (though it is second order in �). Rewriting it in the form

A(a)Q′ + B(a)Q = C(a) ; (92)

where

A =
(

1
2
a2�′

)
; B =

(
3a�′ + a2�′′ − 4

3
�′a2

1 + �

)
; C =

3
2

H 2
0+NR

a3 �(1 + �) : (93)

We can integrate it to give the solution

H 2(a) = 3H 2
0+NR

(1 + �)8=3

a6�′2

∫
da

a�′�
(1 + �)5=3 : (94)

This shows that, given the nonlinear growth of perturbations �(a) as a function of redshift and
the approximate validity of spherical model, one can determine H (a) and thus w(a) even during
the nonlinear phases of the evolution. [A similar analysis with the linear equation (66) was done
in [221], leading to the result which can be obtained by expanding (94) to linear order in �.]
Unfortunately, this is an impractical method from observational point of view at present.

6. CMBR anisotropies

In the standard Friedmann model of the universe, neutral atomic systems form at a redshift of
about z ≈ 103 and the photons decouple from the matter at this redshift. These photons, propagating
freely in spacetime since then, constitute the CMBR observed around us today. In an ideal Friedmann
universe, for a comoving observer, this radiation will appear to be isotropic. But if physical process
has led to inhomogeneities in the z = 103 spatial surface, then these inhomogeneities will appear as
angular anisotropies in the CMBR in the sky today. A physical process operating at a proper length
scale L on the z = 103 surface will lead to an e4ect at an angle $ = L=dA(z). Numerically,

$(L) ∼=
(
+
2

)(
Lz
H−1

0

)
= 34:4′′(+h)

(
:0

1 Mpc

)
: (95)

To relate the theoretical predictions to observations, it is usual to expand the temperature anisotropies
in the sky in terms of the spherical harmonics. The temperature anisotropy in the sky will provide
>=[T=T as a function of two angles $ and  . If we expand the temperature anisotropy distribution
on the sky in spherical harmonics:

>($;  ) ≡ [T
T

($;  ) =
∞∑
l;m

almYlm($;  ) : (96)
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all the information is now contained in the angular coeQcients alm. If n and m are two directions
in the sky with an angle  between them, the two-point correlation function of the temperature
Puctuations in the sky can be de.ned as

C( ) = 〈S(n)S(m)〉 =
∑∑

〈alma∗l′m′〉Ylm(n)Y ∗
l′m′(m) : (97)

Since the sources of temperature Puctuations are related linearly to the density inhomogeneities, the
coeQcients alm will be random .elds with some power spectrum. In that case 〈alma∗l′m′〉 will be
nonzero only if l = l′ and m = m′. Writing

〈alma∗l′m′〉 = Cl�ll′�mm′ (98)

and using the addition theorem of spherical harmonics, we .nd that

C( ) =
∑
l

(2l + 1)
4�

ClPl(cos  ) (99)

with Cl = 〈|alm|2〉. In this approach, the pattern of anisotropy is contained in the variation of Cl with
l. Roughly speaking, l˙ $ −1 and we can think of the ($; l) pair as analogue of (x; k) variables in
3-D. The Cl is similar to the power spectrum P(k).

In the simplest scenario, the primary anisotropies of the CMBR arise from three di4erent sources.
(i) The .rst is the gravitational potential Puctuations at the last scattering surface (LSS) which will
contribute an anisotropy ([T=T )2

� ˙ k3P�(k) where P�(k) ˙ P(k)=k4 is the power spectrum of
gravitational potential �. This anisotropy arises because photons climbing out of deeper gravitational
wells lose more energy on the average. (ii) The second source is the Doppler shift of the frequency
of the photons when they are last scattered by moving electrons on the LSS. This is proportional
to ([T=T )2

D ˙ k3Pv where Pv(k) ˙ P=k2 is the power spectrum of the velocity .eld. (iii) Finally,
we also need to take into account the intrinsic Puctuations of the radiation .eld on the LSS. In the
case of adiabatic Puctuations, these will be proportional to the density Puctuations of matter on the
LSS and hence will vary as ([T=T )2

int ˙ k3P(k). Of these, the velocity .eld and the density .eld
(leading to the Doppler anisotropy and intrinsic anisotropy described in (ii) and (iii) above) will
oscillate at scales smaller than the Hubble radius at the time of decoupling since pressure support
will be e4ective at these scales. At large scales, if P(k) ˙ k, then(

[T
T

)2

�

˙ constant;
(

[T
T

)2

D

˙ k2 ˙ $ −2;
(

[T
T

)2

int

˙ k4 ˙ $ −4 ; (100)

where $ ˙ : ˙ k−1 is the angular scale over which the anisotropy is measured. Obviously, the
Puctuations due to gravitational potential dominate at large scales while the sum of intrinsic and
Doppler anisotropies will dominate at small scales. Since the latter two are oscillatory, we sill expect
an oscillatory behavior in the temperature anisotropies at small angular scales. There is, however, one
more feature which we need to take into account. The above analysis is valid if recombination was
instantaneous; but in reality the thickness of the recombination epoch is about [z � 80 ([222,44,
Chapter 3]). This implies that the anisotropies will be damped at scales smaller than the length scale
corresponding to a redshift interval of [z=80. The typical value for the peaks of the oscillation are
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at about 0:3◦ to 0:5◦ depending on the details of the model. At angular scales smaller than about
0:1◦, the anisotropies are heavily damped by the thickness of the LSS.

The fact that several di4erent processes contribute to the structure of angular anisotropies make
CMBR a valuable tool for extracting cosmological information. To begin with, the anisotropy at
very large scales directly probe modes which are bigger than the Hubble radius at the time of
decoupling and allows us to directly determine the primordial spectrum. Thus, in general, if the
angular dependence of the spectrum at very large scales is known, one can work backwards and
determine the initial power spectrum. If the initial power spectrum is assumed to be P(k)=Ak, then
the observations of large angle anisotropy allows us to .x the amplitude A of the power spectrum
[208,209]. Based on the results of COBE satellite [223], one .nds that the amount of initial power
per logarithmic band in k space is given by

>2(k) =
k3|�k |2
2�2 =

Ak4

2�2
∼=
(

k
0:07hMpc−1

)4

(101)

(This corresponds to A � (29h−1Mpc)4. Since the actual ([T=T ) is one realization of a Gaussian
random process, the observed small-l results are subject to unavoidable Puctuations called the ‘cosmic
variance’.) This result is powerful enough to rule out matter dominated, +=1 models when combined
with the data on the abundance of large clusters which determines the amplitude of the power
spectrum at R ≈ 8h−1 Mpc. For example the parameter values h = 0:5; +0 ≈ +DM = 1; +� = 0, are
ruled out by this observation when combined with COBE observations [208,209].

As we move to smaller scales we are probing the behavior of baryonic gas coupled to the pho-
tons. The pressure support of the gas leads to modulated acoustic oscillations with a characteristic
wavelength at the z = 103 surface. Regions of high and low baryonic density contrast will lead to
anisotropies in the temperature with the same characteristic wavelength. The physics of these oscilla-
tions has been studied in several papers in detail [224–232]. The angle subtended by the wavelength
of these acoustic oscillations will lead to a series of peaks in the temperature anisotropy which has
been detected [233,234]. The structure of acoustic peaks at small scales provides a reliable procedure
for estimating the cosmological parameters. To illustrate this point let us consider the location of
the .rst acoustic peak. Since all the Fourier components of the growing density perturbation start
with zero amplitude at high redshift, the condition for a mode with a given wave vector k to reach
an extremum amplitude at t = tdec is given by∫ tdec

0

kcs

a
dt � n�

2
; (102)

where cs = (9P=9�)1=2 ≈ (1=
√

3) is the speed of sound in the baryon–photon Puid. At high redshifts,
t(z) ˙ +−1=2

NR (1+ z)−3=2 and the proper wavelength of the .rst acoustic peak scales as :peak ∼ tdec ˙
h−1+−1=2

NR . The angle subtended by this scale in the sky depends on dA. If +NR + +� = 1 then the
angular diameter distance varies as +−0:4

NR while if +�=0, it varies as +−1
NR. It follows that the angular

size of the acoustic peak varies with the matter density as

$peak ∼ zdec:peak

a0r
˙

{
+1=2

NR (if +� = 0) ;

+−0:1
NR (if +� + +NR = 1) :

(103)
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Fig. 17. The variation of the anisotropy pattern in universes with +NR =(0:25; 0:45; 1:0; 1:15); +�=0 with the .rst acoustic
peak moving from right to left. The y-axis is essentially a measure of ([T=T )2 while the x-axis is a measure of 1=$.
(.gure courtesy: S. Sethi).

Therefore, the angle subtended by acoustic peak is quite sensitive to +NR if � = 0 but not if
+NR + +� = 1. More detailed computations show that the multipole index corresponding to the
acoustic peak scales as lp ≈ 220+−1=2

NR if �= 0 and lp ≈ 220 if +NR ++� = 1 and 0:1 . +NR . 1.
This is illustrated in Fig. 17 which shows the variation in the structure of acoustic peaks when +
is changed keeping +� = 0. The four curves are for + = +NR = 0:25; 0:45; 1:0; 1:15 with the .rst
acoustic peak moving from right to left. The data points on the .gures are from the .rst results
of MAXIMA and BOOMERANG experiments and are included to give a feel for the error bars in
current observations. It is obvious that the overall geometry of the universe can be easily .xed by
the study of CMBR anisotropy.

The heights of acoustic peaks also contain important information. In particular, the height of
the .rst acoustic peak relative to the second one depends sensitively on +B. However, not all
cosmological parameters can be measured independently using CMBR data alone. For example,
di4erent models with the same values for (+DM + +�) and +Bh2 will give anisotropies which
are fairly indistinguishable. The structure of the peaks will be almost identical in these models.
This shows that while CMBR anisotropies can, for example, determine the total energy density
(+DM++�), we will need some other independent cosmological observations to determine individual
components.

At present there exists several observations of the small scale anisotropies in the CMBR from
the balloon Pights, BOOMERANG [233], MAXIMA [234], and from radio telescopes CBI [235],
VSA [236], DASI [237,238] and—most recently—from WMAP [235]. These CMBR data have been
extensively analyzed [239,59,60,223,235,236,240–245] in isolation as well as in combination with
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other results. (The information about structure formation arises mainly from galaxy surveys like
SSRS2, CfA2 [246], LCRS [247], Abell-ACO cluster survey [248], IRAS-PSC z [243], 2-D survey
[249,242] and the Sloan survey [250].) While there is some amount of variations in the results, by
and large, they support the following conclusions.

• The data strongly supports a k = 0 model of the universe [245] with +tot = 1:00±0:03
0:02 from the

pre-MAP data and +tot = 1:02 ± 0:02 from the WMAP data.
• The CMBR data before WMAP, when combined with large scale structure data, suggest +NR =

0:29±0:05±0:04 [59,60,245,251]. The WMAP result [239] is consistent with this giving 0:27±0:04.
The initial power spectrum is consistent with being scale invariant and the pre-MAP value is
n = 1:02± 0:06± 0:05 [59,60,245]. The WMAP gives the spectral index at k = 0:05 Mpc−1 to be
0:93±0:03. In fact, combining 2dF survey results with CMBR suggest [252] +� ≈ 0:7 independent
of the supernova results.

• A similar analysis based on BOOMERANG data leads to +tot=1:02±0:06 (see for example, [241]).
Combining this result with the HST constraint [49] on the Hubble constant h=0:72±0:08, galaxy
clustering data as well SN observations one gets +� =0:620:10−0:18; +� =0:550:09−0:09 and +� =0:730:10−0:07

respectively [253]. The WMAP data gives h = 0:71+0:04
−0:03.

• The analysis also gives an independent handle on baryonic density in the universe which is
consistent with the BBN value: The pre-MAP result was +Bh2 = 0:022 ± 0:003 [59,60]. (This is
gratifying since the initial data had an error and gave too high a value [254].) The WMAP data
gives +Bh2 = 0:0224 ± 0:0009.

There has been some amount of work on the e4ect of dark energy on the CMBR anisotropy
[255–263]. The shape of the CMB spectrum is relatively insensitive to the dark energy and the
main e4ect is to alter the angular diameter distance to the last scattering surface and thus the posi-
tion of the .rst acoustic peak. Several studies have attempted to put a bound on w using the CMB
observations. Depending on the assumptions which were invoked, they all lead to a bound broadly
in the range of w . −0:6. (The preliminary analysis of WMAP data in combination with other
astronomical data sets suggest w¡ − 0:78 at 95 per cent con.dence limit.) At present it is not
clear whether CMBR anisotropies can be of signi.cant help in discriminating between di4erent dark
energy models.

