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Abstract Using a generalized Madelung transformation,
we derive the hydrodynamic representation of the Dirac
equation in arbitrary curved space-times coupled to an
electromagnetic field. We obtain Dirac–Euler equations for
fermions involving a continuity equation and a first integral
of the Bernoulli equation. Comparing between the Dirac and
Klein–Gordon equations we obtain the balance equation for
fermion particles. We also use the correspondence between
fermions and bosons to derive the hydrodynamic representa-
tion of the Weyl equation which is a chiral form of the Dirac
equation.

1 Introduction

The Standard Model of elementary particles establishes that
there exist two kinds of particles, fermions and bosons. In
previous works [1,2], the energy balance for bosons was
derived starting from the general relativistic Klein–Gordon
(KG) equation. In the present work, we study a system of
fermions described by the Dirac equation in arbitrary curved
space-times taking into account electromagnetic effects. We
also use the Weyl equation which is a chiral form of the
Dirac equation due to the relationship between the Lie alge-
bras of the symmetry groups for both systems of particles.
We give the hydrodynamic representation of the Dirac and
Weyl equations for fermions using previous results obtained
for boson particles. This representation is built analogously
as in quantum mechanics (QM) and as in the bosonic case
[1], where it was introduced by the Madelung transformation
in order to find an alternative interpretation of a boson sys-
tem. This interpretation has been very useful in astrophysics

a e-mail: tonatiuh.matos@cinvestav.mx
b e-mail: omar.gallegos@cinvestav.mx (corresponding author)
c e-mail: chavanis@irsamc.ups-tlse.fr

[2]. In this article, we extend the previous transformation to
the fermionic case, in the same way we pretend to give an
alternative interpretation of the fermionic systems.

Many examples of fermion particles in strong gravita-
tional fields can be found in nature. Indeed, the curvature
of space-time plays an important role in a neutron star, in
the early Universe, or in a fermion cloud (e.g. a dark matter
halo) in the vicinity of a black hole. We need to develop a
general framework to identify what are the different energy
contributions in such systems. In this work we use the geo-
metrical decomposition of the metric in 3+1 slices and the
tetrad formalism to study the particle spin in an arbitrary
space-time. We define the gamma matrices in curved space-
times and derive the generalized Dirac and Weyl equations.
Then, using the Madelung transformation, we introduce a
hydrodynamic representation of the Dirac and Weyl spinors.
This hydrodynamic representation can help us to describe
the fermionic system in a general framework. We can high-
light that this description is convenient because it is easier
to make a physical interpretation, since the hydrodynamic
representation is given in some variable such as number of
particles, speed, potential or energy. In fact, a non-obvious
result is the energy balance equation, which is the first law
of thermodynamics, which comes from the Dirac equation
with the Madelung transformation for spinors. Although the
equations obtained from this representation are more com-
plicated than in the usual way, it can help us to have a closer
answer for interpretations of quantum theory, for example,
the de Broglie–Bohm interpretation [3–5]. In addition, we
can compare the hydrodynamics and energy balance in dif-
ferent frames for classical and quantum particles, as well as
spin and spinless particles, such as bosons and fermions.

Gravitational effects on quantum fields have been rigor-
ously studied for a few decades, particularly in the case of
spinor fields. Standard books such as [6–9] delve into the
mathematical structure of the spinor formalism. Spinor fields
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in curved space-times have been studied in several papers,
and we make a brief review of these works. In [10] the
authors develop the formalism of the Dirac equation in a
curved space-time coupled to an electromagnetic field. In
[11] the authors give the key to generalize the Dirac equation
from flat space-time to general relativity via the tetrad for-
malism with the Lorentz invariant transformation. In [12,13]
the authors study the quantum mechanics of the hydrogen
atom in a general relativistic context. In [12] the analog of
the Stark effect is considered with the center of mass formal-
ism. Paper [13] analyses the modifications in the eigenvalues
of the energy spectrum that arise due to the curvature of
space-time. Additionally, [14] compares the energy levels of
neutrinos and electrons in a curved space-time with spherical
symmetry, that is, the Schwarzschild metric. Moreover, the
authors study thermodynamical processes and the creation of
neutrino pairs. On the other hand, in paper [15] the authors
write the Dirac and Weyl equations for neutrinos in a Kerr
metric using the tetrad formalism and compare them with
the results obtained in a spherical metric without rotation.
We mentioned these references to place our work in a broader
context. There are specific points that we shall discuss deeply
in the next sections, one of them being the consistency con-
ditions for the continuity equation. More information about
the continuity equation can be found in [16–19].

