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Abstract
We rewrite the Klein–Gordon equation in an arbitrary space-time transforming it into
a generalized Schrödinger equation. Then, we take the weak field limit and show that
this equation has certain differences with the traditional Schrödinger equation plus a
gravitational field. Thus, this procedure shows that the Schrödinger equation derived
in a covariant manner is different from the traditional one. We study the KG equation
in a Newtonian space-time to describe the behavior of a scalar particle in an inertial
system. This particle is immersed in a gravitational field with the new Schrödinger
equation. We study particular physical systems given examples for which we find
their energy levels, effective potential and the wave function of the systems. The
results contain the gravitational effects due to the curvature of space-time. Finally, we
discuss the possibility of the experimental verification of these effects in a laboratory
using non-inertial reference frames.

Keywords Intertial frame · Boson · Quantum effects · Weak graviational ·
Equivalence principle · Klein–Gordon · Generalized Schrödinger · Inertia ·
Experimental orbiting lab
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1 Introduction

In the last century, General Relativity (GR) and Quantum Mechanics (QM), the two
pillars of modern physics, have been developed and verified independently with great
precision, while quantum physics describes successfully the behavior of tiny particles,
GR is very accurate for forces at cosmic scales. However, in some cases, the two
theories produce incompatible results which give rise to different definitions for the
same concept. We think the inconsistency between GR and QM owes to the concept
of interaction between particles. In QM two particles interact when they exchange a
virtual particle, while in GR the interaction is just due to the geometry of space-time.
In this work, we adopt the geometrical GR concept, instead of the exchange of virtual
particles, to test if a boson gas follows the Klein–Gordon equation in a curved space-
time [1], and to test GR in the quantum regime. These results could be useful either
for laboratory particles as well as for the study of the quantum character of boson
particles proposed as dark matter (see for example [2,3]).

An important problem in theoretical and fundamental physics is not to have aTheory
of Everything where the principal theories in physics, GR and QM, can be compat-
ible. In the last decades, some theories have been proposed [4,5] to this unification.
Nevertheless, the experimental verification of these candidates and their theoretical
problems are so far too complex. Several physicists have tried to test if gravity has a
quantum nature with different proposals for experiments and observations [6,7], but
some proposals are not feasible with the technology available to this day. We do not
pretend to propose a new Theory of Everything, instead, we want to give a new dif-
ferent way to measure the gravitational effect due to the curvature of space-time on
quantum systems, especially on scalar particles. These results do not definitely prove
if gravity is or not a quantum interaction but they present a closer path to answer this
fundamental question.

Einstein Equivalence Principle (EEP), one of the foremost ideas for developing
General Relativity, where the concept of inertia takes a different role from the one used
in Newtonian mechanics. EEP states that within a closed laboratory freely falling in a
uniform gravitational field, experiments would be indistinguishable from a laboratory
in a state of uniformly accelerated motion. All these dynamical experiments yield the
same results as obtained in an inertial state of uniform motion unaffected by gravity.
[8] [9] [10] Hence, we use this principle to develop this work, studying some different
examples of QM on an inertial frame immersed in a gravitational field. To measure
these effects in a laboratory, we will place a quantum system on a non-inertial frame,
hoping to get the same results both in the theoretical part and in the experimental one.
Furthermore, we expect to obtain results on quantization as in QM. Thus, one of the
objectives of this paper is to test the EEP in quantum scales. Thus, a proof of GR on
a quantum scale.
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Wewould expect that there exists a regime where gravity aspects on a quantum sys-
tem are detectable.With a simple dimensional analysis wemay have an idea where the
gravitational effects on a quantum system are important, i.e. the physical scale where
these effects can be observed. It is possible to compare two well-known quantities in
QM and GR, which are the Bohr radius rbohr and the Schwarzschild radius rsch. Both
radii are defined as rbohr = �/(μcα) and rsch = 2GM/c2 where c, G, α are the speed
of light, the gravitational constant and the fine-structure constant, respectively. Also
� = h/2π is the Planck’s constant, and M is the mass that produces the gravitational
field, whileμ is the reduced mass of a couple of particles. In a case where the compar-
ison between masses is such that M >> m, it leads us to the approximation μ ≈ m,
wherem is the mass of a boson particle, which is inside a gravitational field generated
by a source of mass M . Thereby, the following expression is obtained when both radii
rbohr ∼ rsch are comparable

M ∼ �c

2Gαm
= m2

pl

2αm
≈ 3.25 × 10−14

m
kg2, (1)

where mpl = √
�c/G is the Planck’s mass. This result was inspired by the micro

black holes described in [11] and it enables us to find the limit for measuring quantum
gravitational effects. If we assume m = me is the mass of an electron, we obtain that
M ∼ 3.57 × 1016kg is the mass for which a particle with the electron mass should
feel a gravitational effect. On the other hand, the mass of Earth is ∼ 5 × 1024kg,
namely, we should measure in Earth the quantum gravitational effects on an electron.
Although, we consider an electron as a test particle, due to it is a standard mass
measurement. If it can feel these gravitational quantum effects with this dimensional
analysis, we also think other heavier particles feel them, like alpha particles whose
mass is 6.64 × 10−27kg. Thus, for these particles M ∼ 4.9 × 1012kg. However,
experimentally, to measure only the gravitational effects on a quantum system, and
not other interactions as electromagnetic, it would be better to use neutral or scalar
particles, as they can be either neutron or alpha systems. Now, if we consider the mass
of an ultralight scalar particle ∼ 10−22eV/c2, the mass proposed in models of Scalar
Field Dark Matter (SFDM) [2,3], we calculate from Eq. (1) that M ∼ 1012M� (the
galaxies have amass of this order). Thus, we can say, if darkmatter is a scalar fieldwith
mass m ∼ 10−22eV/c2 [2,3], the galaxy should present a quantum behavior because
here, SFDM obeys the KG equation. Therefore, we study well-known examples of
QM for scalar particles with corrections due to the curvature of space-time.