7. Reinterpreting the cosmological constant

It is possible to attack the cosmological constant problem from various other directions in which
the mathematical structure of Eq. (3) is reinterpreted di4erently. Though none of these ideas have
been developed into a successful formal theory, they might contain ingredients which may eventually
provide a solution to this problem. Based on this hope, we shall provide a brief description of some of
these ideas. (In addition to these ideas, there is extensive literature on several di4erent paradigms for
attacking the cosmological constant problem based on: (i) Quantum .eld theory in curved spacetime
[264–266], (ii) quantum cosmological considerations [267], (iii) models of inPation [268], (iv) string
theory inspired ideas [269], and (v) e4ect of phase transitions [270].)
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7.1. Cosmological constant as a Lagrange multiplier

The action principle for gravity in the presence of a cosmological constant

A=
1

16�G

∫
(R− 2�)

√−g d4x

=
1

16�G

∫
R
√−g d4x − �

8�G

∫ √−g d4x (104)

can be thought of as a variational principle extremizing the integral over R, subject to the condition
that the 4-volume of the universe remains constant. To implement the constraint that the 4-volume
is a constant, one will add a Lagrange multiplier term which is identical in structure to the second
term in the above equation. Hence, mathematically, one can think of the cosmological constant
as a Lagrange multiplier ensuring the constancy of the 4-volume of the universe when the metric
is varied.

If we take this interpretation seriously, then it is necessary to specify the 4-volume of the universe
before the variation is performed and determine the cosmological constant so that the 4-volume has
this speci.ed volume. A Friedmann model with positive cosmological constant in Minkowski space
will lead to a .nite 3-volume proportional to �−3=2 on spatial integration. (To achieve this, we
should use the coordinates in which the spatial sections are closed 3-spheres.) The time integration,
however, has an arbitrary range and one needs to restrict the integration to part of this range by
invoking some physical principle. If we take this to be typically the age of the universe, then we
will obtain a time dependent cosmological constant �(t) with �(t)H (t)−2 remaining of order unity.
While this appears to be a conceptually attractive idea, it is not easy to implement it in a theoretical
model. In particular, it is diQcult to obtain this as a part of a generally covariant theory incorporating
gravity.

7.2. Cosmological constant as a constant of integration

Several people have suggested modifying the basic structure of general relativity so that the
cosmological constant will appear as a constant of integration. This does not solve the problem in
the sense that it still leaves its value undetermined. But this changes the perspective and allows one
to think of the cosmological constant as a nondynamical entity [271,272].

One simple way of achieving this is to assume that the determinant g of gab is not dynamical
and admit only those variations which obey the condition gab�gab = 0 in the action principle. This
is equivalent to eliminating the trace part of Einstein’s equations. Instead of the standard result, we
will now be led to the equation

Ri
k −

1
4
�i
kR = 8�G

(
T i
k −

1
4
�i
kT
)

; (105)

which is just the traceless part of Einstein’s equation. The general covariance of the action, however,
implies that Tab

;b =0 and the Bianchi identities (Ri
k− 1

2 �i
kR);i=0 continue to hold. These two conditions

imply that 9iR = −8�G9iT requiring R + 8�GT to be a constant. Calling this constant (−4�) and
combining with equation (105), we get

Ri
k − 1

2 �i
kR− �i

k� = 8�GT i
k (106)
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which is precisely Einstein’s equation in the presence of cosmological constant. In this approach,
the cosmological constant has nothing to do with any term in the action or vacuum Puctuations
and is merely an integration constant. Like any other integration constant its value can be .xed by
invoking suitable boundary conditions for the solutions.

There are two key diQculties in this approach. The .rst, of course, is that it still does not give
us any handle on the value of the cosmological constant and all the diQculties mentioned earlier
still exists. This problem would have been somewhat less serious if the cosmological constant was
strictly zero; the presence of a small positive cosmological constant makes the choice of integration
constant fairly arbitrary. The second problem is in interpreting the condition that g must remain
constant when the variation is performed. It is not easy to incorporate this into the logical structure
of the theory. (For some attempts in this direction, see [273].)

7.3. Cosmological constant as a stochastic variable

Current cosmological observations can be interpreted as showing that the e2ective value of �
(which will pick up contributions from all vacuum energy densities of matter .elds) has been
reduced from the natural value of L−2

P to L−2
P (LPH0)2 where H0 is the current value of the Hubble

constant. One possible way of thinking about this issue is the following [274]: Let us assume that the
quantum micro structure of spacetime at Planck scale is capable of readjusting itself, soaking up any
vacuum energy density which is introduced—like a sponge soaking up water. If this process is fully
deterministic and exact, all vacuum energy densities will cease to have macroscopic gravitational
e4ects. However, since this process is inherently quantum gravitational, it is subject to quantum
Puctuations at Planck scales. Hence, a tiny part of the vacuum energy will survive the process
and will lead to observable e4ects. One may conjecture that the cosmological constant we measure
corresponds to this small residual Puctuation which will depend on the volume of the spacetime
region that is probed. It is small, in the sense that it has been reduced from L−2

P to L−2
P (LPH0)2,

which indicates the fact that Puctuations—when measured over a large volume—is small compared
to the bulk value. It is the wetness of the sponge we notice, not the water content inside.

This is particularly relevant in the context of standard discussions of the contribution of zero-point
energies to cosmological constant. The correct theory is likely to regularize the divergences and make
the zero point energy .nite and about L−4

P . This contribution is most likely to modify the microscopic
structure of spacetime (e.g. if the spacetime is naively thought of as due to stacking of Planck scale
volumes, this will modify the stacking or shapes of the volume elements) and will not a4ect the
bulk gravitational .eld when measured at scales coarse grained over sizes much bigger than the
Planck scales.

Given a large 4-volume V of the spacetime, we will divide it into M cubes of size ([x)4 and
label the cubes by n = 1; 2; : : : ; M . The contribution to the path integral amplitude A, describing
long wavelength limit of conventional Einstein gravity, can be expressed in the form

A =
∏
n

[exp(c1(RL2
P) + · · ·)]i([x)4=L4

P → exp
ic1

L4
P

∫
d4x

√−g(RL2
P) ; (107)

where we have indicated the standard continuum limit. (In conventional units c1 = (16�)−1.) Let us
now ask how one could modify this result to describe the ability of spacetime micro structure to
readjust itself and absorb vacuum energy densities. This would require some additional dynamical
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degree of freedom that will appear in the path integral amplitude and survive in the classical limit.
It can be shown that [274] the simplest implementation of this feature is by modifying the standard
path integral amplitude [exp(c1(RL2

P) + · · ·)] by a factor [�(xn)=�0] where �(x) is a scalar degree
of freedom and �0 is a pure number introduced to keep this factor dimensionless. In other words,
we modify the path integral amplitude to the form

Amodify =
∏
n

[
�(xn)
�0

e[c1RL2
P+···]

](i([x)4=L4
P)

: (108)

In the long wavelength limit, the extra factor in (108) will lead to a term of the form

∏
n

(
�
�0

)i([x)4=L4
P

=
∏
n

exp
[
i([x)4

L4
P

ln
(

�
�0

)]

→ exp
i
L4
P

∫
d4x

√−g ln
(

�
�0

)
: (109)

Thus, the net e4ect of our assumption is to introduce a ‘scalar .eld potential’ V (�)=−L−4
P ln(�=�0)

in the semi classical limit. It is obvious that the rescaling of such a scalar .eld by � → q�
is equivalent to adding a cosmological constant with vacuum energy −L−4

P ln q. Alternatively, any
vacuum energy can be reabsorbed by such a rescaling. The fact that the scalar degree of freedom
occurs as a potential in (109) without a corresponding kinetic energy term shows that its dynamics
is unconventional and nonclassical.

The above description in terms of macroscopic scalar degree of freedom can, of course, be only
approximate. Treated as a vestige of a quantum gravitational degrees of freedom, the cancellation
cannot be precise because of Puctuations in the elementary spacetime volumes. These Puctuations will
reappear as a “small” cosmological constant because of two key ingredients: (i) discrete spacetime
structure at Planck length and (ii) quantum gravitational uncertainty principle. To show this, we
use the fact noted earlier in Section 7.1 that the net cosmological constant can be thought of as
a Lagrange multiplier for proper volume of spacetime in the action functional for gravity. In any
quantum cosmological models which leads to large volumes for the universe, phase of the wave
function will pick up a factor of the form

E˙ exp(−iA0) ˙ exp
[
−i
(
�e4V

8�L2
P

)]
(110)

from (104), where V is the four volume. Treating (�e4 =8�L2
P;V) as conjugate variables (q; p), we

can invoke the standard uncertainty principle to predict [� ≈ 8�L2
P=[V. Now we use the earlier

assumption regarding the microscopic structure of the spacetime: Assume that there is a zero point
length of the order of LP so that the volume of the universe is made of a large number (N ) of cells,
each of volume ( LP)4 where  is a numerical constant. Then V = N ( LP)4, implying a Poisson
Puctuation [V ≈ √

V( LP)2 and leading to

[� =
8�L2

P

[V
=
(

8�
 2

)
1√
V

≈ 8�
 2 H 2

0 : (111)
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This will give +� =(8�=3 2) which will—for example—lead to +� =(2=3) if  =2
√
�. Thus Planck

length cuto4 (UV limit) and volume of the universe (IR limit) combine to give the correct [�.
(A similar result was obtained earlier in [273] based on a di4erent model.) The key idea, in this
approach, is that � is a stochastic variable with a zero mean and Puctuations. It is the rms Puctuation
which is being observed in the cosmological context.

This has three implications: First, FRW equations now need to be solved with a stochastic term on
the right hand side and one should check whether the observations can still be explained. The second
feature is that stochastic properties of � need to be described by a quantum cosmological model. If
the quantum state of the universe is expanded in terms of the eigenstates of some suitable operator
(which does not commute the total four volume operator), then one should be able to characterize the
Puctuations in each of these states. Third, and most important, the idea of a cosmological constant
arising as a >uctuation makes sense only if the bulk value is rescaled away.

The nontriviality of this result becomes clear when we compare it with few other alternative ways
of estimating the Puctuations—none of which gives the correct result. The .rst alternative approach
is based on the assumption that one can associate an entropy S =(AH=4L2

P) with compact space time
horizons of area AH (We will discuss this idea in detail in Section 10). A popular interpretation of
this result is that horizon areas are quantized in units of L2

P so that S is proportional to the number of
bits of information contained in the horizon area. In this approach, horizon areas can be expressed in
the form AH =APN where AP ˙ L2

P is a quantum of area and N is an integer. Then the >uctuations
in the area will be [AH = AP

√
N =

√
APAH . Taking AH ˙ �−1 for the de Sitter horizon, we .nd

that [�˙ H 2(HLP) which is a lot smaller than what one needs. Further, taking AH ˙ r2
H , we .nd

that [rH ˙ LP; that is, this result essentially arises from the idea that the radius of the horizon is
uncertain within one Planck length. This is quite true, of course, but does not lead to large enough
Puctuations. A more sophisticated way of getting this (wrong) result is to relate the Puctuations in
the cosmological constant to that of the volume of the universe is by using a canonical ensemble
description for universes of proper Euclidean 4-volume [275]. Writing V ≡ V=8�L2

P and treating V
and � as the relevant variables, one can write a partition function for the 4-volume as

Z(V ) =
∫ ∞

0
g(�)e−�V d� : (112)

Taking the analogy with standard statistical mechanics (with the correspondence V → G and � → E),
we can evaluate the Puctuations in the cosmological constant in exactly the same way as energy
Puctuations in canonical ensemble. (This is done in several standard text books; see, for example,
[276, p. 194].) This will give

([�)2 =
C
V 2 ; C =

9�
9(1=V )

= −V 2 9�
9V ; (113)

where C is the analogue of the speci.c heat. Taking the 4-volume of the universe to be V=bH−4 =
9b�−2 where b is a numerical factor and using V = (V=8�L2

P) we get � ˙ L−1
P V−1=2. It follows

from (113) that

([�)2 =
C
V 2 =

12�
b

(LPH 3)2 : (114)
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In other words [� ˙ H 2(HLP), which is the same result from area quantization and is a lot
smaller than the cosmologically signi.cant value. Interestingly enough, one could do slightly better by
assuming that the horizon radius is quantized in units of Planck length, so that rH =H−1 =NLP. This
will lead to the Puctuations [rH =

√
rHLP and using rH =H−1 ˙ �−1=2, we get [�˙ H 2(HLP)1=2—

larger than (114) but still inadequate. In summary, the existence of two length scales H−1 and LP

allows di4erent results for [� depending on how exactly the Puctuations are characterized ([V ˙√
N;[A˙

√
N or [rH ˙

√
N ). Hence the result obtained above in (111) is nontrivial.

