Eur. Phys. J. C (2019) 79:833
https://doi.org/10.1140/epjc/s10052-019-7349-4

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Could galactic magnetic fields be generated by charged ultra-light

boson dark matter?

Maribel Herndandez'*, Ana A. Avilez'®, Tonatiuh Matos>

I Facultad de Ciencias Fisico-Matematicas, Ciudad Universitaria, Av. San Claudio SN, Col. San Manuel, Puebla, Mexico
2 Departamento de Fisica, Centro de Investigacién y de Estudios Avanzados del IPN, A.P. 14-740, 07000 Mexico City, Mexico

Received: 23 June 2019 / Accepted: 25 September 2019
© The Author(s) 2019

Abstract We study the possibility that large-scale mag-
netic fields observed in galaxies could be produced by a dark
matter halo made of charged ultra-light bosons, that arise as
excitations of a complex scalar field described by the Klein—
Gordon equation with local U (1) symmetry which introduces
electromagnetic fields that minimally couple to the complex
scalar current and act as dark virtual photons. These vir-
tual photons have an unknown coupling constant with real
virtual photons. We constrain the final interaction using the
observed magnetic fields in galaxies. We use classical solu-
tions of the Klein—-Gordon—-Maxwell system to describe the
density profile of dark matter and magnetic fields in galax-
ies. We consider two cases assuming spherical and dipolar
spatial symmetries. For the LSB spherical galaxy F563-V2,
we test the sensitivity of the predicted rotation curves in the
charged Scalar Field Dark Matter (cSFDM) model to varia-
tions of the electromagnetic coupling and using the Fisher
matrix error estimator, we set a constraint over that cou-
pling by requiring that theoretical rotation curves lay inside
the 1o confidence region of observational data. We find
that cSFDM haloes generate magnetic fields of the order of
1G and reproduce the observed rotation curves of F563-
V2 if the ultra-light boson has a charge ~< 10~ 3¢ for the
monopole-like density profile and ~< 10~ !#¢ for the dipole-
like one.

1 Introduction

Magnetic fields are present in all the Universe and they are
a common feature of various astrophysical objects at dif-
ferent scales. Fields with strengths of G are commonly
observed in spiral galaxies and in the intra-cluster medium
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of clusters of galaxies. Usually magnetic fields in galaxies
are observed indirectly as radio waves coming from stars
with frequencies around 10 GHz. These radio-waves are pro-
duced as synchrotron radiation by high energy electrons trav-
eling across galactic magnetic fields [1]. From decades a
host of techniques have been used to detect them and large
efforts have been invested to understand their origin and evo-
lution along the cosmic history. A large set of works sug-
gest that they affect galaxy formation and cluster dynam-
ics.

The origin of large-scale magnetic fields remains as an
open problem and a matter of active discussion and research.
A host of scenarios and mechanisms have been proposed in
order to explain how the seeds of magnetic fields in galax-
ies were generated at the primitive stages in the cosmic his-
tory and their fate in the later epochs of structure formation.
Among the best accepted ideas we distinguish the follow-
ing: (i) Primitive magnetic fields were produced in galaxies
between recombination and the start of galaxy formation.
According to the prevailing picture proposed by Harrison
in the 1970’s [2], swirls in the primordial baryon-photon
plasma — right before irrotational curvature perturbations
start to domi-nate — could be the seed of large-scale mag-
netic field which would have been enhanced at later times
via dynamo mechanisms. However, the amplification of this
primeval fields up to orders of uG via this sort of mecha-
nisms last larger times than a galaxy lifetimes in order to be
reconciled with observations.

(i) Another more modern possibility is that magnetic
fields were indeed a primordial seed arising during the era
of pre-recombination due to a more fundamental mechanism
such as inflation [1].

This work proposes an alternative mechanism to gener-
ate magnetic fields in galaxies. The idea is to start with the
following Lagrangian
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L= (V@ +igA, D) (V D" —igAld*) — m745*¢

—q? A A — &®B, BY — Q%A BMY, (1)

where A,, = A, — A, is the Faraday tensor for the
electromagnetic part of the scalar field and By, = By, —
B, is the normal Faraday tensor. The charges ¢ and Q
correspond to unknown coupling constants, the first one is
the electromagnetic charge of the scalar field and the second
one is the coupling between the electromagnetic part of the
scalar field and the real electromagnetic one. While e is the
charge of the electron. In terms of the corresponding electric
and magnetic fields, the electromagnetic part of (1) reads as

—¢*>(Ba-Ba+Es-Ey) —e?Bp -Bp +Ep -Ep)
—Q?(Ba-Bp +E4 -Ep), )

where B 4 and E 4 respectively are the magnetic By = V x A
and the electric fieldsEq4 = —A ; —VAgof A, being A, =
(Ap, A ) and analogously Bp and Ep are the corresponding
fields for B,.

Thus, the idea is that the scalar field is the ultra-light dark
matter of the Universe that does not have any interaction or it
is too weak with the rest of the matter. But it is charged and its
electromagnetic field interacts with the normal one via a dark
photon. This excitation of the normal electromagnetic field
is reflected in the normal world as an effective magnetic field
in galaxies. In other words, magnetic fields in galaxies arise
due to the charged ultra-light dark matter which generates
virtual dark photons. What we see in galaxies is the result of
the interaction of the excitation of the electromagnetic scalar
field into the normal electromagnetic field. The scalar field
dark matter is decoupled from the rest of the matter but it is
indirect coupled through the weak interactions between the
virtual dark photon coming from the charged scalar fields
and the real photons.