We start from theKGequation in curved space-time for finding amethod to compare
the eigenvalues with and without space-time curvature. However, there exist previous
works about the solutions for the KG equation in Schwarzschild background space-
time [12,13]. Authors on [12] give a numerical analysis for a free mass particle into the
KG equation in a Schwarzschild background space, then they add the approximation
for the standard hydrogenic modified radial wave functions.

On the other hand, authors on [13] find an exact solution for the same problem on
[12] by the Liouville-Green method. If we want to add different potentials, we need
to use an approximation method but this proposed solution, here, is only valid for a
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free particle in a Schwarzschild background space, which has the like-hydrogen atom
problem.

Nevertheless, to consider distinct potentials, as usually inQMproblems, it would be
needed to do a similarwork of the authors on [12,13] for each different problem.While,
we consider the gravitational effects as perturbations of these systems. Furthermore,
we use the perturbation theory as in QM to solve our generalized Schrödinger equation
that is deduced in the next chapter. Thus, we can give a comparisonway to the solutions
into a flat and curved space-time with an external potential, where in some cases the
external potential will be the perturbation of the gravitational solution and in others
taking gravitational effect as a perturbation of the system with an external potential.

2 Generalized Schrödinger equation

In order to analyze the gravitational effect due to curvature of space-time in a quantum
system, we focus on a scalar field following reference [14], in which the KG covariant
equation with an external potential is described

�� − dV

d�∗ = 0, (2)

here � = gμν∇μ∇ν = 1√−g
∂μ(

√−ggμν∂ν) is the D’Alembertian operator associ-

ated to an arbitrary metric gμν , now � = �(t, x) is the scalar field, �∗ = �∗(t, x) is
its conjugated complex and the scalar field potential is V = V (�,�∗) endowed with
an external potential V just as it is shown in the following equation

V =
(
m2c2

�2
+ λn0

2
+ 2m

�2
V

)
��∗, (3)

where m is the mass of the scalar field and n0 = n0(t, x) is defined as the scalar field
density, namely n0 = |�|2. The factor in front of the third term is due to dimensional
analysis, with that we return to the standard Schrödinger equation, as we see below.
With this analysis we could find some other potential forms of higher order, never-
theless we did not take into account these expressions because their contributions are
smaller than the linear term. On the other hand, the space-time is expanded in 3+1
slices, such that the coordinate t here is the parameter of evolution, the 3+1 metric
then reads

ds2 = −N 2c2dt2 + γi j

(
dxi + Nic dt

) (
dx j + N jc dt

)
, (4)

N represents the lapse function which measures the proper time of the observers
traveling along the world line, Ni is the shift vector that measures the displacement
of the observers between the spatial slices and γi j is the spatial metric.

The KG equation is a covariant equation whose origin lies in quantum field theory.
Wecanobtain aSchrödinger equation, starting fromEq. (2)with the potential inEq. (3),

123



Weak gravitational quantum effects in boson particles Page 5 of 19    50 

using themetric in Eq. (4) and transforming the scalar field by�(t, x) = 	(t, x)e−iωt .
Following [14] we obtain

i∇0	 − 1

2ω
�G	 + 1

2ω

(
m̃2 + λn0 + 2m

�2
V

)
	

+1

2

(
− ω

N 2 + i �G t
)

	 = 0, (5)

being λ the coupling parameter. Here ω = mc2/� is the characteristic frequency of
the scalar field. The D’Alembertian operator is �G = ∇μ∇μ, which are associated
to the metric in Eq. (4), and m̃ stands for the mass in units where c = � = 1,
i.e, m̃ = m2c2/�

2 (see [14]). We can interpret the function 	 as a wave function
analogously as in QM.

This generalized Schrödinger equation (SE) is relevant because we can study it in
an arbitrary frame, since it was obtained in a covariant manner. In some limits we can
return to the traditional SE as we will see below.

Beginning with Eq. (2) but now using the 	 variable, we obtain Eq. (5) using the
3+1 metric (4) and the potential (3). Equation (5) can be interpreted as the covariant
generalization of the Schrödinger equation for any curved space-time, (see [15] and
[14]) where this equation in the weak field limit reduces to the standard Schrödinger
one.

