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In this work we wonder if there is a way to generate a wormhole (WH) in nature using “normal” matter.
In order to give a first answer to this question, we study a massless scalar field coupled to an
electromagnetic one (dilatonic field) with an arbitrary coupling constant as source of curvature. Using
this source, we obtain an exact solution of the Einstein equations, which represents a magnetized rotating
WH. The space-time is everywhere regular except for a naked ring singularity, which we show to be
causally disconnected from the rest of the Universe in the case of a slowly rotating WH. The throat of the
WH lies on the disc bounded by the ring singularity and, surprisingly enough, it can be kept open without
requiring exotic matter, which means, satisfying all the energy conditions. After analyzing the geodesic
motion and the tidal forces we find that a test particle can go through the WH without trouble.
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I. INTRODUCTION

In 1916, Flamm suggested that our Universe might not
be simply connected [1]. This idea opened the possibility of
the existence of tunnels connecting different regions in the
Universe, or even completely different universes. In 1935,
Einstein and Rosen rediscovered this solution trying to give
a field representation of particles [2]; this concept was
furthered by Ellis [3], who modeled particles as bridges
between two regions of space-time. Many years later,
Morris and Thorne considered such solutions as means
of interstellar travel [4]. Unfortunately, these wormholes
(WH) need to violate the energy conditions. Today this type
of matter is called exotic (see [5] for a detailed review on
this subject).
In [6,7] it was shown that the violation of the null energy

condition (NEC) was a generic feature for regular travers-
able WHs. This was done assuming that the throat is a
compact two-dimensional surface with minimum area.
However, if the throat is no longer a compact object
(i.e., a starlike structure) one might deal with cylindrical
WHs, which from afar appear as cosmic strings and thus,
would avoid the presence of exotic matter [8–10].
On the other side, numerical simulations seem to reveal

that staticWHs are unstable [11]. To overcome this problem,
it was conjectured in [12] that the rotation of the WH could
stabilize a ghost star. The idea is that a rotating WH would

have more possibilities to be stable than the general static
spherically symmetric WHs. Some rotating solutions were
studied in the past, as an approximation [13,14] or as an
exact solution of the Einstein equations [12,15,16].
However, all of them violate some energy condition.
Nevertheless, we wonder if it is possible to generate

WHs where the source is some kind of matter that can be
found in nature. In this work we look for WHs made of
normal matter that are traversable, that is, WHs made of
matter that satisfy the energy conditions and where a test
particle can go from one side of the throat to the other in a
finite time without facing large tidal forces. Also, following
the conjecture that rotation can stabilize the WH, we search
for rotating WHs.
In order to answer this question, at least partially, we

look for scalar fields that could be formed by particles
coupled with the electromagnetic field. Certainly, these
kinds of particles exist and are common in nature, but all of
them are massive. The problem is that so far it has not
been possible to get exact solutions of the Einstein equation
with massive scalar fields. However, if the scalar field is
massless, standard techniques can be used to find exact
space-times from these sources. Doing so loses some
important features of the properties of matter, but gains
precision to determine the form of the space-time itself,
which is the most important aspect for this kind of analysis.
Thus, we start from the Lagrangian,

L̂ ¼ −Rþ 2ϵ∇μΦ∇μΦþ e−2αΦFμνFμν þ VðΦÞ; ð1Þ

where R is the Ricci scalar, Fμν is the electromagnetic field
tensor, Φ is the scalar field of a spin zero (composed)
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particle and VðΦÞ the scalar field potential. We separate the
dilatonic field from the ghost field using ε ¼ þ1 for the
dilatonic and ε ¼ −1 for the ghost field. As a first
approximation we set V ¼ 0. As we see, we can solve
the Einstein equations exactly, giving us a space-time that
we can study with all precision. The Einstein-Maxwell-
Dilaton field equations from the Lagrangian (1) are

Rμν ¼ 2ε∇μΦ∇νΦþ 2e−2αΦ
�
FμρFν

ρ −
1

4
gμνFδγFδγ

�
;

ð2Þ

with coupling constant α. In this work we report an
asymptotically flat rotating magnetized solution of the
Einstein equations, which is obtained by using the ansatz
proposed in [17]. The paper is organized as follows: in
Sec. II we describe the generation process for the metric of
the WH and present its parameters along with the general
form of its scalar invariants. It is also shown that it is
asymptotically flat. The local and global geometry of the
space-time is analyzed in Sec. III. In Sec. IV the energy
conditions of the matter source of the WH are studied. We
prove here that null and weak energy conditions are
satisfied for the case of the WH with dilatonic field. The
tidal forces that a traveler could experience crossing
through the throat of the WH are studied in Sec. V, where
we show that it is possible to do so while moving in the
polar plane. We then examine, in Sec. VI, geodesic motion
in the equatorial plane of the space-time. Finally, in
Sec. VII, we focus on the case of a slowly rotating WH
and find that the ring singularity is inaccessible for an
observer traveling in geodesics.

II. THE LINE ELEMENT

Exact solutions for the Einstein-Maxwell phantom field
equations (2) can be generated by using the method
described in [17]. This method is based on a generalized
harmonic map ansatz in the potential space defined by the
so-called superpotentials f, ϵ, χ, ψ and κ. These quantities
are related to physical potentials such as gravitational,
electromagnetic and rotational. We focus on the second
class of solutions presented in [17], for which

f ¼ f0;

κ ¼ κ0ecλ;

ψ ¼ −e−cλ
ffiffiffiffiffi
f0

p
=κ0 þ ψ0;

χ ¼ −
ffiffiffiffiffi
f0

p
κ0ecλ þ χ0;

ϵ ¼ −
ffiffiffiffiffi
f0

p
ecλψ0κ0 þ ϵ0; ð3Þ

where c, f0, ϵ0, χ0, ψ0 and κ0 are integration constants.
Also, λ is the harmonic map used to generate the solution
and for this particular class is proportional to the scalar

field Φ; for this paper we use Φ ¼ −cλ=α. The harmonic
map needs to satisfy the Laplace equation given in Boyer-
Lindquist coordinates by