In this model, haloes of galaxies are macroscopic conden-
sates of Bose—Einstein (BEC) made of hipo-charged bosons
with a mass ~ 10722 eV whose density of particles in the
Newtonian limit can be described in terms of classical scalar
fields. Various studies have shown that the energy at which
the condensation of these objects occurs is ~ TeV at very
early age of the universe [3—5]. In contrast to the standard cos-
mological magnetic seed generation mechanisms mentioned
above, within this scenario, the appearance of a macroscopic
electromagnetic fields is prompt as an inherent fundamental
property of the bosonic system.

Ultra-light scalar dark matter is a strong and well studied
alternative to the cold dark matter (CDM) paradigm. It has
been shown that these ultra-light bosons are able to form
Bose—Einstein condensates (BEC) at cosmological scales
which make up galaxy haloes [6]. Pioneer systematic stud-
ies of this model were firstly carried out by Matos, Guzman
and Urena [7,8] and also by Ji [9] and Sin [10]; and redis-
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covered later on being dubbed with different names such as:
fuzzy DM [11], wave DM [12] or Bose—FEinstein condensate
DM [13] (see also [7,10,12,14-17] and more recently [18])
stressed the relevance of this model among the most viable
candidates of dark matter.

The cosmological regime of this model was firstly studied
in [6,19] where it was found that if the ultra-light bosons
have a mass m ~ 10722 eV/c?, then the matter power spec-
trum presents a natural cut-off which suppresses the small-
scale structure formation of haloes with masses M < 108 M
[see also 12,20,21]. The same mass of the ultra-light boson
has been constrained from several cosmological and astro-
physical observations, for example, from the galaxy UV-
luminosity function and reionization data [22], from the high-
redshift luminosity function of galaxies [23], from Lyman-«
observations [24-27], taking into account a self-interaction
into the SF potential [28]. However, nowadays there is not a
full agreement on the exact estimation of ultra-light-boson’s
mass. However, in this work we use m ~ 1022 eV/c? which
provides a structure formation description that fairly agrees
with observations.

One important feature of this SFDM model is that it forms
structure in the same way as the CDM model at lineal cosmo-
logical scales [29,30]. In [31] it was shown that in this model
with such mass, the gravitational collapse of the scalar field
forms stable objects with masses of the order of a galac-
tic halo. In a series of papers it was shown that SFDM forms
haloes of galaxies with core density profiles [32—-36]. Numer-
ical simulations of formation of galaxies were performed in
[37] and [38], where the process of formation of spiral arms
of a galaxy was naturally obtained. Furthermore, the self-
interacting scalar field with ¢* potential was firstly studied
in [39]. The SFDM at finite temperature was firstly setup in
[40,41], and it was also shown that galaxy’s satellites are sta-
ble around haloes of SFDM [42]. More features of the SFDM
were analyzed further, for example, lensing was studied in
[43] and other systematic studies of the scalar field dark mat-
ter were performed by [17] and more recently by [44].

It is important to highlight that the different models of the
SFDM like the Fuzzy DM or the Wave DM are exactly the
same as the SFDM. It seems that the cosmology is weak sen-
sible to the scalar field potential. The only difference appears
in details, like in the cosh potential, where the MPS has a
sort of knee in its profile (see [45]). In SFDM, the scalar field
at very early stages of the universe remains almost constant
until its wave-length was smaller than the size of the horizon,
at such point it underwent a phase transition and started to
roll down a new minimum where the scalar behaves as dark
energy. At the condensation temperature close to zero, the
scalar reaches the new vacuum and it starts oscillating around
it and behaves as dust. For ultra-light masses this temperature
could be 7T, ~ TeV [46]. Such symmetry breaking process
is usually interpreted as a Bose—Einstein condensation tran-
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sition of a system of bosons being clumped by gravity. As
such, the order parameter of the phase transition corresponds
to the occupation number of bosons in the ground state which,
at the Newtonian limit, is governed by the Gross—Pitaevskii—
Poisson (GPP) system. Solutions of such equations represent
the macroscopic wave-function of the whole system which
consists in the sum of wave functions of individual particles
which are identical and therefore scales as the number of
particles. We assume that within some range of applicability,
the relativistic version of the GPP equation is the Klein—
Gordon equation according to [5]. Specifically, the classical
field solutions of the KG equation describe the order param-
eter of a system of bosons in the relativistic regime.

Given that this model provides one of the strongest dark
matter candidates together with unresolved question about
the origin of magnetic fields at large scales, we believe that
the mechanism proposed in this work must be thoroughly
studied, being this work a very first step in such task.