These conclusions stress, among other things, the di4erence between >uctuations and the mean
values. For, if one assumes that every patch of the universe with size LP contained an energy
EP, then a universe with characteristic size H−1 will contain the energy E = (EP=LP)H−1. The
corresponding energy density will be �� = (E=H−3) = (H=LP)2 which leads to the correct result.
But, of course, we do not know why every length scale LP should contain an energy EP and—more
importantly—contribute coherently to give the total energy.

7.4. Anthropic interpretation of the cosmological constant

The anthropic principle [277,278] is an interpretational paradigm which argues that, while dis-
cussing the origin of physical phenomena and the values of constants of nature, we must recognize
the fact that only certain combination and range of values will lead to the existence of intelligence
observers in the universe who could ask questions related to these issues. This paradigm has no
predictive power in the sense that none of the values of the cosmological parameters were ever pre-
dicted by this method. 1 In fact some cosmologists have advocated the model with +NR =1; +� =0
strongly and later—when observations indicated +� �= 1—have advocated the anthropic interpretation
of cosmological constant with equal Puency. This is defended by the argument that not all guiding
principles in science (Darwinian evolution, Plate tectonics, etc.) need to be predictive in order to be
useful. In this view point, anthropic principle is a back drop for discussing admittedly complicated
conceptual issues. Within this paradigm there have been many attempts to explain (after the fact)
the values of several fundamental constants with varying degree of success.

In the context of cosmological constant, the anthropic interpretation works as follows. It is assumed
that widely disparate values for the constants of nature can occur in an ensemble of universes (or
possibly in di4erent regions of the universe causally unconnected with each other). Some of these
values for constants of nature—and in particular for the cosmological constant—will lead broadly
to the kind of universe we seem to live in. This is usually characterized by formation of: (i)
structures by gravitational instability, (ii) stars which act as gravitationally bound nuclear reactors
that synthesize the elements and distribute them and (iii) reasonably complex molecular structures
which could form the basis for some kind of life form. Showing that such a scenario can exist only
for a particular range of values for the cosmological constant is considered an explanation for the
value of cosmological constant by the advocates of anthropic principle. (More sophisticated versions
of this principle exist; see, for example [279], and references cited therein.)

1 Some advocates of the anthropic principle cite Fred Hoyle predicting the existence of excited state of carbon nucleus,
thereby leading to eQcient triple alpha reaction in stellar nucleosynthesis, as an example of a prediction from anthropic
principle; it is very doubtful whether Hoyle applied anthropic considerations in arriving at this conclusion.
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The simplest constraint on the cosmological constant is that it should not be so high as to cause
rapid expansion of the universe early on preventing the formation of galaxies [280]. If the energy
density of the cosmological constant has to be less than that of energy density of matter at the
redshift zgal(≈ 4) at which galaxy formation takes place, then we must have

+�

+NR
. (1 + zgal)3 ≈ 125 : (115)

This gives a bound on +� which is “only” a couple of orders of magnitude larger than what is
observed.

More formally, one could ask: What is the most probable value of +� if it is interpreted as the
value that would have been observed by the largest number of observers [281,282]? Since a universe
with +� ≈ +NR will have more galaxies than one with a universe with +� ≈ 102+NR, one could
argue that most observers will measure a value +� ≈ +NR. The actual probability dP for measuring
a particular value for +� in the range (+�;+�+d+�) is the product (dP=d+�)=Q(+�)P(+�) where
P is the a priori probability measure for a speci.c value of +� in a member of an ensemble of
universes (or in a region of the universe) and Q(+�) is the average number of galaxies which form
in a universe with a given value of +�. There has been several attempts to estimate these quantities
(see, for example, [283,284]) but all of them are necessarily speculative. The .rst—and the most
serious—diQculty with this approach is the fact that we simply do not have any reliable way of
estimating P; in fact, if we really had a way of calculating it from a fundamental theory, such a
theory probably would have provided a deeper insight into the cosmological constant problem itself.
The second issue has to do with the dependence of the results on other parameters which describe
the cosmological structure formation (like for example, the spectrum of initial perturbations). To
estimate Q one needs to work in a multiparameter space and marginalize over other parameters—
which would involve more assumptions regarding the priors. And .nally, anthropic paradigm itself
is suspect in any scienti.c discussion, for reasons mentioned earlier.

7.5. Probabilistic interpretation of the cosmological constant

It is also possible to produce more complex scenarios which could justify the small or zero value of
cosmological constant. One such idea, which enjoyed popularity for a few years [285–288], is based
on the conjecture that quantum wormholes can change the e4ective value of the observed constants
of nature. The wave function of the universe, obtained by a path integral over all possible spacetime
metrics with wormholes, will receive dominant contributions from those con.gurations for which the
e4ective values of the physical constants extremize the action. Under some assumptions related to
Euclidean quantum gravity, one could argue that the con.gurations with zero cosmological constant
will occur at late times. It is, however, unlikely that the assumptions of Euclidean quantum gravity
has any real validity and hence this idea must be considered as lacking in concrete justi.cation.

8. Relaxation mechanisms for the cosmological constant

One possible way of obtaining a small, nonzero, cosmological constant at the present epoch of
the universe is to make the cosmological constant evolve in time due to some physical process.
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At a phenomenological level this can be done either by just postulating such a variation and explore
its consequences or—in a slightly more respectable way—by postulating a scalar .eld potential as
described in Section 4. These models, however, cannot explain why a bare cosmological constant
[the .rst term on the right hand side of (7)] is zero. To tackle this issue, one can invoke some
.eld [usually a scalar .eld] which directly couples to the cosmological constant and decreases its
“e4ective value”. We shall now examine two such models.

The key idea is to introduce a .eld which couples to the trace T = Ta
a of the energy momentum

tensor. If T depends on � and vanishes at some value � = �0, then � will evolve towards � = �0

at which T = 0. This equilibrium solution will have zero cosmological constant [289–292]. While
this idea sounds attractive, there are general arguments as to why it does not work in the simplest
context [4].

A related attempt was made by several authors, [289,293–295], who coupled the scalar .eld
directly to R which, of course, is proportional to T because of Einstein’s equations. Generically,
these models have the Lagrangian

L =
[
1
2
9��9�� +

1
16�G

(R− 2�) − U (�)R
]

: (116)

The .eld equations of this model has Pat spacetime solutions at � = �0 provided U (�0) = ∞.
Unfortunately, the e4ective gravitational constant in this model evolves as

Ge4 =
G

1 + 16�GU (�0)
(117)

and vanishes as U → ∞. Hence these models are not viable.
The diQculty in these models arise because they do not explicitly couple the trace of the Tab of

the scalar .eld itself. Handling this consistently [296] leads to a somewhat di4erent model which
we will briePy describe because of its conceptual interest.

Consider a system consisting of the gravitational .elds gab, radiation .elds, and a scalar .eld
� which couples to the trace of the energy-momentum tensor of all .elds, including its own. The
zeroth order action for this system is given by

A(0) = Agrav + A(0)
� + A(0)

int + Aradn ; (118)

where

Agrav = (16�G)−1
∫

R
√−g d4x −

∫
�
√−g d4x ; (119)

A(0)
� =

1
2

∫
�i�i

√−g d4x; A(0)
int = I

∫
Tf(�=�0)

√−g d4x : (120)

Here, we have explicitly included the cosmological constant term and I is a dimensionless number
which ‘switches on’ the interaction. In the zeroth order action, T represents the trace of all .elds
other than �. Since the radiation .eld is traceless, the only zeroth-order contribution to T comes
from the � term, so that we have T = 4�. The coupling to the trace is through a function f of the
scalar .eld, and one can consider various possibilities for this function. The constant �0 converts �
to a dimensionless variable, and is introduced for dimensional convenience.
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To take into account the back-reaction of the scalar .eld on itself, we must add to T the contri-
bution T� = −�l�l of the scalar .eld. If we now add T� to T in the interaction term A(0)

int further
modi.es T ik

� . This again changes T�. Thus to arrive at the correct action an in.nite iteration will
have to be performed and the complete action can be obtained by summing up all the terms. (For a
demonstration of this iteration procedure, see [297,298].) The full action can be found more simply
by a consistency argument.

Since the e4ect of the iteration is to modify the expression for A� and A�, we consider the
following ansatz for the full action:

A =
1

16�G

∫
R
√−g d4x −

∫
 (�)�

√−g d4x +
1
2

∫
G(�)�i�i

√−g d4x + Arad : (121)

Here  (�) and G(�) are functions of � to be determined by the consistency requirement that they
represent the e4ect of the iteration of the interaction term. (Since radiation makes no contribution to
T , we expect Arad to remain unchanged.) The energy–momentum tensor for � and � is now given
by

T ik =  (�)�gik + G(�)
[
�i�k − 1

2
gik� � 

]
(122)

so that the total trace is Ttot = 4 (�)� − G(�)�i�i. The functions  (�) and G(�) can now be
determined by the consistency requirement

−
∫

 (�)�
√−g d4x +

1
2

∫
G(�)�i�i

√−g d4x

= −
∫

�
√−g d4x +

1
2

∫
�i�i

√−g d4x + I
∫

Ttotf(�=�0)
√−g d4x : (123)

Using Ttot and comparing terms in the above equation we .nd that

 (�) = [1 + 4If]−1; G(�) = [1 + 2If]−1 : (124)

Thus the complete action can be written as

A =
1

16�G

∫
R
√−g d4x −

∫
�

1 + 4nf
√−g d4x +

1
2

∫
�i�i

1 + 2nf
√−g d4x + Arad : (125)

(The same action would have been obtained if one uses the iteration procedure.) The action in (125)
leads to the following .eld equations:

Rik − 1
2
gikR = −8�G

[
G(�)

(
�i�k − 1

2
gik� � 

)
+

�
8�G

 (�)gik + T traceless
ik

]
; (126)

� +
1
2

G′(�)
G(�)

�i�i +
�

8�G
 ′(�)
G(�)

= 0 : (127)

Here, stands for a covariant d’Lambertian, T traceless
ik is the stress tensor of all .elds with traceless

stress tensor and a prime denotes di4erentiation with respect to �.
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In the cosmological context, this reduces to

X� +
3ȧ
a
�̇ = I�̇2 f′

1 + 2If
+ I

�
2�G

f′(1 + 2If)
(1 + 4If)2 ; (128)

ȧ2 + k
a2 =

8�G
3

[
1
2

�̇2

1 + 2If
+

�
8�G

1
(1 + 4If)

+
�0

a4

]
: (129)

It is obvious that the e4ective cosmological constant can decrease if f increases in an expanding
universe. The result can be easily generalized for a scalar .eld with a potential by replacing � by
V (�). This model is conceptually attractive since it correctly accounts for the coupling of the scalar
.eld with the trace of the stress tensor.

The trouble with this model is two fold: (a) If one uses natural initial conditions and do not
.ne tune the parameters, then one does not get a viable model. (b) Since the scalar .eld couples
to the trace of all sources, it also couples to dust-like matter and “kills” it, making the universe
radiation dominated at present. This reduces the age of the universe and could also create diQculties
for structure formation. These problems can be circumvented by invoking a suitable potential V (�)
within this model [299]. However, such an approach takes away the naturalness of the model to
certain extent.

9. Geometrical structure of the de Sitter spacetime

The most symmetric vacuum solution to Einstein’s equation, of course, is the Pat spacetime. If
we now add the cosmological constant as the only source of curvature in Einstein’s equation, the
resulting spacetime is also highly symmetric and has an interesting geometrical structure. In the
case of a positive cosmological constant, this is the de Sitter manifold and in the case of negative
cosmological constant, it is known as anti-de Sitter manifold. We shall now discuss some features
of the former, corresponding to the positive cosmological constant. (For a nice, detailed, review of
the classical geometry of de Sitter spacetime, see [300].)