This paper is organized as follows. In Sect. 2, we present
the field equations and the formalism that we will use to
describe the Dirac fermions in curved space-times. In Sect. 3,
we introduce a generalized Madelung transformation for
Dirac fermions, which implies a hydrodynamic representa-
tion for this case. Since, we can work using either the Dirac
or Weyl representation for 1/2-spin fermions. In Sect. 4, we
give a brief introduction to these both representations, fur-
ther it is shown the field equations for the Weyl fermions
(or the chiral form of the Dirac fermions). Analogously, for
Weyl fermions we introduce the hydrodynamic representa-
tion from a generalized Madelung transformation in Sect. 5.
For both kinds of fermions in Sect. 6, we explain what are
the different contributions of the energy for a Fermi gas in a
curved space-time coupled to an electromagnetic field and we
show a generalized Gross–Piitaevskii equation for fermions.
Moreover, the conclusions are indicated in Sect. 7. Finally,
in Appendix A, we can find a solution for a simple example
to the Dirac equation in a flat space-time.

2 Field equations

We start using the tetrad formalism for the space-time geom-
etry, and the canonical expansion of the space-time in a 3+1
ADM decomposition [9,20–24], such that the coordinate t is
the parameter of evolution. The 3+1 metric reads

ds2 = N 2c2dt2 − hi j
(

dxi + Nic dt
) (

dx j + N jc dt
)

,

(1)

where N represents the lapse function which measures the
proper time of the observers traveling along the world line,
Ni is the shift vector that measures the displacement of
the observers between the spatial slices and hi j is the 3-
dimensional slice-metric. In what follows i, j, k, l = 1, 2, 3
are the spatial indices; a, b, c = 0, 1, 2, 3 and μ, ν, α =
0, 1, 2, 3 the space-time indices. We write Eq. (1) in the
tetrad formalism as ds2 = ηabeaμe

b
νdx

μdxν , where ηab =
diag(1,−1,−1,−1). Here ea = eaμdx

μ is the set of one-
forms base of the cotangent space at the space-time manifold
given by

e0 = Ncdt,

ek = êki

(
dxi + Nic dt

)
, (2)

with inverse

e0 = 1

N

(
∂

c ∂t
− N j ∂

∂x j

)
,

ek = ê j
k

∂

∂x j
, (3)

where êk = êkidx
i are the one-form base to the three-

dimensional slice of the cotangent manifold, such that hi j =
δkl êki ê

l
j . We can also define the set of vectors base of the

tangent-space to the space-time as ea = e μ
a ∂μ, such that

eaeb = δab. We will use the tetrad formalism [7,9,22–25] to
describe the space-time geometry where the fermion parti-
cles are located.

The action of a fermion system in curved space-times cou-
pled to an electromagnetic field Aμ is given by S [ψ(xμ),

∂μψ(xμ)
] = ∫ L (ψ(xμ), ∂μψ(xμ)

)
d4x , where L =

L (ψ(xμ), ∂μψ(xμ)
)

is the Lagrangian density [16–18]:

L = √−g
i h̄c

2

[
ψ†Bγ μ

(
Dμψ

)− (
Dμψ

)†
Bγ μψ

+ 2imc

h̄
ψ†Bψ

]
. (4)

Here, Dμ = ∇μ + iq

h̄c
Aμ is the total covariant deriva-

tive accounting for electromagnetic effects. The covariant
derivative of a spinor ψ = (ψν̇) is given by ∇μ(ψν̇) =
∂μ(ψν̇)+	α̇

μν̇(ψα̇), where 	α̇
μν̇ is the spin connection [9,26].