Hereafter, we use the Newtonian geometry given by the Newtonian metric

ds2 = −
(
1 − 2GM

rc2

)
c2dt2 +

(
1 + 2GM

rc2

)
dxidx

i , (6)

Newtonian gravity is known to be valid when the gravitational fields are weak, that is
GM/rc2 << 1. Using the Newtonian metric in Eq. (5) yields

�
2

2m
�N	 +

(
1 + 2U

c2

)−1 (
i�

∂	

∂t
+ mc2

2
	

)

− �
2

2m

(
m̃ + n0λ + 2m

�2
V

)
	 = 0, (7)

where U = −GM/r is the gravitational potential, hither the D’Alembertian operator
�N is related to the metric given by Eq. (6). Furthermore, we do not consider self-
interaction, here the contribution of the term λ is negligible.

Additionally, terms of equal or greater order than

(
2U

c2

)2

can be ignored. With all

this in mind, the linearization of the generalized Schrödinger Eq. (7) gives rise to the
following equation

− �
2

2m
∇2	 + V	 +mU	 +

(
2U

c2
V − 2�

2U

mc2
∇2

)
	 = i�

∂	

∂t
− �

2

2mc2
∂2	

∂t2
. (8)
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Henceforth, we are going to work with the Laplacian operator ∇2 = ∇ · ∇ in flat
space, specially for the examples in the following chapters where we use spherical
symmetry. In other words, Eq. (8) comes from the KG equation in a curved space-time
immersed in a weak gravitational field, which is described by a Newtonian geometry.

Focusing on the comparison of the traditional Schrödinger equation plus a gravita-
tional potential, we note that now there are two additional terms inside the parenthesis
in Eq. (8) for the spatial part. Furthermore, the time-dependence part in Eq. (8) has an
extra second derivative term in comparison to the standard Schrödinger equation in
QM. These termswere not simply added in the Schrödinger equation, they appear from
the covariant meaning of the equation. From a qualitative point of view, this means
that the QM version of the interactions between particles fulfills the Schrödinger equa-
tion, while the GR version of these interactions fulfills the generalized Schrödinger
Eq. (8). This difference is the main idea of this work. In what follows, we calculate the
quantum quantities for different external potentials of well-known problems in QM
and compare them with those corresponding to GR. For the subsequent chapters our
equation of motion will be given by Eq. (8).

We can solve the time-dependence of the Eq. (8) using the separation of variables
method, we can express the wave function as 	 = 	(xμ) = 	(t)	(xi ), for μ =
0, 1, 2, 3 and i = 1, 2, 3. Thus, we need to solve the following differential equation

i�
∂	(t)

∂t
− �

2

2mc2
∂2	(t)

∂t2
= E	(t). (9)

It is easy obtain a general solution to this differential equation, which can be
expressed as follows

	(t) = A exp(iω+t) + B exp(iω−t), (10)

where A and B are constants. Moreover �ω+ = mc2
(
1 − √

1 + 2E/(mc2)
)
and

�ω− = mc2
(
1 + √

1 + 2E/(mc2)
)
. Since, we want to return to the time-dependence

solution of the standard Schrödinger equation in certain limit. We use the Taylor’s
expansion when E << mc2 to find A and B. The wave-function 	(xμ) must be nor-
malized. Therefore, if we want to return to the traditional Schrödinger equation, as just
as, in QM, we impose A = 0 and B = 1. Note that the difference in time-dependence
part in our generalized Schrödinger equation does not affect the eigenvalues of the
generalized Schrödinger equation, it only contributes to the time part of wave function
as	(t) = exp(iω−t), instead of exp(−i Et/�). Nevertheless, we get back to QM case
taking the previously mentioned limit. The modification of the eigenvalues is due to
the extra terms in the spatial part of the Schrödinger equation.

With the goal of testing EEP in a quantum region, we are going to show in the
subsequent chapters distinct calculations about well-known examples in QM. In them,
the correction terms due to the curvature of space-time, which were introduced in the
KG covariant equation derived in Eq. (8), are going to appear. To compare the cases
with and without a gravitational source, the extra terms in Eq. (8) will be taken as
perturbations in the Schrödinger equation, for this reason we decide to opt for the QM
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formalism, using perturbation theory to give a clearer comparison between the cases
with and without gravitational field. The results of the gravitational field contribution
have been well studied in the standard literature [16–18].

3 Free particle

Firstly, we consider a free scalar particle with mass m under the influence of a gravi-
tational field generated by a source of mass M . Using an external potential Vfree = 0
in the equation of motion (8), we have that

− �
2

2m
∇2	 + mU	 − 2�

2U

mc2
∇2	 = E	, (11)

we recall that the gravitational potential is defined by U = −GM/r and that an

extra term −2�
2U

mc2
∇2	 appears in the Schrödinger equation, although the treatment

on these equations will be in the QM formalism. Using perturbation theory from the
previous equation, we can write a principal Hamiltonian operator Ĥ0 and a perturbed
Hamiltonian operator Ĥp in the following way

Ĥ0	 = − �
2

2m
∇2	 + mU	 = − �

2

2m
∇2	 − GMm

r
	, (12)

Ĥp	 = −2�
2U

mc2
∇2	 = 4U

c2
(E (0)

n − mU )	. (13)

In general, to find the corrections to eigenvalues of energy due to a perturbation in
QM, the following expression is used