To understand the geometrical structure of the de Sitter spacetime, let us begin by noting that a
spacetime with the source Ta

b = ���a
b must have three-dimensional section which are homogeneous

and isotropic. This will lead us to the Einstein’s equations for a FRW universe with cosmological
constant as source

ȧ2

a2 +
k
a2 =

8�G
3

�� ≡ H 2 : (130)

This equation can be solved with any of the following three forms of (k; a(t)) pair. The .rst pair is
the spatially Pat universe with (k = 0; a = eHt). The second corresponds to spatially open universe
with (k =−1; a = H−1 sinhHt) and the third will be (k = +1; a = H−1 coshHt). Of these, the last
pair gives a coordinate system which covers the full de Sitter manifold. In fact, this is the metric on
a four-dimensional hyperboloid, embedded in a .ve-dimensional Minkowski space with the metric

ds2 = dt2 − dx2 − dy2 − dz2 − dv2 : (131)
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The equation of the hyperboloid in 5-D space is

t2 − x2 − y2 − z2 − v2 = −H−2 : (132)

We can introduce a parametric representation of the hyperbola with the four variables (2; %; $; �)
where

x = H−1 cosh(H2)sin % sin $ cos�; y = H−1 cosh(H2)sin % sin $ sin� ;

z = H−1 cosh(H2)sin % cos $ ;

v = H−1 cosh(H2)cos % ;

t = H−1 sinh(H2) : (133)

This set, of course, satis.es (132). Using (131), we can compute the metric induced on the hyper-
boloid which—when expressed in terms of the four coordinates (2; %; $; �)—is given by

ds2 = d22 − H−2 cosh2(H2)[d%2 + sin2 %(d$ 2 + sin2 $ d�2)] : (134)

This is precisely the de Sitter manifold with closed spatial sections. All the three forms of FRW
universes with k=0;±1 arise by taking di4erent cuts in this four-dimensional hyperboloid embedded
in the .ve-dimensional spacetime. Since two of these dimensions (corresponding to the polar angles
$ and �) merely go for a ride, it is more convenient (for visualization) to work with a 3-dimensional
spacetime having the metric

ds2 = dt2 − dx2 − dv2 : (135)

instead of the .ve-dimensional metric (131). Every point in this three-dimensional space corresponds
to a 2-sphere whose coordinates $ and � are suppressed for simplicity. The (1+1) de Sitter spacetime
is the two-dimensional hyperboloid [instead of the four-dimensional hyperboloid of (132)] with the
equation

t2 − x2 − v2 = −H−2 (136)

embedded in the three-dimensional space with metric (135). The three di4erent coordinate systems
which are natural on this hyperboloid are the following:

• Closed spatial sections: This is obtained by introducing the coordinates t = H−1 sinh(H2); x =
H−1 cosh(H2)sin %; v = H−1 cosh(H2)cos % on the hyperboloid, in terms of which the induced
metric on the hyperboloid has the form

ds2 = d22 − H−2 cosh2(H2) d%2 : (137)

This is the two-dimensional de Sitter space which is analogous to the four-dimensional case
described by (134).

• Open spatial sections: These are obtained by using the coordinates t = H−1 sinh(H2)cosh <; x =
H−1 sinh(H2)sinh <; v = H−1 cosh(H2) on the hyperboloid in terms of which the induced metric
on the hyperboloid has the form

ds2 = d22 − H−2 sinh2(H2) d<2 : (138)
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• Flat spatial sections: This corresponds to the choice t = H−1 sinh(H2) + (H−1=2)<2 exp(H2);
x = H−1 cosh(H2) − (H−1=2)<2 exp(H2); v = < exp(H2) leading to the metric

ds2 = d22 − exp(2H2) d<2 : (139)

This covers one half of the de Sitter hyperboloid bounded by the null rays t + x = 0.

All these metrics have an apparent time dependence. But, in the absence of any source other than
cosmological constant, there is no preferred notion of time and the spacetime manifold cannot have
any intrinsic time dependence. This is indeed true, in spite of the expansion factor a(t) ostensibly
depending on time. The translation along the time direction merely slides the point on the surface
of the hyperboloid. [This is obvious in the coordinates (k =0; a˙ eHt) in which the time translation
t → t + J merely rescales the coordinates by (expHJ).] The time independence of the metric can be
made explicit in another set of coordinates called ‘static coordinates’. To motivate these coordinates,
let us note that a spacetime with only cosmological constant as the source is certainly static and
possesses spherical symmetry. Hence we can also express the metric in the form

ds2 = eK dt2 − e: dr2 − r2(d$ 2 + sin2 $ d�2) ; (140)

where K and : are functions of r. The Einstein’s equations for this metric has the solution eK=e−: =
(1 − H 2r2) leading to

ds2 = (1 − H 2r2) dt2 − dr2

(1 − H 2r2)
− r2(d$ 2 + sin2 $ d�2) : (141)

This form of the metric makes the static nature apparent. This metric also describes a hyperboloid
embedded in a higher-dimensional Pat space. For example, in the (1+1) case (with $; � suppressed)
this metric can be obtained by the following parameterization of the hyperboloid in Eq. (136):

t = (H−2 − r2)1=2 sinh(H2); v = (H−2 − r2)1=2 cosh(H2); x = r : (142)

The key feature of the manifold, revealed by Eq. (141) is the existence of a horizon at r = H−1.
It also shows that t is a time-like coordinate only in the region r ¡H−1.

The structure of the metric is very similar to the Schwarzschild metric:

ds2 =
(

1 − 2M
r

)
dt2 − dr2

(1 − 2M=r)
− r2(d$ 2 + sin2 $ d�2) : (143)

Both the metrics (143) and (141) are spherically symmetric with g00 = −(1=g11). Just as the
Schwarzschild metric has a horizon at r = 2M (indicated by g00 → 0; g11 → ∞), the de Sitter
metric also has a horizon at r = H−1. From the slope of the light cones (dt=dr) = ±(1 − H 2r2)−1

[corresponding to ds = 0 = d$ = d� in (142)] it is clear that signals sent from the region r ¡H−1

cannot go beyond the surface r = H−1.
This feature, of course, is independent of the coordinate system used. To see how the horizon in

de Sitter universe arises in the FRW coordinates, let us recall the equation governing the propagation
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of light signals between the events (t1; r1) and (t; r):∫ r

r1

dx√
1 − kx2

=
∫ t

t1

dt′

a(t′)
: (144)

Consider a photon emitted by an observer at the origin at the present epoch (r1 = 0; t1 = t0). The
maximum coordinate distance xH reached by this photon as t → ∞ is determined by the equation∫ xH

0

dx√
1 − kx2

=
∫ ∞

t0

dt′

a(t′)
: (145)

If the integral on the right hand side diverges as t → ∞, then, in the same limit, xH → ∞ and an
observer can send signals to any event provided (s)he waits for a suQciently long time. But if the
integral on the right hand side converges to a .nite value as t → ∞, then there is a .nite horizon
radius beyond which the observer’s signals will not reach even if (s)he waits for in.nite time. In
the de Sitter universe with k =0 and a(t)= eHt; xH =H−1e−Ht0 ; the corresponding maximum proper
distance up to which the signals can reach is rH = a(t0)xH = H−1. Thus we get the same result in
any other coordinate system.

Since the result depends essentially on the behavior of a(t) as t → ∞, it will persist even in the
case of a universe containing both nonrelativistic matter and cosmological constant. For example, in
our universe, we can ask what is the highest redshift source from which we can ever receive a light
signal, if the signal was sent today. To compute this explicitly, consider a model with +NR ++� =1.
Let us assume that light from an event at (rH ; zH ) reaches r = 0 at z = 0 giving

rH =
∫ t0

tH

dt
a(t)

=
∫ zH

0

dz
H0[1 − +NR + +NR(1 + z)3]1=2

: (146)

If we take rH to be the size of the horizon, then it also follows that the light emitted today from
this event will just reach us at t = ∞. This gives

rH =
∫ ∞

t0

dt
a(t)

=
∫ 0

−1

dz
H0[1 − +NR + +NR(1 + z)3]1=2

: (147)

Equating the two expressions, we get an implicit expression for zH . If +NR =0:3, the limiting redshift
is quite small: zH ≈ 1:8. This implies that sources with z¿ zH can never be inPuenced by light
signals from us in a model with cosmological constant [301,302].

10. Horizons, temperature and entropy

In the description of standard cosmology +� appears as a parameter like, say, the Hubble constant
H0. There is, however, a signi.cant di4erence between these two parameters as far as fundamental
physics is concerned. The exact numerical value of h is not of major concern to fundamental physics.
But, the nonzero value for +� signi.es the existence of an exotic form of energy density with
negative pressure which is a result of deep signi.cance to the whole of physics. We shall now take
up an important aspect of the cosmological constant which is somewhat di4erent in spirit compared
to the results covered so far [304–307].
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It turns out that the universe with a nonzero value for cosmological constant behaves in many
ways in a manner similar to a black hole. Just as the black hole has close links with thermodynamics
(like having a .nite temperature, entropy, etc.) the de Sitter universe also possesses thermodynamic
features which makes it peculiar and important in understanding the cosmological constant. This
thermodynamic relationship of the cosmological constant has not been adequately explored or inte-
grated into the standard cosmological description so far. But since it is likely to have a important
implications for the eventual resolution of the cosmological constant problem, we shall provide a
fairly self contained description of the same.

One of the remarkable features of classical gravity is that it can wrap up regions of space-
time thereby producing surfaces which act as one way membranes. The classic example is that of
Schwarzschild black hole of mass M which has a compact spherical surface of radius r = 2M that
act as a horizon. Since the horizon can hide information—and information is deeply connected with
entropy—one would expect a fundamental relationship between gravity and thermodynamics. (There
is extensive literature in this subject and our citation will be representative rather than exhaustive;
for a text book discussion and earlier references, see [303]; for a recent review, see [304].) As
we saw in the last section, the de Sitter universe also has a horizon which suggests that de Sitter
spacetime will have nontrivial thermodynamic features [305].

This result can be demonstrated mathematically in many di4erent ways of which the simplest
procedure is based on the relationship between temperature and the Euclidean extension of the
spacetime. To see this connection, let us recall that the mean value of some dynamical variable
f(q) in quantum statistical mechanics can be expressed in the form

〈f〉 =
1
Z

∑
E

∫
�∗

E(q)f(q)�E(q)e−GE dq ; (148)

where �E(q) is the stationary state eigenfunction of the Hamiltonian with H�E = E�E; G = (1=T )
is the inverse temperature and Z(G) is the partition function. This expression calculates the mean
value 〈E|f|E〉 in a given energy state and then averages over a Boltzmann distribution of energy
states with the weightage Z−1 exp(−GE). On the other hand, the quantum mechanical kernel giving
the probability amplitude for the system to go from the state q at time t = 0 to the state q′ at time
t is given by

K(q′; t; q; 0) =
∑
E

�∗
E(q′)�E(q)e−itE : (149)

Comparing (148) and (149) we .nd that the thermal average in (148) can be obtained by

〈f〉 =
1
Z

∫
dqK(q;−iG; q; 0)f(q) (150)

in which we have done the following: (i) The time coordinate has been analytically continued to
imaginary values with it= 2. (ii) The system is assumed to exhibit periodicity in the imaginary time
2 with period G in the sense that the state variable q has the same values at 2 = 0 and G. These
considerations continue to hold even for a .eld theory with q denoting the .eld con.guration at a
given time. If the system, in particular the Greens functions describing the dynamics, are periodic
with a period p in imaginary time, then one can attribute a temperature T = (1=p) to the system.
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It may be noted that the partition function Z(G) can also be expressed in the form

Z(G) =
∑
E

e−GE =
∫

dqK(q;−iG; q; 0) =
∫

Dq exp[ − AE(q; G; q; 0)] : (151)

The .rst equality is the standard de.nition for Z(G); the second equality follows from (149) and
the normalization of �E(q); the last equality arises from the standard path integral expression for
the kernel in the Euclidean sector (with AE being the Euclidean action) and imposing the peri-
odic boundary conditions. (It is assumed that the path integral measure Dq includes an integration
over q.) We shall have occasion to use this result later. Eqs. (150) and (151) represent the relation
between the periodicity in Euclidean time and temperature.