ððl2 − 2l1lþ l20Þλ;lÞ;l þ
1

sinðθÞ ðsinðθÞλ;θÞ;θ ¼ 0; ð4Þ

here l is the radial coordinate, θ the polar angle, and l0 as
well as l1 are constants whose units are those of length.
A comma is being used to denote a partial derivative.
We have assumed that λ is a function of l and θ only.
The electromagnetic vector potential has the form
Aμ ¼ ½A0; 0; 0; A3�, while the stationary and axially sym-
metric space-time metric reads

ds2 ¼ −fðdtþΩdφÞ2

þ 1

f

�
ΔeK

�
1

Δ1

dl2 þ dθ2
�
þ Δ1sin2ðθÞdφ2

�
; ð5Þ

with

Δ ¼ ðl − l1Þ2 þ ðl0 − l21Þcos2θ;
Δ1 ¼ l2 − 2l1lþ l20: ð6Þ

The superpotentials expressed in (3) define the compo-
nents of the electromagnetic four-potential A0 ¼ ψ=2 and
A3, as well as the parameters of the metricΩ andK, through
the following set of partial differential equations:

Ω;l ¼
1

f2
ðϵ;λ − ψχ;λÞ sin θλ;θ;

Ω;θ ¼ −
1

f2
ðϵ;λ − ψχ;λÞΔ1 sin θλ;l;

2A3;l ¼ −
1

fκ2
χ;λλ;θ sin θ þ Ωψ ;λλ;l;

2A3;θ ¼
1

fκ2
χ;λλ;lΔ1 sin θ þ Ωψ ;λλ;θ; ð7Þ

along with

K;l ¼
k0 sin θ

Δ
ð2Δ1λ;θλ;l cos θ

þðl − l1ÞðΔ1λ
2
;l − λ2;θÞ sin θÞ;

K;θ ¼
k0Δ1 sin θ

Δ
ð−ðΔ1λ

2
;l − λ2;θÞ cos θ

þ 2ðl − l1Þλ;θλ;r sin θÞ: ð8Þ

Among the various options for the harmonic map λ (see
[17] for details), we choose to use λ ¼ λ0 cos θ=Δ, which
represents a magnetic dipole. With this choice, the sol-
utions for Eqs. (7) are Ω ¼ −cλ0ðl − l1Þsin2θ=f0Δ and
A3 ¼ −

ffiffiffiffiffi
f0

p
Ω=2κ up to an integration constant that we set
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to 0. At this point, for simplicity, it is useful to define
λ0 ¼ −a as the parameter of scalar charge with units of
angular momentum and to set the values of the rest of the
integration constants to unity.
On the other hand, Eqs. (8) can be more easily solved

introducing oblate spheroidal coordinates Lx ¼ l − l1 and
y ¼ cos θ, where L2 ¼ l20 − l21 is constant. In this coordi-
nate system x ∈ R and jyj ≤ 1. With this coordinate change
(8) transforms into

K;x ¼
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Δ

�
−2y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
Δ1λ;xλ;y

þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
ðΔ1λ

2
;x − ð1 − y2Þλ2;yÞ

i
K;y ¼

k0Δ1

Δ
½yðΔ1λ

2
;x=L2 − ð1 − y2Þλ2;yÞ

þ 2xð1 − y2Þλ;xλ;y�: ð9Þ

Notice that now Δ ¼ L2ðx2 þ y2Þ and Δ1 ¼ L2ðx2 þ 1Þ.
After integrating Eqs. (9) one finds that

K ¼ k
L4

ð1 − y2Þð8x2y2ðx2 þ 1Þ − ð1 − y2Þðx2 þ y2Þ2Þ
ðx2 þ y2Þ4 ;

ð10Þ

where we have absorbed all integration constants into a
newly defined one k. With this, we have found all of the
components for metric (5).
The space-time that we have generated represents a

magnetized rotating WH without gravitational potential
(recall that f ¼ 1). Instead, curvature arises from the
presence of a scalar field and an electromagnetic potential
coupled with a dilation field. The magnetic field associated
with the vector potential Aμ represents a magnetic dipole.
For the rest of this paper we choose to adopt oblate

spheroidal coordinates since they enable us to express our
results in the most compact manner (with the disadvantage
that these coordinates are not physically intuitive). So, we
can finally present explicitly the line element of this
rotating magnetized WH as

ds2 ¼ L2

�
ðx2 þ y2ÞeK

�
dx2

x2 þ 1
þ dy2

1 − y2

�
þ ðx2 þ 1Þð1 − y2Þdφ2

�
−
�
dtþ a

L
xð1 − y2Þ
x2 þ y2

dφ

�
2

: ð11Þ

The characteristic parameters of this space-time are the
length L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 − l21

p
and the scalar charge a with units of

angular momentum. We consider l0 > l1 such that L ∈ R is
related to the size of the WH’s throat. Additionally, the

scalar field Φ and the electromagnetic vector potential Aμ

are respectively given by

Φ ¼ ay
αL2ðx2 þ y2Þ ; ð12Þ

Aμ ¼ −
eαΦ

2

�
1 − e−αΦ; 0; 0;

axð1 − y2Þ
Lðx2 þ y2Þ

�
: ð13Þ

A constraint for α, the scalar charge a and the free
constant k can be found by first computing the components
of the Ricci tensor Rμν with its definition in terms of the
connection coefficients Γρ

μν of metric (11); then, by calcu-
lating the right-hand side of the Einstein equations (2) using
the expressions for the scalar field (12) and electromagnetic
potential (13). Comparing both results one realizes that
these fields, with metric (11), constitute a solution of the
Einstein equations only if the following constraint holds:

α2ða2 − 8kÞ − 4εa2 ¼ 0: ð14Þ

Interesting special cases for the coupling constant are
α2 ¼ 1, which represents a low-energy string theory, and
α2 ¼ 3, in which the Lagrangian (1) reduces to that of a
five-dimensional Kaluza-Klein theory. In Table I we show
the values of the constant k in the previous cases for the
dilatonic and ghost fields. It also contains the value of α2 for
which k ¼ 0 (only the dilatonic field is possible).
All of the invariant quantities of the line element (11),

e.g., the Ricci scalar, the quadratic Riemann tensor
RμνρσRμνρσ, etc. are of the form

Invariants ¼ Fðx; yÞ
ðx2 þ y2Þβ e

−K; ð15Þ

where β is a positive integer and Fðx; yÞ is a polynomial of
degree less than the degree of ðx2 þ y2Þβ and of less order
than e−K . For instance, for the Ricci scalar β ¼ 4 and
Fðx; yÞ ¼ ða2 − 8kÞðy2ð1 − y2Þ þ x2ð1þ 3y2ÞÞ. From (15)
we see that the space-time (11) has an anisotropic naked
ring singularity of radius L at x ¼ y ¼ 0. Another impor-
tant aspect to notice from the general form of the invariants
is that y ¼ 1 is nothing but a coordinate singularity in the
line element.

TABLE I. Real values of k for some cases of α2 for both
dilatonic and ghost scalar fields.

k

α2 Dilatonic field (ε ¼ 1) Ghost field (ε ¼ −1)

1 −3a2=8 5a2=8
3 −a2=24 7a2=24
4 0 � � �
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Moreover, (11) is asymptotically flat since

lim
x→∞

eK → 1 and lim
x→∞

a
L
xð1 − y2Þ
x2 þ y2

→ 0:

The throat of the WH lies on the disc x ¼ 0 bounded in
the equatorial plane (y ¼ 0) by the ring singularity. The
throat connects two three-dimensional spaces, one with
x > 0 and another with x < 0. Since there are no disconti-
nuities in the extrinsic curvature on the disc, it is possible to
cross the surface x ¼ 0, i.e., to travel through the WH.
Crossing this bounded surface represents leaving one
universe and entering another. WHs such as this are often
referred to as ring WHs [18].
We finalize this section by mentioning that in the static

case, that is, a → 0, the line element (11) reduces to that of
a flat space-time.

III. GEOMETRY OF THE WORMHOLE

In this section we show the geometrical features of this
space-time. We focus in the local geometry of the WH’s
throat and the global properties of the metric.
To grasp the local geometry of the throat it is commonly

used to embed hypersurfaces with y ¼ y0 and t constant
in three-dimensional Euclidean space. With this, the line
element (11) reduces to

ds2¼L2ðx2þy20ÞeK0

x2þ1
dx2

þ
�
L2ðx2þ1Þð1−y20Þ−

a2

L2

x2ð1−y20Þ2
ðx2þy2Þ2

�
dφ2; ð16Þ

where K0 ¼ Kðx; y0Þ. We embed the resulting two-
manifold by considering now the Euclidean metric in
cylindrical coordinates, ds2 ¼ dρ2 þ dz2 þ ρ2dφ2, and
assuming ρ ¼ ρðxÞ and z ¼ zðxÞ, which yields

ds2 ¼
��

dρ
dx

�
2

þ
�
dz
dx

�
2
�
dx2 þ ρ2ðxÞdφ2: ð17Þ

Comparing (16) and (17) we obtain

ρ2ðxÞ ¼ L2ðx2 þ 1Þð1 − y20Þ −
a2

L2

x2ð1 − y20Þ2
ðx2 þ y2Þ2 ; ð18Þ�

dρ
dx

�
2

þ
�
dz
dx

�
2

¼ L2ðx2 þ y20ÞeK0

x2 þ 1
: ð19Þ

Equation (19) can be solved numerically once the
derivative of the known function ρðxÞ is inserted. In
Fig. 1 we show solutions of this equation for different
values of y0 with the initial condition zð0Þ ¼ 0, such that
the throat is located at z ¼ 0.
It can be observed from Fig. 1 that, as expected, the

embedding profile has a minimum radius at the throat of the
WH (x ¼ z ¼ 0). This minimum radius corresponds also to

a surface ofminimum area due to the throat being a disc; i.e.,
there is axial symmetry. Note also that the throat gets wider,
reaching a maximum value of L ¼ 10, as y decreases.
It should be mentioned that, although we only present a set
of curves for the WH with dilatonic field and α2 ¼ 1

(k ¼ −3a2=8), the choice of k does not alter significantly
the geometry of the throat as long as a < L2. The reason
for this is readily explained. In Sec. VII we show that a
slowly rotatingWH is characterized bya=L2 ≪ 1. Applying
this condition to Eqs. (18) and (19) leads to an analytical
solution for zðxÞ, namely, zðxÞ ¼ �Ly0x, while ρ2ðxÞ ¼
L2ðx2 þ 1Þð1 − y20Þ to first order in a=L2, both of which
are independent of k. These expressions yield very similar
curves as the ones contained in Fig. 1.
As for the global geometrical properties of this space-

time, we employ a Carter-Penrose diagram to describe them
[19]. For this purpose, we consider a slice of metric (11)
with fixed y and φ. Thus, we have

ds2 ¼ −dt2 þ L2ðx2 þ y20ÞeK0

x2 þ 1
dx2; ð20Þ

which can be expressed as ds2 ¼ −dt2 þ du2 through the
coordinate change

u ¼ L
Z �ðx2 þ y20ÞeK0

x2 þ 1

�
1=2

dx: ð21Þ

We map the future and past null infinity of each
universe J �

1;2 to a finite region by making use of the con-
formal transformation: ψ ¼ arctanðtþ uÞ þ arctanðt − uÞ
and ξ ¼ arctanðtþ uÞ − arctanðt − uÞ. This finite region
corresponds to straight lines with unity slope in the

z

ρ

FIG. 1. Geometry of the throat for different values of y0 with
L ¼ 10, a ¼ 0.1 and k ¼ −3a2=8. Here, z and ρ are parametrized
by the coordinate x. The two-dimensional manifold embedded in
three-dimensional Euclidean space is obtained by rotating the
curves zðρÞ about the z axis.
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ψ − ξ plane. Now, the sliced metric considered is confor-
mally flat: ds2 ¼ Fðψ ; ξÞð−dψ2 þ dξ2Þ, where Fðψ ; ξÞ ¼
ð1=4Þ sec2ððψ þ ξÞ=2Þ sec2ððψ − ξÞ=2Þ is the conformal
factor. Note that we can cover this entire slice of space-time
with a single patch (whose boundary will be J �

1;2) in a
Carter-Penrose diagram because the integrand in (21) is
everywhere regular, and so u is everywhere regular too. The
throat will be located in the region described implicitly by
uð0Þ ¼ tanðψ þ ξÞ − tanðψ − ξÞ. See Fig. 2.
Despite the somewhat complicated expression for the

line element, the diagram shown in Fig. 2 reveals the
simplicity of the structure of this WH. The main feature
here is that the asymptotically flat regions x > 0 and x < 0
are communicated through the hypersurface defined by
x ¼ 0, i.e., the throat. It is clear that traveling between these
two regions is possible, as far as causality is concerned, if
and only if the throat is crossed.

IV. ENERGY CONDITIONS

Hochberg and Visser have previously shown that for
WHs whose throat is a regular compact two-dimensional
surface with a finite minimum area, the violation of the
NEC near or at the throat is required [6,7]. No assumptions
are made about the symmetry of the metric or the existence
of any asymptotically flat region in the references men-
tioned; however, regularity is required.
We now inspect whether this WH violates or satisfies the

NEC. In order to analyze the energy conditions, we choose
an orthonormal basis [20],

et̂ ¼ et; ex̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1

L2ðx2 þ y2ÞeK

s
ex;

eŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− y2

L2ðx2 þ y2ÞeK

s
ey; eφ̂ ¼

eφ −Ωetffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðx2 þ 1Þð1− y2Þ

p ;

ð22Þ

where Ω ¼ axð1 − y2Þ=Lðx2 þ y2Þ, and eα ¼ ∂=∂xα is the
canonical vectors basis. We use an outgoing null vector in
the x direction, μ ¼ et̂ � ex̂; thus in the orthonormal basis,
T α̂ β̂μ

α̂μβ̂ ¼ Tt̂ t̂ þ Tx̂ x̂ ¼ 1
2
ðRt̂ t̂ þ Rx̂ x̂Þ. Thereby, we have

ρ − τ ¼ Tt̂ t̂ þ Tx̂ x̂

¼ a2e−K

2L6ðx2 þ y2Þ5
�
x4 þ x4y2 þ 2x2y4 þ y4ð1 − y2Þ

−2
�
α2 − 4ε

α2

�
x2y2ðx2 þ 1Þ

�
; ð23Þ

where ρ ¼ Tt̂ t̂ is the total energy density of mass energy1

and −τ ¼ Tx̂ x̂ is the tension per unit area measured by the
static observer in the x direction.
For the energy density we get

ρ ¼ a2

4L6

x2ð1þ 3y2Þ þ y2ð1 − y2Þ
ðx2 þ y2Þ4 > 0: ð24Þ

From (23) and (24) it can be seen that if α2 ≤ 4ε then
ρ > τ everywhere, and NEC is satisfied if a traveler moves
along the x direction in an outgoing null vector. There is no
need for exotic matter to keep the throat open. For a ghost
field (ε ¼ −1), the condition ρ > τ does not always hold;
therefore there will be regions where NEC is violated. On
the other hand, for a dilatonic field (ε ¼ 1) NEC is always
fulfilled as long as α2 ≤ 4. Finally, the weak energy
condition (WEC), i.e., ρ > 0, is satisfied everywhere for
any case.
The fact that NEC is satisfied for some cases does not

contradict the previous results from Hochberg and Visser
since we are dealing with a space-time with a singular ring
in it [8]. One may regard the ring singularity as responsible
for the fulfillment of the energy conditions in this WH.

V. TIDAL FORCES

Due to the presence of the ring singularity (x ¼ y ¼ 0) it
is possible that a traveler crossing the throat experiences
strong gravitational forces. To make sure the throat is
traversable we analyze the tidal forces following [4,13,20].
We take the reference frame of a traveler moving in the x
direction, that is,

e0̂ ¼ γet̂ ∓ γðv=cÞex̂; e1̂ ¼∓ γex̂ þ γðv=cÞet̂;
e2̂ ¼ eŷ; e3̂ ¼ eφ̂; ð25Þ

γ ¼ ½1 − ðv=cÞ2�−1
2 being the Lorentz factor. In the x

direction the tidal constraint is given by

FIG. 2. Carter-Penrose diagram for a slice of the space-time
with y and φ constant. For y ≠ 0 an observer meets the throat of
the WH when reaching x ¼ 0. Observe that causal curves can get
from one universe to the other passing through the throat.