Observe the internal indices as dot indices. Using the least
action principle it is possible to obtain from Eq. (4) the cor-
responding Dirac equation. This equation is given by
[
i h̄γ μ

(∇μ + iq Aμ

)− mc
]
ψ = 0, (5)

where h̄, c are the Planck constant and the speed of light
respectively, while q,m are the charge and mass of the
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fermion particle and ψ is its spinor. Besides, the gamma
matrices γ μ are related to the spin and space-time geometry.
They can be written as γ μ = eμ

a γ̃
a , where γ̃ a are the gamma

matrices in flat space-time, which are well-know from stan-
dard Quantum Field Theory (QFT) [27–29] Henceforth, to
simplify the notation, we use the natural units (c = h̄ = 1),
instance, mc/h̄ → m. Therefore,

γ 0 = N γ̃ 0,

γ k = êk j (γ̃
j + N j γ̃ 0). (6)

In general, these matrices fulfill the following anti-
commutation relation [6,9]

{γ μ, γ ν} = γ μγ ν + γ νγ μ = 2gμν
I, (7)

where gμν represents the metric that describes the space-time
geometry. Furthermore, as we know, the gamma matrices
in flat space-time are related to the Pauli matrices, which
describe the spin of the fermion particles. In addition, due to
the Lorentz invariance that spinors follow, we note that ψψ†

is not a Lorentz scalar and neither ψγ μψ† is a Hermitian.
On the other hand, we observe that, in general, the gamma
matrices obey the following relation [16–19]

(γ μ)† = Bγ μB−1, (8)

where B is a hermitian matrix, i.e. B† = B, that is uniquely
determined by the gamma matrices γ μ. As usual, we denote
by B† the conjugate (or Hermitian) transpose of B. In con-
trast, using Eq. (8) it is straightforward to obverse the invari-
ant quantities under the Lorentz transformation are ψψ̄ as
scalar and ψγ μψ̄ as a four-vector, where ψ̄ = ψ†B is named
the adjoint spinor (see more in [6,7,9,27]).

Furthermore, we note that in QFT the relation (8) is ful-
filled when B = γ̃ 0 and the gamma matrices are in flat space-
time. From the action (4) of the fermion system we can find
the equation for the transpose conjugated spinor by making
an infinitesimal variation of this action with respect to ψ .
Another way of getting this equation of motion is to take the
transpose conjugate of the Dirac equation (5) and using (8).
In this manner we find that the transpose conjugated Dirac
equation in curved space-time is given by

i
(∇μψ̄

)
γ μ −iψ†∇μ

(
Bγ μ

)+ iψ̄∇μγ μ

+ψ̄ Aμγ μ + mψ̄ = 0. (9)

We consider (∇μψ)† = ∇μψ† and denote the adjoint spinor
as ψ̄ = ψ†B. Using the gamma matrices in flat space-time
and the fact that B = γ̃ 0, we recover the definition of ψ̄ in
QFT and the transpose conjugated Dirac equation. However,
in an arbitrary space-time ∇μγ μ is distinct from zero, since
γ μ = eμ

a γ̃
a . Therefore, in general ∇μe

μ
a is non-zero.