Spacetimes with horizons possess a natural analytic continuation from Minkowski signature to the
Euclidean signature with t → 2 = it. If the metric is periodic in 2, then one can associate a natural
notion of a temperature to such spacetimes. For example, the de Sitter manifold with the metric
(134) can be continued to imaginary time arriving at the metric

− ds2 = d22 + H−2 cos2 H2[d%2 + sin2 %(d$ 2 + sin2 $ d�2)] (152)

which is clearly periodic in 2 with the period (2�=H). [The original metric was a 4-hyperboloid in
the .ve-dimensional space while Eq. (152) represents a 4-sphere in the .ve-dimensional space.] It
follows that de Sitter spacetime has a natural notion of temperature T = (H=2�) associated with it.

It is instructive to see how this periodicity arises in the static form of the metric in (141). Consider
a metric of the form

ds2 = f(r) dt2 − dr2

f(r)
− dL2

⊥ ; (153)

where dL2
⊥ denotes the transverse two-dimensional metric and f(r) has a simple zero at r=rH . Near

r = rH , we can expand f(r) in a Taylor series and obtain f(r) ≈ B(r− rH ) where B ≡ f′(rH ). The
structure of the metric in (153) shows that there is a horizon at r = rH . Further, since the general
relativistic metric reduces to g00 ≈ (1 + 2�N ) in the Newtonian limit, where �N is the Newtonian
gravitational potential, the quantity

M = |�′
N (rH )| = 1

2 |g′00(rH )| = 1
2 |f′(rH )| = 1

2 |B| (154)

can be interpreted as the gravitational attraction on the surface of the horizon—usually called the
surface gravity. Using the form f(r) ≈ 2M(r − rH ) near the horizon and shifting to the coordinate
< ≡ [2M−1(r − rH )]1=2 the metric near the horizon becomes

ds2 ≈ M2<2 dt2 − d<2 − dL2
⊥ : (155)

The Euclidean continuation t → 2 = it now leads to the metric

− ds2 ≈ <2d(M2)2 + d<2 + dL2
⊥ (156)

which is essentially the metric in the polar coordinates in the 2–< plane. For this metric to be well
de.ned near the origin, M2 should behave like an angular coordinate $ with periodicity 2�. Therefore,
we require all well de.ned physical quantities de.ned in this spacetime to have a periodicity in 2
with the period (2�=|M|). Thus, all metrics of the form in (153) with a simple zero for f(r) leads
to a horizon with temperature T = |M|=2� = |f′(rH )|=4�. In the case of de Sitter spacetime, this
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gives T = (H=2�); for the Schwarzschild metric, the corresponding analysis gives the well known
temperature T = (1=8�M) where M is the mass of the black-hole.

10.1. The connection between thermodynamics and spacetime geometry

The existence of one-way membranes, however, is not necessarily a feature of gravity or curved
spacetime and can be induced even in Pat Minkowski spacetime. It is possible to introduce coordinate
charts in Minkowski spacetime such that regions are separated by horizons, a familiar example
being the coordinate system used by a uniformly accelerated frame (Rindler frame) which has a
non-compact horizon. The natural coordinate system (t; x; y; z) used by an observer moving with a
uniform acceleration g along the x-axis is related to the inertial coordinates (T; X; Y; Z) by

gT =
√

1 + 2gx sinh(gt); (1 + gX ) =
√

1 + 2gx cosh(gt) ; (157)

and Y = y; Z = z. The metric in the accelerated frame will be

ds2 = (1 + 2gx) dt2 − dx2

(1 + 2gx)
− dy2 − dz2 (158)

which has the same form as the metric in (153) with f(x) = (1 + 2gx). This has a horizon at
x=−1=2g with the surface gravity M=g and temperature T =(g=2�). All the horizons are implicitly
de.ned with respect to certain class of observers; for example, a suicidal observer plunging into the
Schwarzschild black hole will describe the physics very di4erently from an observer at in.nity. From
this point of view, which we shall adopt, there is no need to distinguish between observer dependent
and observer independent horizons. This allows a powerful way of describing the thermodynamical
behavior of all these spacetimes (Schwarzschild, de Sitter, Rindler, etc.) at one go.

The Schwarzschild, de Sitter and Rindler metrics are symmetric under time reversal and there
exists a ‘natural’ de.nition of a time symmetric vacuum state in all these cases. Such a vacuum
state will appear to be described a thermal density matrix in a subregion R of spacetime with the
horizon as a boundary. The QFT based on such a state will be manifestedly time symmetric and
will describe an isolated system in thermal equilibrium in the subregion R. No time asymmetric
phenomena like evaporation, outgoing radiation, irreversible changes, etc. can take place in this
situation. We shall now describe how this arises.

Consider a (D + 1)-dimensional Pat Lorentzian manifold S with the signature (+;−;−; : : :) and
Cartesian coordinates ZA where A = (0; 1; 2; : : : ; D). A four-dimensional sub-manifold D in this
(D + 1)-dimensional space can be de.ned through a mapping ZA = ZA(xa) where xa with a =
(0; 1; 2; 3) are the four-dimensional coordinates on the surface. The Pat Lorentzian metric in the
(D + 1)-dimensional space induces a metric gab(xa) on the four-dimensional space which—for a
wide variety of the mappings ZA = ZA(xa)—will have the signature (+;−;−;−) and will represent,
in general, a curved four geometry. The quantum theory of a free scalar .eld in S is well de.ned in
terms of the, say, plane wave modes which satisfy the wave equation in S. A subset of these modes,
which does not depend on the ‘transverse’ directions, will satisfy the corresponding wave equation
in D and will depend only on xa. These modes induce a natural QFT in D. We are interested in
the mappings ZA = ZA(xa) which leads to a horizon in D so that we can investigate the QFT in
spacetimes with horizons using the free, Pat spacetime, QFT in S ([309,304]).
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For this purpose, let us restrict attention to a class of surfaces de.ned by the mappings ZA =
ZA(xa) which ensures the following properties for D: (i) The induced metric gab has the signature
(+;−;−;−). (ii) The induced metric is static in the sense that g0 = 0 and all gabs are independent
of x0. [The Greek indices run over 1,2,3.] (iii) Under the transformation x0 → x0 ± i(�=g), where g
is a nonzero, positive constant, the mapping of the coordinates changes as Z0 → −Z0; Z1 → −Z1

and ZA → ZA for A = 2; : : : ; D. It will turn out that the four-dimensional manifolds de.ned by such
mappings possess a horizon and most of the interesting features of the thermodynamics related to
the horizon can be obtained from the above characterization. Let us .rst determine the nature of
the mapping ZA = ZA(xa) = ZA(t; x) such that the above conditions are satis.ed. Condition (iii)
above singles out the spatial coordinate Z1 from the others. To satisfy this condition we can take
the mapping ZA = ZA(t; r; $; �) to be of the form Z0 = Z0(t; r); Z1 = Z1(t; r); Z⊥ = Z⊥(r; $; �)
where Z⊥ denotes the transverse coordinates ZA with A=(2; : : : ; D). To impose condition (ii) above,
one can make use of the fact that S possesses invariance under translations, rotations and Lorentz
boosts, which are characterized by the existence of a set of N = (1=2)(D + 1)(D + 2) Killing vector
.elds <A(ZA). Consider any linear combination VA of these Killing vector .elds which is time like
in a region of S. The integral curves to this vector .eld VA will de.ne time like curves in S.
If one treats these curves as the trajectories of a hypothetical observer, then one can set up the
proper Fermi–Walker transported coordinate system for this observer. Since the four velocities of
the observer are along the Killing vector .eld, it is obvious that the metric in this coordinate system
will be static [310]. In particular, there exists a Killing vector which corresponds to Lorentz boosts
along the Z1 direction that can be interpreted as rotation in imaginary time coordinate allowing a
natural realization of (iii) above. Using the property of Lorentz boosts, it is easy to see that the
transformations of the form Z0 = lf(r)1=2 sinh gt; Z1 =±lf(r)1=2 cosh gt will satisfy both conditions
(ii) and (iii) where (l; g) are constants introduced for dimensional reasons and f(r) is a given
function. This map covers only the two quadrants with |Z1|¿ |Z0| with positive sign for the right
quadrant and negative sign for the left. To cover the entire (Z0; Z1) plane, we will use the full set

Z0 = lf(r)1=2 sinh gt; Z1 = ±lf(r)1=2 cosh gt (for |Z1|¿ |Z0|) ;

Z0 = ±l[ − f(r)]1=2 cosh gt; Z1 = l[ − f(r)]1=2 sinh gt (for |Z1|¡ |Z0|) : (159)

The inverse transformations corresponding to (159) are

l2f(r) = (Z1)2 − (Z0)2; gt = tanh−1(Z0=Z1) : (160)

Clearly, to cover the entire two-dimensional plane of −∞¡ (Z0; Z1)¡ + ∞, it is necessary to
have both f(r)¿ 0 and f(r)¡ 0. The pair of points (Z0; Z1) and (−Z0;−Z1) are mapped to the
same (t; r) making this a 2-to-1 mapping. The null surface Z0 = ±Z1 is mapped to the surface
f(r) = 0. The transformations given above with any arbitrary mapping for the transverse coordinate
Z⊥ = Z⊥(r; $; �) will give rise to an induced metric on D of the form

ds2 = f(r)(lg)2 dt2 − l2

4

(
f′2

f

)
dr2 − dL2

⊥ ; (161)

where dL2
⊥ depends on the form of the mapping Z⊥=Z⊥(r; $; �). This form of the metric is valid in

all the quadrants even though we will continue to work in the right quadrant and will comment on
the behavior in other quadrants only when necessary. It is obvious that the D, in general, is curved
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and has a horizon at f(r)=0. As a speci.c example, let us consider the case of (D+1)=6 with the
coordinates (Z0; Z1; Z2; Z3; Z4; Z5) = (Z0; Z1; Z2; R;@;N) and consider a mapping to four-dimensional
subspace in which: (i) The (Z0; Z1) are mapped to (t; r) as before; (ii) the spherical coordinates
(R;@;N) in S are mapped to standard spherical polar coordinates in D: (r; $; ’) and (iii) we take
Z2 to be an arbitrary function of r: Z2 = q(r). This leads to the metric

ds2 = A(r) dt2 − B(r) dr2 − r2 d+2
2-sphere (162)

with

A(r) = (lg)2f; B(r) = 1 + q′2 +
l2

4
f′2

f
: (163)

Eq. (162) is the form of a general, spherically symmetric, static metric in 4-dimension with two
arbitrary functions f(r); q(r). Given any speci.c metric with A(r) and B(r), Eqs. (163) can be
solved to determine f(r); q(r). As an example, let us consider the Schwarzschild solution for which
we will take f = 4[1− (l=r)]; the condition g00 = (1=g11) now determines q(r) through the equation

(q′)2 =
(

1 +
l2

r2

)(
1 +

l
r

)
− 1 =

(
l
r

)3

+
(
l
r

)2

+
l
r

: (164)

That is

q(r) =

r∫ [(
l
r

)3

+
(
l
r

)2

+
l
r

]1=2

dr : (165)

Though the integral cannot be expressed in terms of elementary functions, it is obvious that
q(r) is well behaved everywhere including at r = l. The transformations (Z0; Z1) → (t; r); Z2 →
q(r); (Z3; Z4; Z5) → (r; $; ’) thus provide the embedding of Schwarzschild metric in a six-dimensional
space. [This result was originally obtained by Frondsal [311]; but the derivation in that paper is some-
what obscure and does not bring out the generality of the situation]. As a corollary, we may note
that this procedure leads to a spherically symmetric Schwarzschild-like metric in arbitrary dimension,
with the 2-sphere in (162) replaced any N -sphere. The choice lg=1; f(r)=[1− (r=l)2] will provide
an embedding of the de Sitter spacetime in 6-dimensional space with Z2 = r; (Z3; Z4; Z5) → (r; $; �).
Of course, in this case, one of the coordinates is actually redundant and—as we have seen earlier—
one can achieve the embedding in a .ve-dimensional space. A still more trivial case is that of
Rindler metric which can be obtained with D = 3; lg = 1; f(r) = 1 + 2gr; in this case, the “em-
bedding” is just a reparametrization within four-dimensional spacetime and—in this case—r runs in
the range (−∞;∞). The key point is that the metric in (161) is fairly generic and can describe a
host of spacetimes with horizons located at f = 0. We shall discuss several features related to the
thermodynamics of the horizon in the next few sections.