Now let us describe the mathematical framework behind
the model. Usually charged bosons can be described mathe-
matically as modes of a canonical complex scalar field with
local U (1) symmetry where a vector field mediates an elec-
tromagnetic interaction with coupling g. Such a system is
governed by the Maxwell-Klein—Gordon Lagrangian. But as
we described above, this electromagnetic field acts as a dark
photon and interacts only with the normal electromagnetic
field, creating an excitation into it. The resulted electromag-
netic field is effectively an excitation into the normal one,
that we propose is just what we see as the magnetic field of
the galaxies. The resulting U (1) electromagnetic four-vector
field is also responsible for the electromagnetic interactions
between baryons. An intriguing question about these charged
bosons is whether the theory is safe from massive produc-
tion of particles via indirect scattering processes. It is essen-
tial to make such a safety check on any candidate of dark
matter in order to be consistent with observations at large
scales that clearly suggest that dark matter is non (or at least
weak) interacting. It is not difficult to notice that SFDM is
safe of such a catastrophe because even at large energies —
below MeV though — the amplitude of the scattering pro-
cess involving incoming bosonic particle-antiparticle into an
electron-positron pairs mediated by quantum fluctuations of
the photon, is suppressed by a 1/ M,% factor where M}% is
the mass of the heavy fermions (confined quarks inside pro-
tons and neutrons) making up baryons. The previous can be
clearly realized by inspecting the amplitude at tree level in
the perturbative expansion of such a process in the simplest
theory where heavy fermions are minimally coupled to pho-
tons or alternatively using an effective quantum field theory
approach. The theory is also safe of a scattering catastro-
phe via the t-channel through the massless photon exchange
thanks to the crossing symmetry of the .# matrix. These

decays should happen before the e~ e™ annihilation in order
to keep cSFDM cool at the early universe.

On the other hand, as we have already mentioned, CMB
only puts constrains in the mass of the scalar field, this should
be bigger than 10723 eV [22]. In [22] and [20] it was shown
that from the cosmological point of view the mass can have a
big range of values and fulfill the CMB and Mass Power Spec-
trum (MPS) constrains. Nevertheless, the rotation curves in
galaxies constrains the mass to be 1072 — 102! eV . This
is the reason we believe that the CMB and the MPS wouldn’t
give further constrains to the charge we found but we think
that the rotation curves of galaxies could give a stronger con-
strain to the charge of the scalar field. And this is exactly
one of the main results of this work: in order to preserve the
predictions at astrophysical scales such as the stellar rotation
curves in galaxies, the electromagnetic coupling of SFDM
bosons is strongly restricted to very low values.

Now, the main problem solved in this work is the follow-
ing: if a galactic halo is made by a condensate of charged
bosonic modes of the scalar field, it is reasonable to expect
that the number density of particles is affected by the pres-
ence of an electromagnetic field in the galaxy. This change
in the density should be reflected on rotation curves of stars
and gas in the galaxy.

The first part of this work is devoted to investigate whether
c¢SFDM can predict rotation curves of a galaxy and at the
same time to give magnetic fields with strengths at the micro-
gauss level. Secondly, we constrain the electromagnetic cou-
pling of bosons by requiring that the theoretical rotation
curves to lay within the 1 — o confidence region of rota-
tion curves of the F563 galaxy. We chose this galaxy due to
its morphology and low brightness that make it a good candi-
date of a “pure dark matter system”. It is worth to emphasize
that we found a constraint for the charge of DM by consider-
ing the whole amount of DM is made of charged dark matter
and with a mass of 1072% eV. Therefore this result is added
to the bounds of the charge of dark matter previously found
for a quite different range of masses (around GeV) in works
like [47-53].

This paper is organized as follows, in Sect. 2 we present
the model of dark matter made of charged ultra-light bosons
laying in a newtonian space-time which is surrounded by a
thermal bath. In Sect. 3 we present the mathematical setup
describing the system which corresponds to the Maxwell—
Klein—Gordon system. We carry out an harmonic decompo-
sition either of the density distribution of dark matter and
electric field and we set an azimuthal symmetric ansatz for
the average macroscopic total magnetic potential. In Sect.
4 we construct the specific model for the haloes of cSFDM
and the set of equations to be solved numerical for our further
analysis. Within this section we make a qualitative analysis
of our solutions in order to understand the type of solutions
of magnetic fields. In Sect. 5 we estimate the parameters of
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the density profile of the pivotal neutral model used to fit
the rotation curves of F563. In Sect. 6, by using the Fisher
matrix estimator of errors, we derive bounds for the coupling
of the scalar and magnetic fields such that the predicted rota-
tion curves are not discriminated at 1o level given the data
resolution. Finally we summarize and layout our results and
conclusions in Sect. 7.

2 Dark matter as a complex scalar field

In this section we present the general classical field equa-
tions describing our scalar charged dark matter model. By
now we don’t specify the geometry of space-time, later at
the next section we will justify that a Minkowski geometry
is a good approximation for the purposes of this work. The
charged scalar modes making up the dark matter haloes can
be mathematically described by a complex scalar field with
local U (1) symmetry which introduces Abelian gauge fields
which play the role of a mediating particle of the electro-
magnetic interaction between charged bosonic modes. In (2)
we see that the magnetic field of the scalar field @ induces a
real magnetic field Bp, because of the interaction of B4 -Bp.
In this work we want to see whether the contribution of the
scalar field dark matter is altered because of the magnetic
field B4. Thus, the effective corresponding Lagrangian we
want to study here is given by

L= (V@ +iA, @) (VID* — i AL D*)
2
1
Dot — —— A, AN, 3)
2 4o

This Lagrangian has units of distance ™%, fields in it have
units of distance™! and they have been defined from the
canonical ones as follows: ® — @ /ficand A, — qA,/h.
Besides, the parameter fig = 4¢°cuo/h is dimensionless and
quantifies the charge of individual bosons given by g.