1We have dropped the use of the symbol ρ of the previous
section, which referred to the radial cylindrical coordinate.
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jR1̂ 0̂ 1̂ 0̂j ≤ g⊕=ðc2 × 2 mÞ ≈ 1=ð105 kmÞ2; ð26Þ

where we have used 2 m as the height of our traveler. For
the lateral constraints (polar and azimuthal directions) the
above condition is the same: jR2̂ 0̂ 2̂ 0̂j ≤ ð105 kmÞ−2, and
jR3̂ 0̂ 3̂ 0̂j ≤ ð105 kmÞ−2.
So, in the reference frame of the traveler and because the

metric is axially symmetric, we have explicitly that

jR1̂ 0̂ 1̂ 0̂j ¼ jRx̂ t̂ x̂ t̂j;
jR2̂ 0̂ 2̂ 0̂j ¼ γ2jRŷ t̂ ŷ t̂j þ γ2ðv2=c2ÞjRŷ x̂ ŷ x̂j;
jR3̂ 0̂ 3̂ 0̂j ¼ γ2jRφ̂ t̂ φ̂ t̂j þ γ2ðv2=c2ÞjRφ̂ x̂ φ̂ x̂j: ð27Þ

We then assume that the traveler is at rest at the throat
[4]; this implies v → 0 and γ → 1. Thus, jR2̂ 0̂ 2̂ 0̂j ¼ jRθ̂ t̂ θ̂ t̂j
and jR3̂ 0̂ 3̂ 0̂j ¼ jRφ̂ t̂ φ̂ t̂j.
The components of interest of the Riemann tensor, for

both dilatonic and ghost scalar field, are given by

jRx̂ t̂ x̂ t̂j ¼
e−K

4

a2ð1 − y2Þðx2 − y2Þ2
L6ðx2 þ y2Þ5 ; ð28Þ

jRŷ t̂ ŷ t̂j ¼ e−K
a2x2y2ðx2 þ 1Þ
L6ðx2 þ y2Þ5 ; ð29Þ

jRφ̂ t̂ φ̂ t̂j ¼
e−K

4

a2ðx2 þ 3x2y2 þ y2ð1 − y2ÞÞ
L6ðx2 þ y2Þ4 : ð30Þ

Forcing our traveler to approach the throat with y ¼ 1,
the tidal force in the x direction is 0 everywhere, while the
remaining tidal forces go to 0 as the traveler approaches the
throat at x ¼ 0. It is possible to traverse the throat without
feeling the presence of the ring singularity traveling on the
plane y ¼ 1.

VI. GEODESIC MOTION

In what follows we study the geodesics of a freely falling
particle in the space-time. We are interested in radial
geodesics to see whether an observer can penetrate the
WH or not. Of course, the ring singularity apparently does
not allow any observer to penetrate the WH, at least going
by the equator.
For this purpose, let λ be an affine parameter and

uμ ¼ ð_t; _x; _y; _ϕÞ, with _t ¼ dt
dλ, etc., the vector velocity of

an observer, such that the equation uμuμ ¼ κ holds, with
κ ¼ 0 for lightlike geodesics and κ ¼ −1 for timelike
geodesics. It follows that

κ ¼ −
�
_tþ axð1 − y2Þ

Lðx2 þ y2Þ _φ
�

2

þ L2

�
ðx2 þ y2ÞeK

�
_x2

x2 þ 1
þ _y2

ð1 − y2Þ
�

þ ðx2 þ 1Þð1 − y2Þ _φ2

�
: ð31Þ

We analyze the geodesics constrained to the plane y ¼ 0.
Hence, (31) reduces to

L6x4eKx _x2 ¼ L4x2ðx2 þ 1ÞðE2 þ κÞ − ðLLxþ aEÞ2
¼ X̂ðxÞ; ð32Þ

with Kx ¼ Kðx; 0Þ ¼ −k=L4x4 and constants of motion
E ¼ _tþΩ _φ and Lþ ΩE ¼ L2ðx2 þ 1Þð1 − y2Þ _φ. The
condition X̂ðxÞ ≥ 0 dominates the geodesics on y ¼ 0
[21]. Since Eq. (32) always admits at least a real root
(xþ ∈ R) two types of motion are possible (the orbits are
illustrated in Fig. 3) [22].
(1) Flyby orbit. If the right-hand side polynomial has

roots such that there is a maximum one with xmax>0

and ð∂X̂=∂xÞðxmaxÞ > 0, the particle departs to
infinity after approaching xmax.

(2) Critical orbit. If X̂ðxÞ has a root xmax and X̂ðxmaxÞ ¼
ð∂X̂=∂xÞðxmaxÞ ¼ 0, then the particle takes an in-
finite proper time to approach xmax.

φ

x

Flyby Orbit

xmax

φ

x

Asymptotical Approach

xmax

FIG. 3. Geodesics on the y ¼ 0 plane. The coordinate φ is
plotted as a function of x. In the top panel a geodesic is deflected
after reaching its closest approach xmax. In the bottom panel, a
geodesic approaches xmax asymptotically.
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Observe that X̂ðx ¼ 0Þ ¼ −a2E2 < 0, so it is not possible
for any geodesic to go through the WH throat or to reach
the singular ring from the plane. If a test particle starts its
motion on one side of the throat with y ¼ 0, this particle is
going to remain on the same side of the throat all the time.
Thus, the disc cannot be crossed on the plane y ¼ 0 due to
the presence of the ring singularity.
It is worth mentioning that motion in the equatorial plane

is geodesic. A simple computation reveals that the term
Γy
μνuμuν vanishes for y ¼ 0, which implies that _y ¼ ÿ ¼ 0.

This makes the y component of the geodesic equation
consistent. The t and φ components of said equation will
hold as long as E and L are constants of motion. We are left
then only with the radial component to solve, namely,
ẍþ Γx

μνuμuν ¼ 0. This equation is later used in Sec. VII to
find geodesics with constant x in the equatorial plane.
We finalize this section presenting some numerical

solutions to the geodesic equation, _uσ þ Γσ
μνuμuν ¼ 0,

for the coordinate accelerations ẍ and ÿ. The curves that
represent these solutions are shown in Fig. 4 parametrized
by λ. It can be observed that there exist trajectories that can
travel from one side of the WH to the other universe
without touching the ring singularity.