We can get the conserved charge from the Noether theorem
[30]. The Dirac current is

Jμ = ψ̄γ μψ = ψ†Bγ μψ. (10)

To obtain the continuity equation

∇μ J
μ = 0, (11)

for the Dirac current, we take the covariant derivative of
Eq. (10). This gives

∇μ J
μ = (∇μψ̄)γ μψ + ψ̄

(∇μγ μ
)
ψ + ψ̄γ μ∇μψ. (12)

If we multiply the Dirac equation (5) by ψ̄ and its transpose
conjugate (9) by ψ and sum both equations, it follows that

∇μ J
μ = ψ†∇μ

(
Bγ μ

)
ψ. (13)

If we require that the continuity equation (11) is fulfilled,
i.e., that the number of particles is conserved, then we need
∇μ (Bγ μ) = 0, or equivalently

(∇μB)γ μ = −B∇μγ μ. (14)

At this point, we want to emphasize the consistency condi-
tions for the continuity equation (11). Some authors in [14]
impose ∇μγ ν = 0 while others, [13], impose ∇μB = 0.
These conditions are independent of each other. Instead, in
references [17,18], the authors conclude that the condition
∇μ(Bγ ν) = 0 is the most convenient because it is implied
by ∇μγ ν = 0 and ∇μB = 0.

In addition, we can note that the matrix B can be obtained
for a general metric (1) by solving the differential equation
(
∇0(BN ) + ∇ j (Bê

j
i N

i )
)

γ̃ 0 − ∇ j (Bê
j
i )γ̃

i = 0, (15)

which follows from Eq. (14). Using the condition (14), it is
possible to rewrite the transpose conjugated Dirac equation
(9) as

i
(∇μψ̄

)
γ μ + iψ̄∇μγ μ + ψ̄ Aμγ μ + mψ̄ = 0. (16)

In order to find the conserved quantity resulting from the
continuity equation, we take an arbitrary surface S enclosing
the volume V which contains the whole system. Let k j be an
orthonormal vector to S such that∫

V
∇μ J

μdV =
∫

V
∇0 J

0dV +
∫

S
k j J

j
√
hd3x = 0. (17)

where h is the determinant of the slice-metric hi j . We assume
that far away from the source spinor ψ goes to zero, that
means that in this region Jμ is negligible. Then, the surface
integral in Eq. (17) vanishes, and we obtain

dQ

dt
=
∫

V
∇0 J

0dV = 0, (18)

where Q = ∫
V J 0dV is the conserved charge, dV is the

curved volumen elementdV = √−gd4x . In QFT this charge
is identified with the number of fermions or with the electric
charge of the system. In flat space-time we have B = γ̃ 0,
so that J 0 = ψ†ψ = n represents the number density of
fermion particles. In curved space-time J 0 (which is deter-
mined by γ 0 and by the generalized gamma matrices) has a
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different interpretation. The form of B given by Eqs. (8) and
(14) for each metric is related to the gamma matrices and to
the tetrad formalism.

Finally, since the spinor field used is coupled to an elec-
tromagnetic field, we show the equations that describe the
electromagnetic field. Thus, with the Maxwell four-potential
we can define the Faraday tensor

Fμν = ∇μAν − ∇ν Aμ. (19)

In the electromagnetic theory, the Faraday tensor Fμν satis-
fies the Maxwell field equations

∇νF
νμ = J Eμ, (20)

where J Eμ is the four-electromagnetic current.
At this point, we gave the most general form for standard

Dirac fermions in an arbitrary framework coupled to an elec-
tromagnetic field. In fact, for quantities like B and γ μ we
have not yet adopted any representation. Nevertheless, we
will have to make this decision to give some examples and
results in the sections below.

3 Dirac hydrodynamic representation

Analogously to the hydrodynamic representation of the
Schrödinger equation, which was introduced by Madelung
[31], we derive the hydrodynamic representation of the Dirac
equation. We carry out the following generalized Madelung
transformation for each component of the spinor ψ = ψ(xμ)

as follows

ψ = exp(iθI)R, (21)

where I is the identity matrix, R is a spinor and θ is a com-
plex function. Observe that the spinor ψ has eight degrees
of freedom and the spinor R exp(iθI) has ten. A similar sit-
uation appeared for the case of the boson case, where the
scalar field � = � exp(iθ) has two degrees of freedom and
the right hand side has three. This extra degree of freedom is
interpreted as the velocity potential. Here it will be a similar
situation. In what follows we will denote θI → θ , unless it is
specify. For the case where we consider a Dirac electron-like
fermion, θ = θ(xμ), the spinor ψ reads