The kinetic term for the electromagnetic fields in (3) effec-
tively involves the excitation given by the interaction of the
dark photon of the scalar field with the normal photon.The
excitation into the normal photon depends on the unknown
constant Q. Nevertheless, we will suppose that the induced
real magnetic field is of the same order of magnitude of the
scalar field one. Furthermore, observe that the charge ¢q is
not necessarily related with the electron charge, it can be any
value. In this work we will give some constrains of ¢ under
the previous hypothesis.

For now we assume a non-self-interacting field. In the
context of SFDM it also encodes the process of condensation
of BEC at the very early universe. However, once dark matter
haloes have formed by condensation, an effective mass term
suffices to account for the galactic dynamics.

@ Springer

In this model, the condensation takes place first and then
the virialization. The reason is that if the bosons are excited
they can not collapse and forme stable objects, the bosons
behave as a classical gas when they are excited. The hypoth-
esis is that the dark matter, the boson gas, is in thermal equi-
librium from the beginning, as the universe expand the gas
cools down till the condensate temperature, the primordial
fluctuations act and collapse the frozen gas into haloes of
galaxies. For a boson with this mass the critical condensate
temperature is very high, therefore the DM haloes in this
model form very early, by condensation, not by hierarchy as
in the CDM model.

3 Maxwell-Klein—Gordon system

In general, the dynamics of a scalar field is governed by
the Klein—Gordon—Maxwell (EKGM) equations in a fixed
curved space-time arisen from the Lagrangian (3) with the
potential

(VF+iA") (V, +iAy) @ —m*® = 0. )
VAP = —4fip j* o)

where the conserved current of charged bosons is defined as
P =i[@* (V'O +iAtD) — d(VIPF —iAFD¥)],  (6)
and hence satisfies

Vit = 0. 7
Equation (4) can be expanded to

VAV, @ +i(VFA)D+2i APV, & — AP A, & —m>® = 0.
(®)

Notice that electromagnetic and scalar fields are coupled,
even in absence of the gravitational field which for a galaxy
is actually very small. Besides, the coupling between scalar
and electromagnetic fields is controlled by the [y dimen-
sionless parameter and the strength of the electromagnetic
fields (quantified by the initial conditions for A,, as we shall
see later). Because the scalar field makes up dark matter,
therefore it must interact very weakly with all types of fields
including with these “dark” photons. Thus it is expected that
1o << 1. On the other hand, it can be noticed in Eq. (8) that
electromagnetic fields could greatly affect the scalar solu-
tion used to model galaxy haloes. The goal of this work is to
quantify the maximum charge of the boson allowed such that
the gravitational strength of dark matter remains unchanged,
given the resolution of data of rotation curves used to measure
it. Since the multi-state neutral solution provides good fits for
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these rotation curves, from the beginning we can expect the
charge to be small and the electromagnetic fields as well.
By such physical argument, it is reasonable to treat the non-
linear terms in the KG equation involving electromagnetic
fields as perturbations.

3.1 Multipolar decomposition in the Newtonian limit

It has been shown that after condensation, in the weak field
regime, solutions of the Schrodinger-Poisson system are
asymptomatically stationary and homogeneous likewise the
gravitational potential [54]. Therefore, in the Newtonian limit
we can assume that the space-time metric has spherical sym-
metry and is given by

2
ds? = —f(r)ydi® + % 26 4 s’ O)de?). (9

where f is the gravitational field given by f = e=2U/ ¢~

1—2U/c?, being U the Newtonian potential. Because, we are
dealing with a non self-interacting field and we assume that
the effects of the EM coupling are small as explain previously,
the solutions of the KG equations are going to be quite close
to those for a neutral scalar except for perturbations due to
the small non-linearities. A neutral scalar solution governed
by KG can be written as

& = PR ()Y M (O, p)e™ ", (10)

where Y /\‘,’1 (6, @) are the spherical harmonics and @ is a real
constant with units distance™!. Also, we impose an specific
form of the EM four-vector which is compatible with the
Lorentz gauge condition, given by

Ay = (Ao(r), 0,0, Ay(r, 0)). 1D

Now let us to plug the above relations into the Klein—Gordon
Eq. (4) for a non self-interacting scalar field, its radial com-
ponent &% is governed by the following ordinary differential
equation

1/, N(N +1) (0 — Ap)?
r? (r fﬂJ),r 2 A f 7
Ay(A, +2M
—M%H&%’:o. (12)
r2sin 2

Given the weakness of gravity produced by galactic haloes,
in this work we assume that the space-time metric is not
importantly deformed and then we can approximate f ~ 1in
our equations. Therefore the % in flat space-time in spherical
coordinates reduces to

(r2%/)/
N(N + 1) 2MA A2
R T 2wmAg — LTy S -
+|: r2 @0 rsin9+ 0 25inp2
% =0 (13)

where we define the wave-number of the scalar k as k? =
2% and & = w/c. The electromagnetic fields generated
by the system of charged bosons are governed by the Maxwell
equations given by (5) which are sourced by @ through the
current given as (6). These equations reduce to the following
form after plugging Eqgs. (10) and (11) in (5)

@

— VAo = —4{0jo, (14)
—V2 A+ g0, Ap = —4f20 i,
k=1{r0, ¢} (15)