VII. SLOWLY ROTATING LIMIT

Now we study a slowly rotating WH following [23].
Similarly for this metric, a slowly rotating limit can be
introduced by considering the angular velocity of a zero
angular momentum particle falling through the WH; this is
described by

ω ¼ _φ
_t
¼ gφφpφ þ gφtpt

gtφpφ þ gttpt
; ð33Þ

with pϕ ¼ 0. This is no different from the concept of
locally nonrotating frames described in [24] where a set of
local observers are said to “rotate with the geometry.”
Thereby, the angular velocity of the particle is the angular
velocity of the WH ωWH. Here, pμ are the conjugate
momenta and _t, _φ the coordinate velocities of the falling
particle. So, for ωWH we get

ωWH ¼ a
L3

xðx2 þ y2Þ
a2

L4 x2ðy2 − 1Þ þ ðx2 þ 1Þðx2 þ y2Þ2 : ð34Þ

We now compare this angular velocity to that of null rays
rotating in the φ direction with x and y fixed. For
compactness we do not express explicitly the components
of the metric tensor (except for gtt ¼ −1). From (31) we
have

0 ¼ −1þ 2gtφωray þ gφφω2
ray; ð35Þ

where ωray ¼ dφ=dt is the angular velocity of the null rays.
Solving this equation for ωray one obtains ωray ¼ ð−gtφ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ þ gφφ

q
Þ=gφφ. Now that ωray has been computed, we

consider that the WH is slowly rotating if jωWH=ωrayj ≪ 1,
that is, ����� −gtφ

−gtφ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ þ gφφ

q ����� ≪ 1; ð36Þ

where we have used ωWH ¼ gφt=gtt ¼ −gtφ=gφφ.
Equation (36) implies that 1 ≪ jðg2tφ þ gφφÞ1=2=gtφj, which
can be explicitly expressed as

ax
L2ðx2 þ y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

x2 þ 1

s
≪ 1: ð37Þ

We have already shown that geodesic motion is possibly
constrained to the equatorial plane. Consequently, in order
for the null curves being discussed here (with x and y fixed)
to be geodesics, and thus trajectories that light would
follow, we set y ¼ 0. Furthermore, from the null condition
pμpμ ¼ 0 we have that

−E2 þ ðLþΩEÞ2
L2ðx2 þ 1Þ ¼ 0; ð38Þ

where pt ¼ −E and pφ ¼ L. We can rewrite (38) as

L ¼ ð�L2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− aÞE=Lx. Notice that L continues

to be a constant of motion even though it depends on x; this
is due to the fact that x ¼ x0 is constant and so _x ¼ 0. With
y ¼ 0 and x ¼ x0, the radial component of the geodesic
equation, that is, ẍþ Γx

μνuμuν ¼ 0, becomes

-20

-10

 0

 10

 20

-1 -0.5  0  0.5  1

x

y

y 0
=

0

y 0
=

0.
5

y 0
=

0.
70

7

y 0
=

0.
95

singularity

α = 1
α =-1
α = 3
α =-3

Upper Universe

Lower Universe

FIG. 4. Geodesics crossing the WH through the throat at x ¼ 0.
The throat size is L ¼ 10 and the traveler initially at
ðy0; x0 ¼ 25Þ. With E ¼ 10, L ¼ 5 and a ¼ 0.1, with two
different values of α.
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ðaE þ LLx0ÞðLLx30 þ aEð1þ 2x20ÞÞ ¼ 0: ð39Þ

Substituting L into (39) and reducing it, we obtain the
following equation, L4x60 − a2ðx20 þ 1Þ ¼ 0, for x0. For
the values a ¼ 0.1, L ¼ 10, we have that x0 ≈�0.1 with
the rest of the roots being complex. Thus, null curves with
x ¼ x0 and y ¼ 0 fixed are geodesics and can be light
trajectories.
The previous analysis reduces (37) toa=L2x0

ffiffiffiffiffiffiffiffiffiffiffi
x20þ1

p
≪1.

For this to hold in general we take the unitless parameter
a=L2 ≪ 1 and therefore consider it as the slowly rotating
limit.
Returning to Eq. (34), the cases a ∼ L2 and L2 ≪ a lead

to infinite and highly discontinuous angular velocities at the
roots x ¼ bx0 and y ¼ by0 of its denominator. On the other
hand, in the case a ≪ L2 the angular velocity is well
behaved everywhere but near the ring singularity. We show
the behavior of ωWH for these three different cases in Fig. 5.
The line element (11) can be simplified applying the

slowly rotating limit to the parameter eK ≈ 1 to first order in
a=L2. However, as K ¼ Kðx; yÞ, there are regions in the
space-time where this limit is no longer valid; i.e., eK ≈ 1

does not hold. Note that for a dilatonic field with α2 ¼ 4,
eK ¼ 1 even without using the slowly rotating limit.
To determine the region of validity of the slowly rotating

approximation we introduce the criteria jKj < 0.1. This
follows from the fact that eK ≈ 1þ K to second order
in a=L2. The objective of this criteria is to indicate for
which values of x and y the zeroth order term is the leading
term and thus, the zeroth order approximation suffices.
See Fig. 6.
In a slowly rotating WH, the tidal forces (28)–(30) and

the energy conditions (23) and (24) approach 0 except at
the ring singularity. In this limit it is possible to find a
fourth conserved quantity K. Using the Hamilton-Jacobi
formalism, and keeping only terms to first order in a=L2,
we get that Eq. (31) can be separated for the variables x
and y. This results in

K ¼ −L2ðE2 þ κÞx2 þ ðx2 þ 1Þp2
x −

L2

x2 þ 1

þ 2aLEx
Lðx2 þ 1Þ þOða2=L4Þ

¼ L2ðE2 þ κÞy2 − ð1 − y2Þp2
y −

L2

1 − y2
þOða2=L4Þ;

ð40Þ

in which we have used the relations for the con-
jugate momenta2 px ¼ L2ðx2 þ y2Þ_x=ðx2 þ 1Þ and

py ¼ L2ðx2 þ y2Þ_y=ð1 − y2Þ. Rewriting and separating
(40) we obtain the following equations,

Δ2 _x2 ¼ XðxÞ; Δ2 _y2 ¼ YðyÞ;

where we define

XðxÞ≡ Δ1ððκ þ E2Þx2 þK=L2Þ − 2aELx=Lþ L2; ð41Þ

FIG. 5. Angular velocity of the WH as a function of x for
different values of y. In the top panel a case where a ≪ L2 with
a ¼ 0.1 and L ¼ 10. In the middle panel the a ∼ L2 case with
a ¼ 0.11 and L ¼ 0.21. In the bottom panel L2 ≪ a with a ¼ 11
and L ¼ 0.21. The function grows to infinity as it approaches the
ring singularity (x ¼ 0, y ¼ 0) for any case.