En = E (0)
n + 〈ψ(0)

n |Ĥp|ψ(0)
n 〉 +

∑
m 
=n

|〈ψ(0)
m |Ĥp|ψ(0)

n 〉|2
E (0)
n − E (0)

m

+ ..., (14)

we can associate the Eq. (14) as a series of contributions of higher order correction of
energies En = E (0)

n + E (1)
n + E (2)

n + ..., where E ( j)
n is the j th-order correction of the

eigenvalues in the nth-state of energy, hencewe can say that the first-order correction is
given by E (1)

n = 〈ψ(0)
n |Ĥp|ψ(0)

n 〉. The zero-order correction for eigenvalues of energy
E (0)
n and the eigenfunctions are the well-known exact solutions of standard QM [16–

19]. Equation (14) gives the correction for a non-degenerated quantum system, though
first-order correction is valid for both cases (degenerate and non degenerate systems).
We do not present an expression for the second order correction in a degenerate system
because the corrections we make are at most of first-order. Nevertheless, such a case
can be found in standard QM textbooks.

Going back to our example of a free scalar particle inside a gravitational field, the
first order correction of energy using the perturbed Hamiltonian from the hydrogen
atom-like problem in QM is
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En ≈ E (0)
n

(
1 − 4GM

ρ0c2n2
+ ...

)
,

= E (0)
n

(
1 + 8E (0)

n

mc2
+ ...

)
, (15)

being E (0)
n the well known energy for the hydrogen atom, that is

E (0)
n = − (GM)2m3

2�2n2
= −GMm

2ρ0n2
, (16)

where ρ0 = �
2/(GMm2) is the Bohr radius for the gravitational case. Thus, we expect

that the gravitational field modifies the energy of a free particle in a quadratic level,
suppressed by the rest energy of the boson particle. This result is surprising for an
ultra-light dark matter boson [2,20], because this model postulates a boson particle
with a mass of the order of 10−22eV/c2. With such a mass the self-gravitation effects
of the boson field are important in a system of particles, a feature that a heavy boson
system does not present.

4 Isotropic harmonic oscillator

Another important example, not only in QM but in physics as a whole, is the study of
the harmonic oscillator potential. With this in mind, we analyze the case of potential
Vosc for an isotropic harmonic oscillator. This analysis can be done in two ways. The
first one is to start from Eq. (8) with the principal potential given by the gravitational

type U = −GM/r and taking the isotropic harmonic oscillator Vosc = 1

2
mω2

0r
2

as perturbation. The other way is to regard the principal Hamiltonian as that of an
isotropic harmonic oscillator, while the perturbation is taken from the gravitational
potential. Therefore, Eq. (8) with the potential Vosc, transforms into

− �
2

2m
∇2	 +mU	 + 1

2
mω2

0r
2	 +

[
2U

c2

(
1

2
mω2

0r
2
)

− 2�
2U

mc2
∇2

]
	 = E	. (17)

4.1 Harmonic oscillator inside a gravitational field

We start with the first cases exposed previously, we suppose that one has an isotropic
harmonic oscillator immersed in a gravitational field, thatmeans, Vosc << U . To solve
this problem we can take the principal Hamiltonian operator Ĥ0 with the gravitational
part and the perturbed Hamiltonian Ĥp in the following way

123



Weak gravitational quantum effects in boson particles Page 9 of 19    50 

Ĥ0	 = − �
2

2m
∇2	 − GMm

r
	, (18)

Ĥp = 1

2
mω2

0r
2 − GMmω2

0r

c2
− 4GME (0)

n

rc2
. (19)

We are interested in the wave function with spherical symmetry	 = 	(t, r , θ, φ).
Thus, we apply the separation of variables method for 	 = Rnl(r)Yl j (θ, φ)	(t),
where 	(t) is the solution in Eq. (10), Yl j are the spherical harmonics and Rnl(r) is
the radial function for the hydrogen atom problem. Here n, l, and j play the role of
quantum numbers as in QM. The Ĥ0 Hamiltonian contains the well-known solutions
of the eigenvalues from the hydrogen atom problem in terms of the recurrence relation
for powers of r . It can be shown that the correction for first order of energy from
Eq. (14) is given by

En =E (0)
n

[
1 − 8E (0)

n

mc2
− ω2

0ρ
2
0

c2
(3n2 − l(l + 1))

]

+ 1

4
mω2

0ρ
2
0

[
n2(5n2 + 1 − 3l(l + 1))

]
, (20)

where E (0)
n is given by Eq. (16). Note that if ω0 = 0, we return to the case of a free

particle on a gravitational field. Observe that as in the previous case, the modifications
due to the gravitational field are of second order, but now, an additional term is added,
which is proportional to the mass and the frequencyω0. In this case, the second term of
the contributions of the perturbations of the gravitational potential due to the harmonic
oscillator are negligible for ultra-light masses. Nevertheless, if it is a massive boson,
then the quadratic contributions are not important. In any case, for any boson mass
there is a contribution of the harmonic oscillator that must be taken into account.