Clearly the temporal and azimuthal components of the cur-
rent jo and jg are non-trivial sources of the Maxwell equa-
tions since their corresponding A, are non-vanishing. Notice
that because A, = 0 and the radial component of @ is real
then j, = 0. However, meanwhile M > 1 the polar compo-
nent of the four-current will be non-vanishing evenif Ag = 0.
Since we are studying the simplest case for electromagnetic
fields generated by a charged scalar field, (11) is setup such
that Ay does not depend on ¢ and hence M = 0. Conse-
quently, either jy and the last term on the left of (15) vanish.
Then the only non-trivial components of the Maxwell equa-
tions are:

VZAg = =810 P13 (& + Ao), (16)
VA, = —8i|®*A,. (17)

The previous equations written in spherical coordinates
become:

S — ("= ) + 80l (w+ Ag) =0, (18)
r or ar
19 [ ,0A, 19 (. 84,
— _° - %
72 or <r or > t Zsing 90 (Sm 26
+8/i0|®|*A, = 0. (19)

In the next section, solutions of the last system are going to be
used to model galactic haloes made of charged bosons which
generate magnetic fields of order of ©G. For that purpose we
use a specific setup of symmetries and boundary conditions
for the system according to the physical situation considered.

4 A model of dark matter as charged-bosons
Let us recall what the main questions of this work are:
how strong may be the electromagnetic interaction between

charged bosons such that the model can reproduce the
observed rotation curves in a given galaxy? Is it possible
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to predict observations of kinematics of the visible compo-
nents of galaxies (rotation curves) and the magnetic fields
at the same time? And consequently, how sensitive are the
rotation curves to the electromagnetic interactions between
bosons? What bound for the charge of the bosons is allowed
such that this conditions are satisfied?

In order to start looking for an answer, we shall construct
a simple model that will allow us to investigate the viability
of this scenario. In that direction, we shall use the system of
the previous section to model the density profiles of galac-
tic haloes made of charged bosons and the magnetic fields
they trigger. The values of the parameters, symmetries and
boundary conditions of the system can be reduced according
to the phenomenological setup and that is our goal in this
section.

As mentioned above, because the KGM equations have
small non-linear terms and hence the harmonic decomposi-
tion of the scalar solution is valid. According to this, here
we present two types of solutions of the KGM equations: (1)
First, a spherically symmetric complex scalar field coupled
to electromagnetic fields decomposed as a magnetic vector
potential with constant azimuthal direction and as an homo-
geneous electric potential. (2) Secondly, a complex scalar
field with axial symmetry described by the dipole of the
harmonic decomposition and the same setup for EM fields
than the first case. We consider this second case in order
to account for rotating haloes that could give rise to whitls
in the boson gas able to produce an effective non-vanishing
magnetic dipole in galaxies.

4.1 Angular decomposition of the EM potentials by
phenomenological setup

An important question regarding this model to be answered
beyond this work is: Is there a possible mechanism to form
microscopic dipoles within a stationary spherical charged
scalar configuration? In principle, the simplest setup would
be to choose by hand an spherical density configuration and
a dipole for the magnetic potential (the first order term in
multipole expansion of the magnetic field). However for sake
of mathematical consistency, it is expectable that the scalar
and EM fields have common spatial symmetry.

On the other hand, an interesting physical scenario that
may provide a way to set boundary and initial conditions for
the magnetic potential is the following: vortices are shown to
existinside rotating BECs, therefore if the bosons are charged
then it comes naturally that they are able to produce magnetic
dipoles. This scenario provides a natural way to physically
implement magnetic dipoles in a stationary scalar configura-
tion, however an important requirement is to have a rotating
halo and therefore, strictly speaking spherical haloes do not
allow this mechanism. As we shall show in further sections,
bounds on the EM coupling ¢ are independent on whether
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we use a spherical solution of the first multi-polar moment.
Nonetheless, it is worth to take both cases into consideration
in order to verify that using the simplest spherical symmet-
ric haloes approach is a valid approximation when studying
gravitational effects and the perturbative effects of possible
galactic dark EM fields. Let us make the following field-
redefinition accordingly to the previous arguments:

Ag ==, (20)
r
Ay = S(r)Y10(0), 2D

after plugging the previous definitions into the field-equations
they read:

1 (NN +1 2
2% + gjuk%rs2 cos20-2 252\ % = 0,
r2 r2 r

¢" + 80D R (Gr + ¢) = 0,
28" + (—2 n 8,10¢§R2r2) S =0. 22)

Next we are going to solve this system numerically for the two
cases described at the beginning of this subsection. For that
purpose we wrote our own code in python using an equivalent
version of the system above but using fully dimensionless
variables and parameters for better numerical performance.

4.2 Solutions of the Maxwell-Klein—Gordon system

Now let us study qualitatively the behavior of the solutions of
(22) for some regimes of the space of parameters. Afterwards
we are going to focus in a range of them suitable for modeling
galactic haloes and their magnetic fields. Let us recall once
more that the effects of the EM fields are small in order to
respect the rotation curves, therefore the neutral model where
they are absent is going to play the role of a pivot or fiducial
model with respect to which changes due to EM fields are
going to be compared.