2From this point forward every equality has an implicit
Oða2=L4Þ term at the end of the expression, which we omit
for compactness.
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YðyÞ≡ ð1 − y2ÞðL2ðκ þ E2Þy2 −KÞ − L2: ð42Þ

A second rank Killing tensor Kμν can be found for the
slowly rotating metric gSRμν (gμν ¼ gSRμν þOða2=L4Þ). This
tensor is given by (see Appendix A for details)

Kμν ¼ −h1g
μν
SR þ Xμν ¼ h2g

μν
SR − Yμν; ð43Þ

with h1ðxÞ ¼ L2x2 and h2ðyÞ ¼ L2y2. Also

Xμν ¼

26664
−L2x2 0 0 −aLx=Δ1

0 Δ1=L2 0 0

0 0 0 0

−aLx=Δ1 0 0 −L2=Δ1

37775
Yμν ¼ diag

�
−L2y2; 0; 1 − y2;

1

1 − y2

�
: ð44Þ

Contracting twice the Killing tensor (43) with the
conjugated momenta pμ yields the previously introduced
fourth conserved quantity of motion K, i.e., Kμνpμpν ¼ K.
One can easily verify that∇ðσKμνÞ vanishes for terms below
second order in a=L2.
We proceed to study the properties of the fourth degree

polynomials (41) and (42), in particular, the nature of their
roots, which gives us information about the accessible
regions in the WH to our traveler.
In order to go through the WH, we need that XðxÞ > 0 at

x ¼ 0. From (41), it follows that Kþ L2 > 0. Further-
more, if the traveler were to freely move through the
upper universe (x > 0) and the lower universe (x < 0), it
would be necessary that XðxÞ > 0 ∀ x ∈ R. This is

accomplished by demanding that Kþ L2 > 0 is satisfied
and that (41) has four complex conjugate roots.
Careful study of XðxÞ ¼ 0 reveals that if (41) has

four complex conjugate roots then, as can be seen in
Appendix B, the following conditions should be met:
(1) κ þ E2 > 0 (this is trivially satisfied for null

geodesics).
(2) Either L2ðκ þ E2Þ þK > 0 or

4L2ðκ þ E2ÞðKþ L2Þ > ðL2ðκ þ E2Þ þKÞ2: ð45Þ

On the other hand, YðyÞ has the following properties:
(1) Yð0Þ ¼ −K − L2 ¼ −Xð0Þ.
(2) If inequality (45) holds, then YðyÞ ¼ 0 has four

complex conjugate roots. The case of four real roots
corresponds when (45) fails to be satisfied and both
Kþ L2 > 0 and L2ðκ þ E2Þ þK > 0.

From the first property it can be readily seen that, if the
condition for the traveler to cross the throat of the WH is
fulfilled (Kþ L2 > 0), then Yð0Þ < 0. Unfortunately, from
this fact we cannot yet conclude that the traveler would
never be able to touch the ring singularity (recall that the
slowly rotating limit is not valid in x ¼ y ¼ 0). However,
this hints towards the existence of inaccessible regions to
the traveler where the slowly rotating limit may hold. This
follows from the possibility that YðyÞ could still be negative
for values of y other than y ¼ 0.
Of course, the case where (42) has four real roots is the

one we are interested in, since this implies there are regions
in which YðyÞ > 0 and a traveler could freely move on the
plane y ¼ y0 with Yðy0Þ > 0 as long as XðxÞ > 0.
Given the conditions for the nature of the roots of (41)

and (42), it can be established that if XðxÞ > 0 ∀ x ∈ R
then Kþ L2 > 0 and κ þ E2 > 0. Additionally, if (45)
does not hold and L2ðκ þ E2Þ þK > 0, then YðyÞ ¼ 0 has
four real roots. See Fig. 7.
The physical significance of the above statement is that,

fulfilling the derived inequalities on the constants of
motion, a traveler can cross back and forth both universes
constrained to a plane y ¼ y0, where Yðy0Þ > 0, without
ever touching the ring singularity. In fact, as a result of the
negative behavior of the polynomial YðyÞ close to the ring
singularity, an observer traveling in geodesic motion would
be repelled from its nearby region. In Fig. 8 the regions of
interest near the ring singularity are shown in the x-y plane.
It is important to clarify that, even though the slowly

rotating limit fails very near the ring singularity, there are
always regions of the space-time close enough to it
where this limit is valid and the repulsion of geodesics
is observed. In this sense, the ring singularity can be
considered to be surrounded by a repulsive potential which
prevents any observer from reaching it. This includes light
itself, as the analysis done applies for null geodesics too,
so we conclude that in this slowly rotating WH the ring

FIG. 6. Region of validity in the x-y plane of the slowly rotating
approximation for the dilatonic and ghost fields with different
coupling constants. Inside the area of the closed curves the slowly
rotating approximation is no longer valid.
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singularity is causally disconnected from the rest of the
space-time.