4.2 Gravitational field inside harmonic oscillator

On the other hand, assuming the gravitational field as a perturbation in an isotropic
harmonic oscillator with spherical symmetry, the principal Hamiltonian operator Ĥ0
is given by

Ĥ0	 = − �
2

2m
∇2	 + 1

2
mω2

0

[(
r − GM

c2

)2

−
(
GM

c2

)2
]

	,

≈ − �
2

2m
∇2	 + 1

2
mω2

0r
2	 − 1

2
mω2

0

(
GM

c2

)2

	. (21)

Since the quantum system is far from the source, it is possible to do the previous
approximation. For the perturbed Hamiltonian Ĥp we have

Ĥp = −GMm

r
+ 4GME (0)

n

rc2
. (22)
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The principal Hamiltonian is that of an isotropic harmonic oscillator with spher-
ical symmetry whose eigenfunctions are well known from QM. These solutions
are obtained after applying the separation of variables method, just as in the pre-
vious case 	nkl j (t, r , θ, φ) = Rkl(r)Yl j (θ, φ)	(t), where 	(t) is the solution in
Eq. (10). Here Rnl(r) is the radial function for an isotropic harmonic oscillator

Rkl(r) = rle−γ r2L(l+1/2)
k (2γ r2), with γ = mω

2�
and Lp

q (x) being the generalized

(or associated) Laguerre polynomials. The set (n, k, l, j) become the quantum num-
bers for the isotropic harmonic oscillator with spherical symmetry from QM.

Thus, the first order correction for the energy from Eq. (14) is given by

En = �ω0

(
n + 3

2

)
− 1

2
mω2

0

(
GM

c2

)2

− GMm

[
1 + 4E (0)

n

mc2

] 〈
1

r

〉
, (23)

where E (0)
n = �ω0

(
n + 3

2

)
is a well-known result from QM. Also note that there is

a degeneration of these numbers since n = 2k + l. A more general solution of

〈
1

r

〉

was found in [21], that for the case we are discussing reduces to the expression

〈
1

r

〉
=

√
mω0

�
�(l + 1)

[
1

2
(n − l − 1)

]
!

×
∑
t

(−1)t

[1/2(n − l − 1) − t]!�(1/2(2l + 1) + t + 1)

(−1/2

t

)2

, (24)

where �(z) is the Gamma function �(z) = ∫ ∞
0 t z−1 exp(−t)dt . When only the first

term is taken from the sum of Eq. (24), we obtain the energy value

En = �ω

(
n + 3

2

)
− 1

2
mω2

0

(
GM

c2

)2

− GMm

√
mω0

�

[
1 + 4E (0)

n

mc2

]
�(l + 1)

[
1

2
(n − l − 1)

]
!. (25)

Note that ifG = 0,we return to the solution for an isotropic harmonic oscillatorwith
spherical symmetry without gravitational field. It is peculiar that the Schwarzschild
radius rsch is obtained in a very natural way.

We are going to take typical experimental values for the case of a harmonic oscillator
[22]. If we use a frequency of the order of ω0 ∼ G Hz,the order of the mass m = me

that is the electron mass, and a total mass of the gravitational body M ∼ 1016 kg,
we obtain that the dominant term of the first order energy correction is ∼ 10−5E (0)

osc

in the Eq. (25), while other contributions are of much lower order < 10−9E (0)
osc. We

can conclude that an experiment for a harmonic oscillator with these values could be
feasible in a laboratory.
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The two cases we have analyzed in this section are extreme, and correspond to those
where the gravitational field is much more intense than the harmonic oscillator and
vice-versa. The case where the two potentials are comparable is much more complex
and we leave it for a future work.

5 Infinite spherical well

In this sectionwe continue discussingwell-known examples fromQMwith the novelty
of the presence of a gravitational field. We now deal with the problem of an infinite
spherical well barrier Vinf(r) that has two regions, this problem is commonly used in
experimental verification or applications of QM. The barrier potential is given by

Vinf(r) =
{
0 if 0 < r < a,

∞ otherwise.
(26)

We are only interested in studying the region where 0 < r < a, since outside of
this region the wave function is zero, thus the probability to find a particle in the r > a
is null. The equation of motion (8) in the region of interest is

− �
2

2m
∇2	 + mU	 − 2�

2U

mc2
∇2	 = E	 (27)

We can choose a principal Hamiltonian operator Ĥ0 from the motion equation,
where

Ĥ0	 = − �
2

2m
∇2	 = E (0)	. (28)

The zero-order correction of the energy is then E (0)
ln = �

2

2m

q2ln
a2

. We can define the

perturbed Hamiltonian Ĥp from the KG equation

Ĥp = −GMm

r

(
1 + 4E (0)

mc2

)
. (29)

The first-order correction of the energy E (1) can be calculated using the zero-order

correction of the eigenfunction 	
(0)
nlk(r , θ, φ) = Aln jl

(qln
a
r
)
Yl j (θ, φ). Here qln is

n-th root of theBessel spherical functions jl(x) andAln is the constant of normalization

A2
ln = 2

a3[jl+1(qln)]2 . (30)

Therefore,

E (1)
ln = −GMm

(
1 + 4E (0)

mc2

) 〈
1

r

〉
, (31)
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where, from perturbation theory we have

〈
1

r

〉
= A2

ln

∫ a

0

∣∣∣jl
(qln
a
r
)∣∣∣2 rdr . (32)

Unfortunately, it is not possible to solve the last integral with analytic methods,
thus we will integrate it numerically. In general, there exists for each state n = 2l + 1
degeneration, thus for l = 0, we have that j0(x) = sin(x)/x , whose n-th root is
q0n = nπ and the normalization’s constant is A01 = √