10.2. Temperature of horizons

There exists a natural de.nition of QFT in the original (D + 1)-dimensional space; in particular,
we can de.ne a vacuum state for the quantum .eld on the Z0 = 0 surface, which coincides with the
t=0 surface. By restricting the .eld modes (or the .eld con.gurations in the Schrodinger picture) to
depend only on the coordinates in D, we will obtain a quantum .eld theory in D in the sense that
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these modes will satisfy the relevant .eld equation de.ned in D. In general, this is a complicated
problem and it is not easy to have a choice of modes in S which will lead to a natural set of
modes in D. We can, however, take advantage of the arguments given in the last section—that
all the interesting physics arises from the (Z0; Z1) plane and the other transverse dimensions are
irrelevant near the horizon. In particular, solutions to the wave equation in S which depends only
on the coordinates Z0 and Z1 will satisfy the wave equation in D and will depend only on (t; r).
Such modes will de.ne a natural s-wave QFT in D. The positive frequency modes of the above
kind (varying as exp(−i+Z0) with !¿ 0.) will be a speci.c superposition of negative (varying as
ei!t) and positive (varying as e−i!t) frequency modes in D leading to a temperature T = (g=2�) in
the four-dimensional subspace on one side of the horizon. There are several ways of proving this
result, all of which depend essentially on the property that under the transformation t → t ± (i�=g)
the two coordinates Z0 and Z1 reverses sign.

Consider a positive frequency mode of the form F+(Z0; Z1) ˙ exp[ − i+Z0 + iPZ1] with +¿ 0.
These set of modes can be used to expand the quantum .eld thereby de.ning the creation and
annihilation operators A+; A

†
+:

�(Z0; Z1) =
∑
+

[A+F+(Z0; Z1) + A†
+F

∗
+(Z0; Z1)] : (166)

The vacuum state de.ned by A+|vac〉 = 0 corresponds to a globally time symmetric state which
will be interpreted as a no particle state by observers using Z0 as the time coordinate. Let us now
consider the same mode which can be described in terms of the (t; r) coordinates. Being a scalar,
this mode can be expressed in the four-dimensional sector in the form F+(t; r)=F+[Z0(t; r); Z1(t; r)].
The Fourier transform of F+(t; r) with respect to t will be

K+(!; r) =
∫ ∞

−∞
dt e+i!t F+[Z0(t; r); Z1(t; r)]; (−∞¡!¡∞) : (167)

Thus a positive frequency mode in the higher dimension can only be expressed as an integral over
! with ! ranging over both positive and negative values. However, using the fact that t → t−(i�=g)
leads to Z0 → −Z0; Z1 → −Z1, it is easy to show that

K+(−!; r) = e−(�!=g)K∗
+(!; r) : (168)

This allows us to write the inverse relation to (167) as

F+(t; r) =
∫ ∞

−∞
d!
2�

K+(!; r)e−i!t

=
∫ ∞

0

d!
2�

[K+(!; r)e−i!t + e−�!=gK∗
+(!; r)ei!t] : (169)

The term with K∗
+ represents the contribution of negative frequency modes in the 4-D spacetime

to the pure positive frequency mode in the embedding spacetime. A .eld mode of the embedding
spacetime containing creation and annihilation operators (A+; A

†
+) can now be represented in terms
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of the creation and annihilation operators (a!; a
†
!) appropriate to the (t; r) coordinates as

A+F+ + A†
+F

∗
+ =

∫ ∞

0

d!
2�

[(A+ + A†
+e−�!=g)K+e−i!t + h:c:]

=
∫ ∞

0

d!
2�

1
N!

[a!K+e−i!t + h:c:] ; (170)

where N! is a normalization constant. Identifying a! =N!(A+ + e−�!=gA†
+) and using the conditions

[a!; a
†
!] = 1; [A+; A

†
+] = 1, etc., we get N! = [1 − exp(−2�!=g)]−1=2. It follows that the number of

a-particles in the vacuum de.ned by A+|vac〉 = 0 is given by

〈vac|a†!a!|vac〉 = N 2
!e−2�!=g = (e2�!=g − 1)−1 : (171)

This is a Planckian spectrum with temperature T = g=2�. The key role in the derivation is played
by Eq. (168) which, in turn, arises from the analytical properties of the spacetime under Euclidean
continuation.

10.3. Entropy and energy of de Sitter spacetime

The best studied spacetimes with horizons are the black hole spacetimes. (For a sample of refer-
ences, see [312–321]). In the simplest context of a Schwarzschild black hole of mass M , one can
attribute an energy E = M , temperature T = (8�M)−1 and entropy S = (1=4)(AH=L2

P) where AH is
the area of the horizon and LP = (G˝=c3)1=2 is the Planck length. (Hereafter, we will use units with
G = ˝= c = 1.) These are clearly related by the thermodynamic identity T dS = dE, usually called
the .rst law of black hole dynamics. This result has been obtained in much more general contexts
and has been investigated from many di4erent points of view in the literature. The simplicity of the
result depends on the following features: (a) The Schwarzschild metric is a vacuum solution with
no pressure so that there is no P dV term in the .rst law of thermodynamics. (b) The metric has
only one parameter M so that changes in all physical parameters can be related to dM . (c) Most
importantly, there exists a well de.ned notion of energy E to the spacetime and the changes in the
energy dE can be interpreted in terms of the physical process of the black hole evaporation. The
idea can be generalized to other black hole spacetimes in a rather simple manner only because of
well de.ned notions of energy, angular momentum, etc.

Can one generalize the thermodynamics of horizons to cases other than black holes in a straight
forward way? In spite of years of research in this .eld, this generalization remains nontrivial and
challenging when the conditions listed above are not satis.ed. To see the importance of the above
conditions, we only need to contrast the situation in Schwarzschild spacetime with that of de Sitter
spacetime:

• As we saw in Section 10.2, the notion of temperature is well de.ned in the case of de Sitter
spacetime and we have T = H=2� where H−1 is the radius of the de Sitter horizon. But the
correspondence probably ends there. A study of literature shows that there exist very few concrete
calculations of energy, entropy and laws of horizon dynamics in the case of de Sitter spacetimes,
in sharp contrast to BH space times.
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• There have been several attempts in the literature to de.ne the concept of energy using local
or quasi-local concepts (for a sample of references, see [322–330]). The problem is that not all
de.nitions of energy agree with each other and not all of them can be applied to de Sitter type
universes.

• Even when a notion of energy can be de.ned, it is not clear how to write and interpret an
equation analogous to dS = (dE=T ) in this spacetime, especially since the physical basis for dE
would require a notion of evaporation of the de Sitter universe.

• Further, we know that de Sitter spacetime is a solution to Einstein’s equations with a source
having nonzero pressure. Hence one would very much doubt whether T dS is indeed equal to dE.
It would be necessary to add a P dV term for consistency.

All these suggest that to make any progress, one might require a local approach by which one can
de.ne the notion of entropy and energy for spacetimes with horizons. This conclusion is strengthened
further by the following argument: Consider a class of spherically symmetric spacetimes of the form

ds2 = f(r) dt2 − f(r)−1 dr2 − r2(d$ 2 + sin2 $ d�2) : (172)

If f(r) has a simple zero at r=a with f′(a) ≡ B remaining .nite, then this spacetime has a horizon
at r=a. Spacetimes like Schwarzschild or de Sitter have only one free parameter in the metric (like
M or H−1) and hence the scaling of all other thermodynamical parameters is uniquely .xed by
purely dimensional considerations. But, for a general metric of the form in (172), with an arbitrary
f(r), the area of the horizon (and hence the entropy) is determined by the location of the zero of the
function f(r) while the temperature—obtained from the periodicity considerations—is determined
by the value of f′(r) at the zero. For a general function, of course, there will be no relation between
the location of the zero and the slope of the function at that point. It will, therefore, be incredible
if there exists any a priori relationship between the temperature (determined by f′) and the entropy
(determined by the zero of f) even in the context of horizons in spherically symmetric spacetimes.
If we take the entropy to be S = �a2 (where f(a) = 0 determines the radius of the horizon) and
the temperature to be T = |f′(a)|=4� (determined by the periodicity of Euclidean time), the quantity
T dS = (1=2)|f′(a)|a da will depend both on the slope f′(a) as well as the radius of the horizon.
This implies that any local interpretation of thermodynamics will be quite nontrivial.

Finally, the need for local description of thermodynamics of horizons becomes crucial in the case
of spacetimes with multiple horizons. The strongest and the most robust result we have, regarding
spacetimes with a horizon, is the notion of temperature associated with them. This, in turn, depends
on the study of the periodicity of the Euclidean time coordinate. This approach does not work very
well if the spacetime has more than one horizon like, for example, in the Schwarzschild-de Sitter
metric which has the form in (172) with

f(r) =
(

1 − 2M
r

− H 2r2

)
: (173)

This spacetime has two horizons at r± with

r+ =

√
4
3
H−1 cos

x + 4�
3

; r− =

√
4
3
H−1 cos

x
3

; (174)
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where cos x = −3
√

3MH−1. (The parameter x is in the range (�; (3=2)�] and we assume that
06 27M 2H−2 ¡ 1.) Close to either horizon the spacetime can be approximated as Rindler. Since the
surface gravities on the two horizons are di4erent, we get two di4erent temperatures T±=|f′(r±)|=4�.
To maintain invariance under it → it + G (with some .nite G) it is necessary that G is an integer
multiple of both 4�=|f′(r+)| and 4�=|f′(r−)| so that G = (4�n±=|f′(r±)|) where n± are integers.
Hence the ratio of surface gravities |f′(r+)|=|f′(r−)|= (n+=n−) must be a rational number. Though
irrationals can be approximated by rationals, such a condition de.nitely excludes a class of values
for M if H is speci.ed and vice versa. It is not clear why the existence of a cosmological constant
should imply something for the masses of black holes (or vice versa). Since there is no physical
basis for such a condition, it seems reasonable to conclude that these diQculties arise because of
our demanding the existence of a .nite periodicity G in the Euclidean time coordinate. This demand
is related to an expectation of thermal equilibrium which is violated in spacetimes with multiple
horizons having di4erent temperatures.

If even the simple notion of temperature falls apart in the presence of multiple horizons, it is not
likely that the notion of energy or entropy can be de.ned by global considerations. On the other
hand, it will be equally strange if we cannot attribute a temperature to a black hole formed in some
region of the universe just because the universe at the largest scales is described by a de Sitter
spacetime, say. One is again led to searching for a local description of the thermodynamics of all
types of horizons. We shall now see how this can be done.

Given the notion of temperature, there are two very di4erent ways of de.ning the entropy: (1) In
statistical mechanics, the partition function Z(G) of the canonical ensemble of systems with constant
temperature G−1 is related to the entropy S and energy E by Z(G) ˙ exp(S − GE). (2) In classical
thermodynamics, on the other hand, it is the change in the entropy, which can be operationally
de.ned via dS = dE=T (E). Integrating this equation will lead to the function S(E) except for an
additive constant which needs to be determined from additional considerations. Proving the equality
of these two concepts was nontrivial and—historically—led to the uni.cation of thermodynamics
with mechanics. In the case of time symmetric state, there will be no change of entropy dS and the
thermodynamic route is blocked. It is, however, possible to construct a canonical ensemble of a class
of spacetimes and evaluate the partition function Z(G). For spherically symmetric spacetimes with a
horizon at r = l, the partition function has the generic form Z ˙ exp[S − GE], where S = (1=4)4�l2

and |E| = (l=2). This analysis reproduces the conventional result for the black hole spacetimes and
provides a simple and consistent interpretation of entropy and energy for de Sitter spacetime, with
the latter being given by E = −(1=2)H−1. In fact, it is possible to write Einstein’s equations for a
spherically symmetric spacetime as a thermodynamic identity T dS − dE = P dV with T; S and E
determined as above and the P dV term arising from the source [308]. We shall now discuss some
of these issues.