4.2.1 Behavior of the EM potentials along the galactic
plane

In this section we aim to study the qualitative behavior of
the magnetic potentials generated by the charged bosonic
particles for different regimes of parameters. Typically the
magnitude of electrostatic potential is subdominant — by a
huge gap in orders of magnitude — in comparison to the mag-
netic potential, then we are going to ignore it from now on.
In addition, solutions for the spherical neutral halo have the
following form % ~ sin(kr)/r, therefore by plugging it into
(22) (only by now, later we shall use the exact solution arisen
from the coupled system) we arrive to the following equation
for the magnetic potential. By changing S — S/r we would
have
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Fig. 1 fi(r; @) (top) along the galactic disc for different values of «
and their corresponding S solution (bottom). Notice that small values
of « give rise to negative f; which correspond to monotonic solutions
while solutions with large o have a more complex oscillatory behavior

8"+ fi(x;a)S =0,
fi1(x; @) = 8asin(x)? — 2,
@ = 1. (23)

where double dots denote second derivative with respect to
x = kr = r/rg. The point where the sign of f; flips corre-
sponds to a turnover point from which the solutions start to
oscillate after being growing monotonically.

Figure 1 shows that for small «, f1 (x; o) is negative and its
corresponding solution for the magnetic potential is mono-
tonical for small radii. In contrast, modes with large « have
a more complex evolution at the centre and decay for larger
radii. Let us notice from (23) that « corresponds to a simul-
taneous measure of the EM coupling of the scalar and the
central density of the halo, therefore even for small values
of the charge, haloes with sufficiently high central density
might give rise to large «.

4.2.2 Initial conditions for magnetic fields

Boundary conditions of fields in (22) should be setup in
correspondence to the physical features of the system to be
modeled. For example, they should depend upon the charge
in order to turn the EM-fields off whenever the bosons are
charged. Also, EM fields should decay asymptotically. A
simple boundary condition is an effective dipole formed by
a charge unit with velocity v moving around a circle with
radius rp. In this case the magnetic moment would be

qrz‘)”f X . (24)

-1 -
po=5(roxv)=

The corresponding magnetic vector potential is given as

1o
2

S pr—
0 dmry

L X T. (25)

Assuming that vV = ¢ then

_ [0qV .

So =
0 8mro

(26)

Now, in order to have a dimensionless initial condition let us
multiply the last equation by ¢/ k# to obtain

A fov 1 . 4.

So = 32_712k_ro(p = So@. (27)
Our numerical results turn to be not too sensitive to the mag-
nitude of the initial Sy however, the previous setting of bound-
ary conditions is important in order to realize how S depends
on the electromagnetic coupling g. On the other hand, initial
conditions for the derivative of S will determine the order
of magnitude of the magnetic field at the end, thus initial
conditions for the dimensionless variable used here is given
by:

er?
2 (BuG), (28)

where B is a fitting parameter which determines the order
of magnitude of the magnetic field at the galactic centre and
its decaying rate along the disc. In this work we fix it to
B = 1073% in order to produce magnetic fields running within
1 —-10uG.

Sy =

4.3 Rotation curves and magnetic fields from complex
SFDM solutions

In this subsection we show the method to compute astro-
physical observables involved in our study in terms of the
solutions of the KGM system presented in previous sections.

47 Gp . P
S =00t = A (29)

where @* corresponds to the complex conjugate of the scalar
field @. For convenience, we set the relation above between
the density factor 47 G /¢? and the scalar field in order to have
units of 1/distance®. Equivalently, in units where 47 G = 1
and ¢ = 1, p = |®@|? barely. We also have defined the central
value density as p. Boundary conditions on the radial scalar
solution need to be established at this point. The monopole
scalar solution for neutral bosons — that is when EM are
absent — which has been typically used to fit rotation curves
within this model [40] has the form R ~ sin(kr)/r, where k
is an integration constant to be fixed by boundary conditions.
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Given that such function is periodic, there is a radius r’ where
the density distribution vanishes p(r’) = 0, this happens if
{kjr’ = jm}j=1,2,... In this way it is realized the existence
of excited states making up the whole solution as a specific
superposition of them to be fixed by observations owing that
Eq. (13) (with Ay, = Ag = 0) is lineal allows us to form
haloes by superposition of excited states as follows

sin(k;r)
Bneutral = Z G0 (30)

It is worth to point out that because the previous form of
the solution has a physical interpretation: in the ideal case,
solutions of the GPP or SP systems are supposed to describe
perfect BECs with temperature quite close to zero and the
system of bosons would condensate to a single macroscopic
wave function and all the bosonic excitations would lay in
the ground state described by the single ground state solu-
tion with no spatial nodes [40]. However, moving one step
beyond such idealization, because the system is surrounded
by a thermal bath therefore it is expected that excited states
arise. By virtue of the smallness of EM fields involved in the
KGM system above, we assume that the scalar solutions are
equal to those of the neutral scalar plus small perturbations
and therefore we fix the boundary conditions in the same
way.

In order to compute mass contribution from the density
distribution of each multi-state, we should integrate its cor-
responding density distribution over all space at a fixed time
as follows

M;(r) = % /O B 31)

The total mass of the halo corresponds to the sum of all the
contributions as follows

My (r) = Mi(r). (32)

In the Newtonian regime, the outer movement of stars in a
galaxy is mainly governed by geometry of the potential well
produced by the halo, though there are sub-dominant effects
coming from stellar and gas dynamics deforming the domi-
nant well potential, for the purposes of this work we let them
out of consideration. Therefore, by using the virial relations
we can infer that the magnitude of the rotation velocity of
stars can be computed as follows

y2 = Mr) (33)
2rr

Let us recall here that we are not using international units
until now, however, later on after numerically computing

@ Springer

these normalized rotation curves and magnetic fields we shall
transform our quantities to those units in order to compare
with observations. We compute the magnetic field by taking
the curl of (21) and we get:

Ba=) V x(ALp) = Bi+ Beb, (34)

whose components are given as

S
B, = 20)———, 35
r ZZCOS( )rsin9 (35)

S.
By = — Z (7 + s;) cosf, (36)
i

where we are adding up contributions to the magnetic fields
arisen from all multi-states required to fit the rotation curves.
Notice that either B, and hence |B 4| diverge at & = nm with
n being an integer and at the galactic centre. In what follows
we shall compute observables in the galactic disk plane at
0 =m/2.