2/a. Hence

〈
1

r

〉
≈ 2a

π2 (1.218). (33)

Now, for l = 1 the first excited state is three-fold degenerate, which means we

need the first three roots of j1(x) = sin(x)

x2
− cos(x)

x
. The roots are q11 ≈ 4.49340,

q12 ≈ 7.72525 and q13 ≈ 10.90412.
Therefore for n = 1 〈

1

r

〉
≈ A2

11

(
a

q11

)2

(0.4124), (34)

for n = 2 〈
1

r

〉
≈ A2

12

(
a

q12

)2

(0.4590), (35)

and for n = 3 〈
1

r

〉
≈ A2

13

(
a

q13

)2

(0.4778). (36)

We can continue this process for the next excited states, as in the previous cases. If
we make G = 0, we return to solutions for QM without gravitational field.

Using the typical experimental values [23] for a particle with an electron mass
confined in an infinite well barrier of width a ∼ 10nm, it is possible to obtain that
E (0)
inf ∼ 10eV. The dominant term in Eq. (31) is ∼ 10−5E (0)

inf for the first-order correc-

tion of energy, and the other term in this correction is < 10−20E (0)
inf .

6 Spherical potential barrier

The problem of square well potential with certain symmetry (spherical, cartesian or
cylindrical) is important for some experiments of quantum systems. In this section,
we study a square well barrier with spherical symmetry. Similarly as in the previous
sections, we analyze the case of QM for a square well potential with space-time
curvature. We use the Newtonian metric from Eq. (6), so the equation of motion
Eq. (8) transforms into

− �
2

2m
∇2	 + mU	 + VB

(
1 + 2U

c2

)
	 − 4U

c2
�
2

2m
∇2	 = E	, (37)

123



Weak gravitational quantum effects in boson particles Page 13 of 19    50 

where again U = −GM/r is the gravitational potential. We take the Laplacian oper-
ator ∇2 in spherical coordinates and the potential VB as

VB(r) =
{−U0 if r < a,

0 if r > a,
(38)

Thus, from Eq. (37) we can identify a principal Hamiltonian operator Ĥ0

Ĥ0	 = − �
2

2m
∇2	 + VB	 = E (0)	. (39)

The perturbed Hamiltonian Ĥp can be defined from Eq. (37)

Ĥp = −GMm

r

(
1 + 4E (0)

mc2
− 2VB

mc2

)
(40)

In general, we can find the fist-order correction of energy from Eq. (14) with the
perturbed Hamiltonian operator in Eq. (39). This yields

E (1) = −GMm

(
1 + 4E (0)

mc2
− 2VB

mc2

)〈
1

r

〉
. (41)

The case where E < 0 shows the quantum nature of the system due to the fact that
the energy spectrum is discrete. Potential VB defines naturally two regions, Region I
(r < a) and Region I I (r > a). Both regions without gravitational field are well-
known. For Region I the first-order correction of energy E (1)

I is given by

E (1)
I = −GMm

(
1 + 4E (0)

I

mc2
+ 2U0

mc2

) 〈
1

r

〉
I
, (42)

where the zero-order correction of the eigenvalue is E (0)
I = �

2

2m
(γln)

2 and the zero-

order correction eigenfunction reads 	ln j (r , θ, φ) = Rln(r)Ylp(θ, φ). As usual,
Ylp(θ, φ) are the spherical harmonic functions and Rln(r) = Aln jl(γlnr) is the radial
solution, such that jl(x) are the spherical Bessel functions. Also k1 = γln is the n-th
solution of the transcendental equation due to the boundary and continuity condition
given by

1

h(1)
l (ik2r)

dh(1)
l (ik2r)

dr
|r=a = 1

jl(ik1r)

djl(ik1r)

dr
|r=a . (43)

For l = 0, it reduces to the transcendental equation

− k2 = k1 cot(k1a). (44)
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In the limit |E | << U0, we return to the solution for the first root. When l = 0
we recover the same result as in the last section, namely k1a ≈ π/2. In general for
Region I, we need to integrate

〈
1

r

〉
I

= A2
ln

∫ a

0

∣∣∣jl
(σln

a
r
)∣∣∣2 rdr , (45)

where σln = aγln . If we define the parameter η = σln/qln that compares the n-th
solution of the transcendental equation with the n-th root, we see that when η = 1 we
return to case of Sect. 5. However, the solution of this integral should be calculated
using numerical methods.

In Region I I , the zero-order correction is given by

E (0)
I I = �

2

2m
(γ ∗

ln)
2 = �

2

2M

(
σ ∗
ln

a

)2

, (46)

where we have introduced the new parameters σ ∗
ln = aγ ∗

ln , and η∗ = γ ∗
ln/qln .