Consider a class of spacetimes with the metric

ds2 = f(r) dt2 − f(r)−1 dr2 − dL2
⊥ ; (175)

where f(r) vanishes at some surface r= l, say, with f′(l) ≡ B remaining .nite. When dL2
⊥= r2 dS2

2
with [06 r6∞], Eq. (175) covers a variety of spherically symmetric spacetimes with a compact
horizon at r=l. Since the metric is static, Euclidean continuation is trivially e4ected by t → 2=it and
an examination of the conical singularity near r = a [where f(r) ≈ B(r − a)] shows that 2 should
be interpreted as periodic with period G = 4�=|B| corresponding to the temperature T = |B|=4�.
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Let us consider a set S of such metrics in (175) with the restriction that [f(a) = 0; f′(a) = B]
but f(r) is otherwise arbitrary and has no zeros. The partition function for this set of metrics S is
given by the path integral sum

Z(G) =
∑
g∈S

exp(−AE(g)) =
∑
g∈S

exp
(
− 1

16�

∫ G

0
d2
∫

d3x
√
gERE[f(r)]

)
; (176)

where Einstein action has been continued in the Euclidean sector and we have imposed the periodicity
in 2 with period G=4�=|B|. The sum is restricted to the set S of all metrics of the form in (175) with
the behavior [f(a)=0; f′(a)=B] and the Euclidean Lagrangian is a functional of f(r). The spatial
integration will be restricted to a region bounded by the 2-spheres r =a and r =b, where the choice
of b is arbitrary except for the requirement that within the region of integration the Lorentzian metric
must have the proper signature with t being a time coordinate. The remarkable feature is the form of
the Euclidean action for this class of spacetimes. Using the result R=∇2

rf− (2=r2)(d=dr)[r(1−f)]
valid for metrics of the form in (175), a straightforward calculation shows that

− AE =
G
4

∫ b

a
dr[ − [r2f′]′ + 2[r(1 − f)]′] =

G
4
[a2B− 2a] + Q[f(b); f′(b)] ; (177)

where Q depends on the behavior of the metric near r = b and we have used the conditions
[f(a) = 0; f′(a) = B]. The sum in (176) now reduces to summing over the values of [f(b); f′(b)]
with a suitable (but unknown) measure. This sum, however, will only lead to a factor which we
can ignore in deciding about the dependence of Z(G) on the form of the metric near r = a. Using
G = 4�=B (and taking B¿ 0, for the moment) the .nal result can be written in a very suggestive
form

Z(G) = Z0 exp
[
1
4
(4�a2) − G

(a
2

)]
˙ exp[S(a) − GE(a)] (178)

with the identi.cations for the entropy and energy being given by

S =
1
4
(4�a2) =

1
4
Ahorizon; E =

1
2
a =

(
Ahorizon

16�

)1=2

: (179)

In the case of the Schwarzschild black hole with a= 2M , the energy turns out to be E = (a=2) =M
which is as expected. (More generally, E =(Ahorizon=16�)1=2 corresponds to the so-called ‘irreducible
mass’ in BH spacetimes [331].) Of course, the identi.cations S = (4�M 2); E = M; T = (1=8�M)
are consistent with the result dE = T dS in this particular case.

The above analysis also provides an interpretation of entropy and energy in the case of de Sitter
universe. In this case, f(r) = (1 − H 2r2); a = H−1; B = −2H . Since the region where t is time
like is “inside” the horizon, the integral for AE in (177) should be taken from some arbitrary value
r = b to r = a with a¿b. So the horizon contributes in the upper limit of the integral introducing a
change of sign in (177). Further, since B¡ 0, there is another negative sign in the area term from
GB˙ B=|B|. Taking all these into account we get, in this case,

Z(G) = Z0 exp
[
1
4
(4�a2) + G

(a
2

)]
˙ exp[S(a) − GE(a)] (180)
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giving S = (1=4)(4�a2) = (1=4)Ahorizon and E =−(1=2)H−1. These de.nitions do satisfy the relation
T dS − P dV = dE when it is noted that the de Sitter universe has a nonzero pressure P = −�� =
−E=V associated with the cosmological constant. In fact, if we use the “reasonable” assumptions
S = (1=4)(4�H−2); V ˙ H−3 and E = −PV in the equation T dS − P dV = dE and treat E as an
unknown function of H , we get the equation H 2(dE=dH) = −(3EH + 1) which integrates to give
precisely E=−(1=2)H−1. (Note that we only needed the proportionality, V ˙ H−3 in this argument
since P dV ˙ (dV=V ). The ambiguity between the coordinate and proper volume is irrelevant.)

A peculiar feature of the metrics in (175) is worth stressing. This metric will satisfy Einstein’s
equations provided the source stress tensor has the form T t

t =T r
r ≡ (J(r)=8�); T$

$ =T�
� ≡ (�(r)=8�).

The Einstein’s equations now reduce to

1
r2 (1 − f) − f′

r
= J; ∇2f = −2� : (181)

The remarkable feature about the metric in (175) is that the Einstein’s equations become linear in
f(r) so that solutions for di4erent J(r) can be superposed. Given any J(r) the solution becomes

f(r) = 1 − a
r
− 1

r

∫ r

a
J(r)r2 dr (182)

with a being an integration constant and �(r) is .xed by J(r) through: �(r) = J + (1=2)rJ′(r). The
integration constant a in (182) is chosen such that f(r)=0 at r=a so that this surface is a horizon.
Let us now assume that the solution (182) is such that f(r) = 0 at r = a with f′(a) = B .nite
leading to leading to a notion of temperature with G = (4�=|B|). From the .rst of the equations
(181) evaluated at r = a, we get

1
2
Ba− 1

2
= −1

2
J(a)a2 : (183)

It is possible to provide an interesting interpretation of this equation which throws light on the notion
of entropy and energy. Multiplying the above equation by da and using J = 8�T r

r , it is trivial to
rewrite Eq. (183) in the form

B
4�

d
(

1
4

4�a2

)
− 1

2
da = −T r

r (a) d
(

4�
3

a3

)
= −T r

r (a)[4�a
2] da : (184)

Let us .rst consider the case in which a particular horizon has f′(a)=B¿ 0 so that the temperature
is T = B=4�. Since f(a) = 0; f′(a)¿ 0, it follows that f¿ 0 for r ¿a and f¡ 0 for r ¡a;
that is, the “normal region” in which t is time like is outside the horizon as in the case of, for
example, the Schwarzschild metric. The .rst term in the left hand side of (184) clearly has the form
of T dS since we have an independent identi.cation of temperature from the periodicity argument
in the local Rindler coordinates. Since the pressure is P =−T r

r , the right hand side has the structure
of P dV or—more relevantly—is the product of the radial pressure times the transverse area times
the radial displacement. This is important because, for the metrics in the form (175), the proper
transverse area is just that of a 2-sphere though the proper volumes and coordinate volumes di4er.
In the case of horizons with B = f′(a)¿ 0 which we are considering (with da¿ 0), the volume
of the region where f¡ 0 will increase and the volume of the region where f¿ 0 will decrease.
Since the entropy is due to the existence of an inaccessible region, dV must refer to the change
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in the volume of the inaccessible region where f¡ 0. We can now identify T in T dS and P in
P dV without any diQculty and interpret the remaining term (second term in the left hand side) as
dE = da=2. We thus get the expressions for the entropy S and energy E (when B¿ 0) to be the
same as in (179).

Using (184), we can again provide an interpretation of entropy and energy in the case of
de Sitter universe. In this case, f(r)=(1−H 2r2); a=H−1; B=−2H ¡ 0 so that the temperature—
which should be positive—is T = |f′(a)|=(4�)=(−B)=4�. For horizons with B=f′(a)¡ 0 (like the
de Sitter horizon) which we are now considering, f(a) = 0; f′(a)¡ 0, and it follows that f¿ 0
for r ¡a and f¡ 0 for r ¿a; that is, the “normal region” in which t is time like is inside the
horizon as in the case of, for example, the de Sitter metric. Multiplying Eq. (184) by (−1), we get

−B
4�

d
(

1
4

4�a2

)
+

1
2

da = T r
r (a) d

(
4�
3

a3

)
= P(−dV ) : (185)

The .rst term on the left hand side is again of the form T dS (with positive temperature and entropy).
The term on the right hand side has the correct sign since the inaccessible region (where f¡ 0) is
now outside the horizon and the volume of this region changes by (−dV ). Once again, we can use
(185) to identify [308] the entropy and the energy: S =(1=4)(4�a2)= (1=4)Ahorizon; E =−(1=2)H−1.
These results agree with the previous analysis.

10.4. Conceptual issues in de Sitter thermodynamics

The analysis in the last few sections was based on a strictly static four-dimensional spacetime.
The black hole metric, for example, corresponds to an eternal black hole and the vacuum state
which we constructed in Section 10.2 corresponds to the Hartle–Hawking vacuum [332] of the
Schwarzschild spacetime, describing a black hole in thermal equilibrium. There is no net radiation
Powing to in.nity and the entropy and temperature obtained in the previous sections were based on
equilibrium considerations.

As we said before, there are two di4erent ways of de.ning the entropy. In statistical mechanics,
the entropy S(E) is related to the degrees of freedom [or phase volume] g(E) by S(E) = ln g(E).
Maximization of the phase volume for systems which can exchange energy will then lead to equality
of the quantity T (E) ≡ (9S=9E)−1 for the systems. It is usual to identify this variable as the
thermodynamic temperature. The analysis of BH temperature based on Hartle–Hawking state is
analogous to this approach. In classical thermodynamics, on the other hand, it is the change in the
entropy which can be operationally de.ned via dS = dE=T (E). Integrating this equation will lead
to the function S(E) except for an additive constant which needs to be determined from additional
considerations. This suggests an alternative point of view regarding thermodynamics of horizons.
The Schwarzschild metric, for example, can be thought of as an asymptotic limit of a metric arising
from the collapse of a body forming a black-hole. While developing the QFT in such a spacetime
containing a collapsing black-hole, we need not maintain time reversal invariance for the vacuum
state and—in fact—it is more natural to choose a state with purely in-going modes at early times like
the Unruh vacuum state [333]. The study of QFT in such a spacetime shows that, at late times, there
will exist an outgoing thermal radiation of particles which is totally independent of the details of the
collapse. The temperature in this case will be T (M) = 1=8�M , which is the same as the one found
in the case of the state of thermal equilibrium around an “eternal” black-hole. In the Schwarzschild
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spacetime, which is asymptotically Pat, it is also possible to associate an energy E = M with the
black-hole. Though the calculation was done in a metric with a .xed value of energy E = M , it
seems reasonable to assume that—as the energy Pows to in.nity at late times—the mass of the
black hole will decrease. If we make this assumption— that the evaporation of black hole will lead
to a decrease of M—then one can integrate the equation dS = dM=T (M) to obtain the entropy of
the black-hole to be S = 4�M 2 = (1=4)(A=L2

P) where A = 4�(2M)2 is the area of the event horizon
and LP = (G˝=c3)1=2 is the Planck length. 2 The procedure outlined above is similar in spirit to the
approach of classical thermodynamics rather than statistical mechanics. Once it is realized that only
the asymptotic form of the metric matters, we can simplify the above analysis by just choosing a
time asymmetric vacuum and working with the asymptotic form of the metric with the understanding
that the asymptotic form arose due to a time asymmetric process (like gravitational collapse). In the
case of black hole spacetimes this is accomplished—for example—by choosing the Unruh vacuum
[333]. The question arises as to how our uni.ed approach fares in handling such a situation which
is not time symmetric and the horizon forms only asymptotically as t → ∞.

There exist analogues for the collapsing black-hole in the case of de Sitter (and even Rindler)
[308]. The analogue in the case of de Sitter spacetime will be an FRW universe which behaves like
a de Sitter universe only at late times [like in Eq. (27); this is indeed the metric describing our
universe if +�=0:7; +NR=0:3]. Mathematically, we only need to take a(t) to be a function which has
the asymptotic form exp(Ht) at late times. Such a spacetime is, in general, time asymmetric and one
can choose a vacuum state at early times in such a way that a thermal spectrum of particles exists at
late times. Emboldened by the analogy with black-hole spacetimes, one can also directly construct
quantum states (similar to Unruh vacuum of black-hole spacetimes) which are time asymmetric,
even in the exact de Sitter spacetime, with the understanding that the de Sitter universe came about
at late times through a time asymmetric evolution. The analogy also works for Rindler spacetime.
The coordinate system for an observer with time dependent acceleration will generalize the standard
Rindler spacetime in a time dependent manner. In particular, one can have an observer who was
inertial (or at rest) at early times and is uniformly accelerating at late times. In this case an event
horizon forms at late times exactly in analogy with a collapsing black-hole. It is now possible to
choose quantum states which are analogous to the Unruh vacuum—which will correspond to an
inertial vacuum state at early times and will appear as a thermal state at late times. The study of
di4erent ‘vacuum’ states shows [308] that radiative Pux exists in the quantum states which are time
asymmetric analogues of the Unruh vacuum state.