VIII. CONCLUSIONS

Metric (11) describes the space-time of an asymptoti-
cally flat rotating magnetized WH. It is an exact solution of
the Einstein-Maxwell-Dilaton field equations and contains
a ring singularity at x ¼ y ¼ 0 of radius L. The disc x ¼ 0
can be identified with a throat surrounded by the ring
singularity. Due to the presence of this singularity we
showed that NEC and WEC are satisfied for the dilatonic
field (ε ¼ 1) with coupling constant α2 ≤ 4.
Despite the apparent flaw that the ring singularity may

represent, in the slowly rotating limit a traveler moving on a
plane y ¼ y0 (where y0 is a nonzero constant) can cross
back and forth the throat reaching another asymptotically
flat space-time without facing extreme tidal forces and
without touching the singularity itself. Furthermore, we
observe that test particles following timelike or lightlike
curves are repelled from the naked singularity and thus it is
causally disconnected from the rest of the Universe.
The effect of the mass parameter in this space-time

remains open.
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APPENDIX A

In this brief appendix we show that if the HamiltonianH
of a freely falling test particle in a space-time with inverse
metric gμν is separable, then there exists a Killing tensor
of second order Kμν, which, when contracted with the
conjugate momenta pμ, yields an additional constant of
motion K ¼ Kμνpμpν.
Let fu0; u1; u2; u3g be the coordinate system. We assume

that the metric tensor only depends on two arbitrary
coordinates u1 ¼ x and u2 ¼ y, which makes ∂=∂ua
Killing vectors and therefore, pa conserved quantities,
for a ≠ 1, 2. Then, the Hamiltonian 2H ¼ κ ¼ gμνpμpν

is separable if and only if gμν can be written in the form

gμν ¼ XμνðxÞ þ YμνðyÞ
fðxÞ þ hðyÞ ; ðA1Þ

FIG. 7. The polynomials XðxÞ and YðyÞ with E ¼ 10, L ¼ 5,
a ¼ 0.1, L ¼ 10, K ¼ 5 and κ ¼ −1. Note that the roots of YðyÞ
are at y1;2 ¼ �0.055 and y3;4 ¼ �0.998.

FIG. 8. Main regions of interest near the ring singularity in the
x-y plane with E ¼ 10, L ¼ 5, a ¼ 0.1, L ¼ 10, K ¼ 5 and
κ ¼ −1. In the light gray area an observer is allowed to freely
move; in the dark gray area repulsive effects emerge and in the
white area the slowly rotating limit is no longer valid for each
separate case. The first pair of roots of YðyÞ is at y1;2 ¼ �0.055
(dashed lines).
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with Xyμ ¼ Xμy ¼ Yxμ ¼ Yμx ¼ 0. Because gμν is a sym-
metrical tensor, the sum XμνðxÞ þ YμνðyÞ is also symmet-
rical and, for any given metric of the form (A1), XμνðxÞ
and YμνðyÞ can always be chosen such that they are both
symmetrical separately.
Inserting gμν in the Hamiltonian we get

ðfðxÞ þ hðyÞÞκ ¼ ðXμνðxÞ þ YμνðyÞÞpμpν: ðA2Þ

Applying the Hamilton-Jacobi theory, we choose
Hamilton’s principal function as Sðuμ; pμ; λÞ ¼ pauaþ
W1ðxÞ þW2ðyÞ − λκ=2, with a ≠ 1, 2, W1ðxÞ and W2ðyÞ
being auxiliary functions and λ the affine parameter. Now,
the Hamilton-Jacobi equation Hþ ∂S=∂λ ¼ 0 yields the
Hamiltonian of the geodesics. From Hamilton-Jacobi
theory we also have that pμ ¼ ∂S=∂uμ, so px ¼
dW1ðxÞ=dx and py ¼ dW2ðyÞ=dy. With this conditions
the variables x and y in (A2) can be easily separated,
implying the existence of a new constant K,

κfðxÞ − XμνðxÞpμpν ¼ YμνðyÞpμpν − κhðyÞ ¼ K: ðA3Þ

Note that separability could not have been accomplished
if we had not previously demanded that Xyμ ¼ Yxμ ¼ 0.
Assuming there exists a second rank tensor such that
K ¼ Kμνpμpν, by comparing it to (A3), it has to be that

Kμν ¼ fðxÞgμν − XμνðxÞ ¼ YμνðyÞ − hðyÞgμν: ðA4Þ

Alternatively, this tensor can also be expressed as

Kμν ¼ fðxÞYμνðyÞ − hðyÞXμνðxÞ
fðxÞ þ hðyÞ : ðA5Þ

A straightforward (but extremely tedious) computation
reveals that ∇ðσKμνÞ ¼ 0, i.e., Kμν is a second rank Killing
tensor. The conserved quantity K is associated with this
hidden symmetry of the metric.

APPENDIX B

The roots of a fourth degree (or quartic) polynomial can
be found by radicals, in fact, fourth is the highest degree for
which solutions can be found analytically for any poly-
nomial of this class. Therefore, the nature of the roots of
these polynomials can be determined by a set of discrim-
inants which, naturally, depend on their coefficients [25].
For the general case these discriminants are rather long
expressions. In Sec. VII, a fourth degree polynomial that
does not possess a cubic term is found. Thus, in this
appendix the following particular case is discussed,

Ax4 þ Bx2 þ CxþD ¼ 0; ðB1Þ

with A; B;C;D ∈ R. For this polynomial, the discriminants
are given by

Δ ¼ 16Að16A2D3 − 8AB2D2

þ 36ABDC2 − 27AC4 − B3C2Þ;
P1 ¼ 8AB; P2 ¼ 16A2ð4AD − B2Þ: ðB2Þ

Rather than their multiplicity, we focus on whether the
roots of (B1) are real or complex conjugate. The conditions
on the discriminants (B2) are as follows:

(i) For two real and two complex conjugate roots
Δ < 0.

(ii) For four real different roots Δ > 0 and P1;2 < 0.
(iii) For two pairs of complex conjugate roots Δ > 0 and

either P1 > 0 or P2 > 0.
Multiple roots, which can be either real or complex, are

obtained only when Δ ¼ 0. For instance, if Δ ¼ 0 and
P1;2 < 0 there is a double real root and two different simple
real roots.
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