The first-order correction is similar to that of Region I

E (1)
I I = −GMm

(
1 + 4E (0)

I I

mc2

) 〈
1

r

〉
I I

, (47)

with the eigenfunction	ln j (r , θ, φ) = Rln(r)Yl j (θ, φ). Nevertheless, the radial func-

tion has a new form Rln(r) = Bh(1)
l (iγ ∗

lnr) = Bjl(iγ
∗
lnr) + i Bnl(iγ ∗

lnr), where B is

a constant of normalization, h(1)
l (x) are the spherical Hankel functions of the first

kind, nl(x) are the spherical Neumann function and k2 = γ ∗
ln is the solution of the

transcendental Eq. (43). Therefore

〈
1

r

〉
I I

=B2
∫ ∞

a

∣∣∣h(1)
l

(
iγ ∗

ln

)∣∣∣2 rdr
=B2

∫ ∞

a

(∣∣jl(iγ ∗
lnr)

∣∣2 − ∣∣nl(iγ ∗
lnr)

∣∣2) rdr . (48)

We observe that outside the finite potential barrier the wave function attenuates as
it occurs in standard QM.

The solution of this perturbation is the most general one, and if we want to solve the
previously integral, we need to set every parameter for a specific case. As expected, just
like in the previous cases, if G = 0 we return to the solutions without a gravitational
field.

7 Finite spherical well

Other important and fundamental well-known problem in standard QM is to analyze
a finite barrier potential. In our case we study the problem with spherical symmetry,
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instead of the typical one-dimensional solutions [16–19]. The principal issue in this
problem is the analysis of the tunneling effect, which is produced because the potential
VT (r) has three regions. In the regions where there is not a finite potential could be
observed the tunneling effect, which is the transmission of the wave function between
these regions. The spherical finite potential VT (r) can be read as

VT(r) =
⎧⎨
⎩
0 if r < a,

U0 if a < r < 2a,

0 if r > 2a,

(49)

where U0 > 0 and a > 0, we can divide in three regions where the potential affects.
The first region for 0 < r < a, the second region for a < r < 2a, and the third region
is for 2a < r . We again use the Newtonian metric from Eq. (6), and we transform
Eq. (8) with the potential (49). Thus, the non-perturbed Hamiltonian H0 is given by

Ĥ0	 = − �
2

2m
∇2	 + VT	 = E (0)	. (50)

Furthermore, we can identify the perturbed Hamiltonian as

Ĥp = −GMm

r

(
1 + 4E (0)

mc2
− 2VT

mc2

)
, (51)

we can calculate the first order correction, as we just saw before

E (1) = −GMm

(
1 + 4E (0)

mc2
− 2VT

mc2

)〈
1

r

〉
. (52)

Thus, we need to solve three differential equationswith the corresponding boundary
conditions for each case of the eigenvalues equation with the non-perturbed Hamilto-
nian which are given by

∇2	
(0)
I = −k2I	

(0)
I , (53)

∇2	
(0)
I I = −k2I I	

(0)
I I , (54)

∇2	
(0)
I I I = −k2I I I	

(0)
I I I , (55)

where I , I I , I I I denoted each region, the Laplacian has a spherical symmetry.
Moreover, k2I = 2mE (0)

I /�
2, k2I I = 2m(U0 − E (0)

I I )/�
2 and k2I I I = 2mE (0)

I I I /�
2.

We can write the solution to zero order of the wave function as 	(0)(r , θ, φ) =
R(0)
pl (r)Yl j (θ, φ), where Yl j are the harmonic spherical functions, and Rpl is the radial

function for each region. The boundary and continuity conditions are given by
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R(0)
I (r = a) = R(0)

I I (r = a), (56)

R(0)
I I (r = 2a) = R(0)

I I I (r = 2a), (57)

1

R(0)
I

dR(0)
I

dr
|r=a = 1

R(0)
I I

dR(0)
I I

dr
|r=a, (58)

1

R(0)
I I

dR(0)
I I

dr
|r=2a = 1

R(0)
I I I

dR(0)
I I I

dr
|r=2a, (59)

where R denoted the radial function in each region. With the boundary and continuity
conditions we can solved the radial solutions as follows

R(0)
I = Apl jl(αplr) + Bplnl(αplr), (60)

R(0)
I I = Cpl jl(βplr) + Dplnl(βplr), (61)

R(0)
I I I = Epl jl(γplr) + Fplnl(γplr), (62)

where Apl , Bpl , Cpl , Dpl , Epl , Fpl , and Gpl are complex scalars which are used to
normalize the wave functions. Furthermore, αpl , βpl , and γpl are the solutions to
boundary and continuity conditions which are above. Moreover, jl (x) and nl (x) are the
spherical Bessel functions.

In addition, we can calculate the first order correction to the wave function where
we use the perturbation method, such correction is given by

|ψ(1)
i 〉 = |ψ(0)

i 〉 +
∑
k 
=i

〈ψ(0)
k |Ĥp|ψ(0)

i 〉
E (0)
i − E (0)

k

|ψ(0)
k 〉 (63)

here, the eigenvalues to zero-order are given for each region by E (0)
I = �

2m
α2
pl ,

E (0)
I I = �

2m
β2
pl and E (0)

I I I = �

2m
γ 2
pl . In fact, we note the solutions are numerical,

because the boundary conditions are transcendental equations. We can reduce the
problem to solve that equations and to give an expression for each region to 〈 j |r−1|k〉
to zero-order eigenvectors.