5 Characterizing the density profile of the pivot dark
matter halo

In this section we determine the density profiles of the scalar
field configurations with different spatial symmetries, that
is, the monopole and the dipole (recall that the first one is
intended to model a rotating halo and the second is the sim-
plest approximation), we estimate the parameters of an halo
whose density profile is describe up to three multi-states, with
that purpose we fitted the rotation curves of a low-surface-
bright galaxy with spheroidal morphology, which is the ideal
type of galaxy to test gravitational effects of dark matter onto
the stellar kinematics since effects of baryons are presumably
sub-dominant and therefore the minimum disc hypothesis is
valid.

By using measurements of the rotation curves of galaxy
F563 made by [55], we sampled the space of parameters of the
mentioned fiducial models by using our own Monte-Carlo-
Markov-Chain code via the Hastings—Metropolis algorithm.
The set of parameters considered in our analysis are given
by the characteristic size of the halo r” corresponding to the
size of the first spatial oscillation of the ground state and the
central density of each multi-state p; i = 1, 2, 3.

As mentioned above, this model will play the role of a
pivot or reference model and the following estimates will
lead to a zero-order rotation curves against which rotation
curves arisen from charged haloes are going to be compared
in order to set bounds on the charge of the bosons in the next
section.

Resulting marginalized posteriors of the parameters are
shown in Figs. 2 and 3. Distributions for the second multi-
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Fig. 2 Marginalized posterior distributions for the parameters charac-
terizing the halo derived from the monopole of the neutral scalar field

12 14 16 00 01 02 03 04 05 06 0 1 2 3
Is P1 P3

Fig. 3 Marginalized posterior distributions for the parameters char-
acterizing the halo derived from the dipole of the neutral scalar field

Table 1 Estimates for the parameters of the multi-states yielding to
the density profiles of dark matter with dipole and monopole spatial
distributions respectively

Multipole Multistates Profile parameters ps[ Mo/ pc3 ] and ps[kpc]

A1 =029+0.13, p3=1.524£0.7
ry =13.67 % 1.6kpc
1 = 0.004 £0.0015, p3 = 0.078%9
re = 2903 kpc

Dipole 1,3

Monopole 1,3

state are omitted since it turns out to be needless to fit the
rotations curves. Best-fitting parameters for each instance are
summarized in Table 1.

An interesting outcome from these results is that haloes
produced by spherical solutions are smaller than those arisen
from dipole solutions. Since multi-state solutions are denser
for the dipole scalar than the monopole ones. These fact
should be taken into account when one is aiming to carefully
describe the shape and dynamics of SFDM haloes, since arbi-
trarily chosen spatial symmetries of the scalar configuration
could lead to different results. As we shall see in the next
section, the spatial symmetry of the scalar field importantly
affects the upper bounds to the charge ¢, in the case of the
monopole larger values of ¢ are allowed than for the dipole
solution. An explanation for this in physical terms is that the
dipole solution holds orbital angular momentum which has
a contribution to the magnetic field and hence, in order to
reproduce the rotation curves the charge must be cut down.

6 Bounds of the boson charge from F563-V2 rotation
curves data

6.1 The method

Our main goal now is to estimate the order of magnitude of
the charge of the boson ¢ such that predictions of the rota-
tion curves remain inside the error bars of rotation curves (1o
of confidence level) and at the same time the resulting mag-
netic fields lay in a range of micro-Gauss. In other words, the
question here is: what is the maximum allowed value of ¢,
such that the corresponding theoretical curves lay inside the
1 — o resolution of rotation curves data? Since stellar rota-
tion curves in galaxies provide a measurement of the New-
tonian gravitational potential well produced by DM, the cut-
off g provides limit from which the gravitational interaction
remains ~“flawless” owing to EM interaction between bosons,
as far as data is able to resolve. In other words it quantifies the
extent in which the strength of the bosonic electromagnetic
coupling affects the number density, and consequently the
rotation curves of stars and gas traveling along the potential
well detectable so far for the instance of F563.

Figure 4 shows theoretical rotation curves arisen either
from monopolar and dipolar scalar solutions corresponding
to F563 for different values of ¢ laying well inside the 1o
confidence region of data.

In addition, the magnitude of the total magnetic fields pro-
duced by the system of bosons run from 1 — 10uG at the
galactic plane. Although these magnetic fields decay within
radii of few parsecs in the galactic disc, notice from the first
equation in system (22) that the coupling to S vanishes at
0 = m/2 and hence the module of the magnetic fields is
expected to take its minimal values at the disc. We also veri-
fied this numerically. Therefore larger values of the magnetic
fields would be measured in regions off the galactic plane for
larger regions.