A formal analysis of this problem will involve setting up the in and out vacua of the theory, evolv-
ing the modes from t =−∞ to +∞, and computing the Bogoliubov coeQcients. It is, however, not
necessary to perform the details of such an analysis because all the three spacetimes (Schwarzschild,
de Sitter and Rindler) have virtually identical kinematical structure. In the case of Schwarzschild
metric, it is well known that the thermal spectrum at late times arises because the modes which
reach spatial in.nity at late times propagate from near the event horizon at early times and undergo

2 This integration can determine the entropy only up to an additive constant. To .x this constant, one can make the
additional assumption that S should vanish when M =0. One may think that this assumption is eminently reasonable since
the Schwarzschild metric reduces to the Lorentzian metric when M → 0. But note that in the same limit of M → 0,
the temperature of the black-hole diverges! Treated as a limit of Schwarzschild spacetime, normal Pat spacetime has
in.nite—rather than zero—temperature.
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exponential redshift. The corresponding result occurs in all the three spacetimes (and a host of other
spacetimes).

Consider the propagation of a wave packet centered around a radial null ray in a spherically
symmetric (or Rindler) spacetime which has the form in Eqs. (162) or (175). The trajectory of the
null ray which goes from the initial position rin at tin to a .nal position r at t is determined by the
equation

t − tin = ±
(

1
2g

)∫ r

rin

(
f′

f

)
(1 + · · ·)1=2 dr ; (186)

where the · · · denotes terms arising from the transverse part containing dr2 (if any). Consider now a
ray which was close to the horizon initially so that (rin − l)�l and propagates to a region far away
from the horizon at late times. (In a black hole metric r�rin and the propagation will be outward
directed; in the de Sitter metric we will have r�rin with rays propagating towards the origin.) Since
we have f(r) → 0 as r → l, the integral will be dominated by a logarithmic singularity near the
horizon and the regular term denoted by · · · will not contribute. [This can be veri.ed directly from
(162) or (175).] Then we get

t − tin = ±
(

1
2g

)∫ r

rin

(
f′

f

)
(1 + · · ·)1=2 dr ≈ ±

(
1
2g

)
ln|f(rin)| + const : (187)

As the wave propagates away from the horizon its frequency will be red-shifted by the factor
!˙ (1=

√
g00) so that

!(t)
!(tin)

=
(
g00(rin)
g00(r)

)1=2

=
[
f(rin)
f(r)

]1=2

≈ Ke±gt ; (188)

where K is an unimportant constant. It is obvious that the dominant behavior of !(t) will be expo-
nential for any null geodesic starting near the horizon and proceeding away since all the transverse
factors will be sub-dominant to the diverging logarithmic singularity arising from the integral of
(1=f(r)) near the horizon. Since !(t) ˙ exp[ ± gt] and the phase $(t) of the wave will be vary
with time as $(t) =

∫
!(t) dt ˙ exp[ ± gt], the time dependence of the wave at late times will be

 (t) ˙ exp[i$(t)] ˙ exp i
∫

w(t) dt ˙ exp iQe±gt ; (189)

where Q is some constant. An observer at a .xed r will see the wave to have the time dependence
exp[i$(t)] which, of course, is not monochromatic. If this wave is decomposed into di4erent Fourier
components with respect to t, then the amplitude at frequency K is given by the Fourier transform

f(K) =
∫ ∞

−∞
dt  (t)e−iKt ˙

∫
ei$(t)−iKt dt ˙

∫ ∞

−∞
dt e−i(Kt−Qexp[±gt]) : (190)

Changing the variables from t to 2 by Qe±gt = 2, evaluating the integral by analytic continuation to
Im 2 and taking the modulus one .nds that the result is a thermal spectrum:

|f(K)|2 ˙ 1
eGK − 1

; G =
2�
g

: (191)
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The standard expressions for the temperature are reproduced for Schwarzschild (g = (4M)−1),
de Sitter (g = H) and Rindler spacetimes. This analysis stresses the fact that the origin of ther-
mal spectrum lies in the Fourier transforming of an exponentially red-shifted spectrum. But in de
Sitter or Rindler spacetimes there is no natural notion of “energy source” analogous to the mass of
the black-hole. The conventional view is to assume that: (1) In the case of black-holes, one con-
siders the collapse scenario as “physical” and the natural quantum state is the Unruh vacuum. The
notions of evaporation, entropy etc. then follow in a concrete manner. The eternal black-hole (and
the Hartle–Hawking vacuum state) is taken to be just a mathematical construct not realized in nature.
(2) In the case of Rindler, one may like to think of a time-symmetric vacuum state as natural and
treat the situation as one of thermal equilibrium. This forbids using quantum states with outgoing
radiation which could make the Minkowski spacetime radiate energy—which seems unlikely. The
real trouble arises for spacetimes which are asymptotically de Sitter. Does such a spacetime have
temperature and entropy like a collapsing black-hole? Does it “evaporate”? Everyone is comfortable
with the idea of associating temperature with the de Sitter spacetime and most people seem to be
willing to associate even an entropy. However, the idea of the cosmological constant changing due
to evaporation of the de Sitter spacetime seems too radical. Unfortunately, there is no clear mathe-
matical reason for a dichotomous approach as regards a collapsing black-hole and an asymptotically
de Sitter spacetime, since: (i) The temperature and entropy for these spacetimes arise in identical
manner due to identical mathematical formalism. It will be surprising if one has entropy while the
other does not. (ii) Just as collapsing black hole leads to an asymptotic event horizon, a universe
which is dominated by cosmological constant at late times will also lead to a horizon. Just as we
can mimic the time dependent e4ects in a collapsing black hole by a time asymmetric quantum state
(say, Unruh vacuum), we can mimic the late time behavior of an asymptotically de Sitter universe
by a corresponding time asymmetric quantum state. Both these states will lead to stress tensor ex-
pectation values in which there will be a Pux of radiation. (iii) The energy source for expansion
at early times (say, matter or radiation) is irrelevant just as the collapse details are irrelevant in
the case of a black-hole. If one treats the de Sitter horizon as a ‘photosphere’ with temperature
T = (H=2�) and area AH = 4�H−2, then the radiative luminosity will be (dE=dt) ˙ T 4AH ˙ H 2.
If we take E = (1=2)H−1, this will lead to a decay law [334] for the cosmological constant of
the form:

�(t) = �i[1 + k(L2
P�i)(

√
�i(t − ti))]−2=3 ˙ (L2

Pt)
−2=3 ; (192)

where k is a numerical constant and the second proportionality is for t → ∞. It is interesting that
this naive model leads to a late time cosmological constant which is independent of the initial value
(�i). Unfortunately, its value is still far too large. These issues are not analyzed in adequate detail
in the literature and might have important implications for the cosmological constant problem.

11. Cosmological constant and the string theory

A relativistic point particle is a zero-dimensional object; the world line of such a particle,
describing its time evolution, will be one-dimensional and the standard quantum .eld theory
(like QED) uses real and virtual world lines of particles in its description. In contrast, a string
(at a given moment of time) will be described by an one-dimensional entity and its time evolution
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will be a two-dimensional world surface called the world sheet. The basic formalism of string
theory—considered to be a possible candidate for a model for quantum gravity—uses a two-
dimensional world sheet rather than the one-dimensional world line of a particle to describe funda-
mental physics. Since the point particle has been replaced by a more extended structure, string theory
can be made into a .nite theory and, in general, the excitations of the string can manifest as low
energy particles. This provides a hope for describing both gauge theories and gravity in a uni.ed
manner. (For a text book description of string theory, see [41,42]; for a more popular description,
see [335–337].)

It was realized fairly early on that string theory can be consistently formulated only in 10 di-
mensions and it is necessary to arrange matters so that six of these dimensions are compact (and
very small) while the other four—which represents the spacetime—are presumably large and non-
compact. There is no fundamental understanding of how this comes about; but the details of the
four-dimensional theory depends on the way in which six extra dimensions are compacti.ed. The
simplest example corresponds to a situation in which the six dimensional geometry is what is known
as calabi-yau manifold [338–340] and the four dimensions exhibit N =1 supersymmetry. The current
paradigm, however, considers di4erent ten-dimensional theories as weakly coupled limits of a single
theory and not as inequivalent theories. Depending on the choice of parameters in the description,
one can move from one theory to other. In particular, as the parameters are changed, one can make
a transition from weakly coupled limit of one theory to the strongly coupled limit of another. These
strong–weak coupling dualities play an important role in the current paradigm of string theories
though explicit demonstration of dualities exists only for limited number of cases [341–344].

The role of cosmological constant in string theories came into the forefront when it was realized
that there exists a peculiar equivalence between a class of theories containing gravity and pure gauge
theories. One example of such a duality [345] arises as follows: A particular kind of string theory
in ten dimension (called type II B string theory) can be compacti.ed with .ve of the dimensions
wrapped up as 5-sphere (S5) and the other .ve dimensions taken to describe a .ve-dimensional anti
de Sitter spacetime with negative cosmological constant (A dS5). The whole manifold will then be
S5 × A dS5 with the metric on the A dS sector given by

ds2 = dr2 + e2r(I�K dx� dxK) �; K = 1; 2; 3; 4 : (193)

This string theory has an exact equivalence with the four-dimensional N = 4 supersymmetric Yang–
Mills theory. It was known for a long time that the latter theory is conformally invariant; the large
symmetry group of the A dS5 matches precisely with the invariance group of Yang–Mills theory.
The limit r → ∞ is considered to be the boundary of A dS space on which the dual .eld theory is
de.ned. This allows one to obtain a map from the string theory states to the .eld which lives on
the boundary. It must be stressed that it is hard to prove directly the equivalence between type II B
A dS5×S5 string theory and the four-dimensional Yang–Mills theory especially since we do not have
a nonperturbative description of the former. In this sense the Yang–Mills theory actually provides a
de.nition of the nonperturbative type II B A dS5 ×S5 string theory. It is, however, possible to verify
the correspondence by restricting to low energies on the string theory side.

If gravity behaves as a local .eld theory, then the entropy in a compact region of volume R3 will
scale as S ˙ R3 while indications from the physics of the horizons is that it should scale as S ˙ R2.
One can provide a consistent picture if gravity in D-dimensions is equivalent to a .eld theory in
D−1 dimension with the entropy of the .eld theory scaling as the volume of the (D−1)-dimensional
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space which, of course, is the same as the area in the original D-dimensional space. This is achieved
in a limited sense in the above model.

The A dS spacetime has a negative cosmological constant while the standard de Sitter spacetime
has a positive cosmological constant. This change of sign is crucial and the asymptotic structure of
these theories are quite di4erent. We do not, however, know of any solution to string theory which
contains de Sitter spacetime or even any solution to standard Einstein’s equation with a positive
cosmological constant. There are, in fact, some no-go theorems which state that such solutions
cannot exist [346–348]. This, however, is not a serious concern since the no-go theorems assume
certain positive energy conditions which are indeed violated in string theory.

If de Sitter solutions of the string theory exists, then it would be interesting to ask whether they
would admit a dual .eld theory description as in the case of anti de Sitter space. Some preliminary
results indicate that if such a duality exists, then it would be with respect to a rather peculiar type
of conformal .eld theories [349–351]. The situation at present is reasonably open.

There is another indirect implication of the string theory paradigm for the cosmological constant
problem. The detailed vacuum structure in string theory is at present quite unknown and the pre-
liminary indications are that it can be fairly complicated. Many believe that the ultimate theory
may not lead to a unique vacuum state but instead could lead to a set of degenerate vacua. The
properties of physical theories built out of these vacua could be di4erent and it may be necessary
to invoke some additional criterion to select one vacuum out of many as the ground state of the
observed universe. Very little is known about this issue [352] but advocates of anthropic principle
sometimes use the possibility multiple degenerate vacua as a justi.cation for anthropic paradigm.
While this is not the only possibility, it must be stressed that the existence of degenerate vacua
introduces an additional feature as regards the cosmological constant [353]. The problem arises from
the fact that quantum theory allows tunneling between the degenerate vacua and makes the actual
ground state a superposition of the degenerate vacua. There will be an energy di4erence between:
(i) the degenerate vacua and (ii) the vacuum state obtained by including the e4ects of tunneling.
While the fundamental theory may provide some handle on the cosmological constant corresponding
to the degenerate vacua, the observed vacuum energy could correspond to the real vacuum which
incorporates the e4ect of tunneling. In that case it is the dynamics of tunneling which will determine
the ground state energy and the cosmological constant.
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