As we know, the tunneling effect is due to there exists a probability to find the
wave in the third region when E (0) < U0. The tunneling probability or transmission
probability T is the ratio of the transmitted intensity to the incident intensity. If we
take into account the correction to first order into the wave function, we can calculate
the tunneling probability as follows

T = |	tra |2
|	in|2 = |	(0)

tra + 	
(1)
tra |2

|	(0)
in + 	

(1)
in |2

, (64)
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the transmitted wave is related with the wave function at region III, and the incident
wave is related with the region I. Thus, the correction in both cases is of the same order.
Furthermore, we need to find the tunneling probability which is the ratio to quadratic
first order eigenfunctions. Hence, the contribution to the probability correction is
smaller than in the other problems showed in this paper. The energy values could be
measured at the same order as the other examples that we studied here.

8 Conclusions

Throughout this work, we studied the KG equation in a weak gravitational field for
different external potentials to understand the quantum effects of a boson gas on a
gravitational field. Typical examples of QM were analyzed featuring the addition of
space-time curvature (or gravitational effects). Starting from themost general equation
for bosons in Quantum Field Theory in curved space-times, we found a generalized
Schrödinger equation that is simply the KG covariant one. To solve the differential
equation, we identified, for the spatial part, the principal and perturbed Hamiltonian
operator in each case, and compared them with the well-known results in QM. For
the time-dependence part, we solved the differential equation taking account that
in the classical limit we needed to return to the solution in QM for the same case.
Each example was worked out on an inertial frame. This is an important aspect to
highlight due to the main idea of this work. We expect to obtain the same results when
gravitational effects aremeasured on a quantum system in the laboratory. This quantum
system (with scalar particles) will be on a non-inertial frame, where we predict that
the Einstein equivalence principle gives us a correspondence between experimental
and theoretical results.

These results let us find the limit, where we could measure gravitational effects on
a boson system, namely 2αmM/m2

pl ∼ 1. For this analysis, we could be able to apply
our results in micro black holes scale [11]. For example, if we consider a mass of a
scalar particle m as the mass of the electron, we obtain that the gravitational mass M
that affects the electron by quantum gravitational effects is∼ 1016kg. In the sameway,
a M ∼ 1012kg could affect an alpha particle. We want to relate the theoretical and
experimental results. This connection can be done bymeans of the EEP comparing the
repercussions of a boson system into an inertial frame with gravitational interaction
and into a non-inertial frame without gravitational field.

As a consequence, if we think on the easiest non-inertial frame, we could think
on a rotating system, for which there would not be a real mass M , but rather an
effective mass given by angular frequency �, where �2 = GM/r3 into a Newtonian
approximation. Using a detector to r = 1 meter, the corresponding gravity can be
reached with a rotational wheel spinning with an angular frequency of � ≈ 1543
rad/s=245 rev/s for M ∼ 1016kg for electron mass, and � ≈ 19 rad/s=3 rev/s for
M ∼ 1012kg for the case of alpha particles. However, for a mass M ∼ M�, we would
need an angular frequency of � ∼ 109rev/s, to obtain relativistic effects.

Although, as a dimensional approximation, the previous analysis can be acceptable.
Nevertheless, we need to pay attention to other effects, such as the Coriolis force and
the centrifugal force (see for more detail on [24]) where we take a rotating frame
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F ′ with the angular velocity −� relative to the inertial frame F0. We can obtain the
Hamiltonian

H = 1

2m
(p̂ − m� × x)2 − 1

2
m(� × x)2, (65)

where the velocity V is, now, given by � × x.
Analyzing the typical experiments on a harmonic oscillator [22] and on an infinite

well barrier [25] for a particle with an electron mass, the correction due to the gravita-

tional effects has, in both cases, a dominant term which is given by GMm

〈
1

r

〉
. Taking

the typically values of an experimental result for the case of a harmonic oscillator with
frequency ω0 ∼ GHz and using the value for the mass M ∼ 1016kg with the domi-
nant term of the first-order correction of the energy, in this case is ∼ 10−5E (0)

osc from
Eq.(25), while other contributions in this equation are < 10−9E (0)

osc, we can conclude
an experiment for harmonic oscillator with these values could be feasible in a lab.
Furthermore, for a particle with an electron mass confined in an infinite well barrier
of width a ∼ 10nm, it is possible to obtain that E (0)

inf ∼ 10eV. The dominant term in

Eq. (31) is ∼ 10−5E (0)
inf for the first-order correction of energy, and the other term in

this correction is < 10−20E (0)
inf . With the technology today is possible to realize these

measurements.
Note that in either cases, the first-order corrections of energy have the same order if

we compare them with their zero-order counterparts. With this analysis, it is possible
to conclude that we can measure in a laboratory the effects of the quantization of a
weak gravitational field directly or using non-inertial systems.

We thought of a way to do experiments to verify the results presented in this work.
On the one hand, a rotating laboratory can be used, where the data is somehow sent
abroad. In the rotating laboratory we do the typical quantum exercises described here,
the rotation of the laboratory creates artificial gravity that we can modify by varying
the rotation frequency, using the approximations found in the previous discussion. On
the other hand, we must compare these with the results made by the same quantum
experiments, but which will be carried out in a research laboratory in Earth orbit [26],
where gravity is zero. We can then compare these three cases where non-inertial,
inertial and weak gravity frames of reference have been used. We hope to deliver
results in this direction one day.
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