We estimated the bounds on the charge of the bosons ¢
by using the Fisher matrix technique [56,57] which enables
one to estimate errors in terms of variations of theoretical
predictions with respect to the theoretical parameters and the
observational errors. Consider the theoretical predictions of a
set of observables §2; within a parametrized set of models by
a set of parameters P;. An estimator of the covariance matrix
of such quantity around the fiducial model with parameters
Po; is given by the inverse of the Fisher matrix whose com-
ponents are computed as

Z 1 082, 082,

T = _ =4
Y o2 dP; AP;

(37)

a

where o, is the observational Gaussian error associated to
£2,. In our case, the observables are different data points of
the rotation curves and the fiducial model is given by those of
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Fig. 4 Rotation curves derived from the coupled system of scalar and
EM field equations. Upper panel show rotation curves derived from the
monopole solution while the lower panel corresponds to the dipolar
scalar configuration. Parameters characterizing the density profile of
dark matter are those of the pivot neutral model and the value of the
charge as indicated in plot labels

the pivot model and ¢ = 0. Thus, according to this method,
an estimation for the error of ¢ would be given by

—1/2

1 AV(ri) AV () 38)

- U‘z/i Aq Agq

O'q=

where %ﬁ;") are computed using the coupling values ¢ which

push the rotation curves to the 1o limit and oy, is the corre-
sponding error bar of the ith point. The resulting estimates
of g corresponding to different sorts of scalar configurations
are summarized in Table 2.

Notice that the theoretical rotation curves decrease as the
charge increases. A qualitative explanation for this to happen
is the following: as the charge of bosons increases, they repel
from each other producing a decrease in the density described
by |®|%. The rotation curves of low-surface-bright galaxies
are signatures of the depth of the gravitational potential well
of dark matter mainly, therefore, if the density of dark matter
decreases it is expectable that the rotation curves do as well.

@ Springer

Table 2 Bounds of the charge of the bosons required to the rotation
curves to lay inside the 1o confidence region of F563 data

Multipole Bound
Monopole 145 x 10713 ¢
Dipole 328 x 1071e

7 Discussion and conclusions

In this work we consider the hypothesis that dark matter
haloes are BEC made of charged bosons with mass around
10722 eV modeled as classical scalar field configurations
which are able to explain not only the rotation curves and
the shape of the galaxies but furthermore galactic magnetic
fields arisen from them.

At first approximation, we show that when the classical
coupling constant between the scalar and electromagnetic
fields takes tiny values lower than ~ 10~!3 times the charge
of the electron, by holding specific boundary conditions, the
scalar configuration produces magnetic fields at the galactic
centre with magnitude of ~ G like those typically observed
in galaxies.

In general, the scalar and electromagnetic field equations
are coupled, as a consequence their solutions used here to
model the density profiles of charged boson haloes might
able to alter the rotation curves of galaxies in comparison to
those arisen from neutral configurations. However for bosons
holding charge values below the bound derived here, both
predictions of the rotation curves are indistinguishable by
data since they remain inside the 1o confidence region. Of
course, this result may change for other galaxies and more
precise data in the future, nevertheless we probe the extent of
sensitivity of data to the charge parameter and furthermore
we show that it is possible that cCSFDM is able to produce
primordial magnetic fields ~ uG. Also, further research will
be needed in order to determine whether other phenomena
comes out from this sort of dark matter and other constraints
for this coupling are to be imposed by testing predictions of
other cosmological and astrophysical observables.

In order to model such dark matter haloes we used the clas-
sical system of KGM coupled equations with local U (1) sym-
metry providing a minimal coupling between the EM fields
and the scalar current. We carried out an harmonic decompo-
sition of our variables given the symmetries of our physical
system and that the system of equations hold small non-linear
terms involving weak EM fields. We study the simplest spa-
tial distributions of density profiles of the scalar field, that
is, spherical and dipole configurations. Dipole-like solutions
are physically interesting in order to take into account rotat-
ing scalar configurations that are able to produce magnetic
fields as a non vanishing macroscopic dipole as a bound-
ary condition arising due to vorticity phenomena in the halo.
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According to a qualitative analysis of the equation governing
the magnetic potential, cuspy scalar fields at the centre and
large magnitudes of the boson charge can give rise to com-
plex behavior of the magnetic potential while small values
of these quantities turn into monotonic solutions. We solved
numerically the KGM system by setting, as boundary con-
dition, the central magnetic potential as that of a magnetic
dipole formed by spinning bosons around a fixed circle, by
now we fitted the size of such circle in order to obtain mag-
netic field around pG. Further research about vorticity phe-
nomena within cSFDM model will provide information in
order to better set these boundary conditions in the future.

Afterwards we took, as a case of study, the F563 galaxy
with spherical morphology and low-superficial-brightness
which are desirable features of a dark-matter dominated sys-
tem. We took density profiles corresponding to neutral scalar
solution as pivot or fiducial models in order to fit the rota-
tion curves F563 and compare them to those arising from
¢SFDM models in order to derive a bound ¢ for the charge
of the bosons such that the rotation curves start to be indistin-
guishable provided the data. We estimate this error by using
the Fisher matrix method. Spherical and dipolar scalar con-
figurations lead to different rotation curves and the bound
of g for the former is larger than the latter for one order of
magnitude.

The main conclusion of this work is therefore, that in the
case of galaxy F563, a spherical(dipolar) dark matter halo
made of cSFDM bosons with charge ~ 10~ Be(~ 107 14¢)
is able to generate ©G magnetic fields and at the same time
to predict the observed rotation curves.
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