ψ =

⎛
⎜⎜⎝

R1̇
R2̇
R3̇
R4̇

⎞
⎟⎟⎠ exp(iθ) = R exp(iθ), (22)

where we use the notation μ̇, ν̇, . . . = 1̇, . . . , 4̇ for the spinor
indices such that

R =

⎛
⎜⎜⎝

R1̇
R2̇
R3̇
R4̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

√
n1̇√
n2̇√
n3̇√
n4̇

⎞
⎟⎟⎠ . (23)

where we will use nμ̇ = |Rμ̇|2, here nμ̇ is the number density
which represents the modulus of ψμ̇ and θ is its phase (both
are complex variables). In general, nμ̇ is different for each
component of the spinor. Note that the covariant derivative of
the spinor ψ in terms of its decomposition (22) is ∇μ(ψν̇) =
∂μ(Rν̇eiθ ) + 	α̇

μν̇(Rα̇eiθ ) = (∂μRν̇ )eiθ + i(∂μθ)Rν̇eiθ +
	α̇

μν̇(Rα̇eiθ ), implying that ∇μθ = ∂μθ . In the Appendix, we
show some exact solutions of the Dirac equation with this
ansatz in flat space-time.

Using the transformation (22) in Eq. (5), the Dirac equa-
tion in terms of the variables R and θ reads

exp(iθ)γ μ
(
i∇μR − (∇μθ)R − q AμR − m

4
γμR

)
= 0.

(24)

To get the last term, we used the property of the gamma
matrices that γμγ μ = 4I, where I is the 4×4 identity matrix.
This property results from the anti-commutation relation of
the gamma matrices.

Similarly, the continuity equation (11) with (10) can be
written with these new variables as
(
∇μR

†
)
KμR + R†Kμ

(∇μR
) = 0, (25)

where R† denotes the conjugated transpose of R and Kμ =
Bγ μ. Observe that Kμ is hermitian (Kμ† = Kμ).

Summarizing, we have introduced the Madelung transfor-
mation for the Dirac equation (24) and the continuity relation
(25) by making the change of variables from Eq. (21). With
this new form to write the Dirac equation, we can introduce
variables that have a more plausible physical interpretation
in quantum theory.

To see this, we apply the operator iγ μDμ = iγ μ∇μ −
qγ μAμ to the Dirac equation (5) written under the form
iγ μ∇μψ = qγ μAμψ + mψ . This yields

−γ μγ ν
(
∇μ∇νψ + iq(∇μAν)ψ + iq Aν(∇μψ)

+iq Aμ(∇νψ) − q2AμAνψ
)

−m2ψ − γ μ(∇μγ ν)(∇νψ + iq Aνψ) = 0. (26)

Using the relation (7) in Eq. (26), we obtain

�Eψ + m2ψ + i

2
qγ μγ νFμνψ + γ μ(∇μγ ν)(Dνψ) = 0,

(27)
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where we have defined the D’Alambertian operator in the
presence of an electromagnetic field by �E = (∇μ +
iq Aμ)(∇μ + iq Aμ) and the anti-symmetric Faraday ten-
sor by Fμν = ∇μAν − ∇ν Aμ. Equation (27) is similar to
the Klein–Gordon equation with an electromagnetic source
except that here ψ is a spinor instead of a complex scalar field.
Note that the first two terms in (27) are the Klein–Gordon
equation, but the the electromagnetic field and the spinorial
character of the equation add two more terms. The difference
here is that if you “square” the Dirac equation in flat space-
time, you obtain the Klein–Gordon equation, for an arbitrary
curved space this does not happen. The last term of Eq. (27)
contains the covariant derivative of γ μ which vanishes in a
flat space-time.

As for the Klein–Gordon equation [1,2], we define the
diagonal matrix 4-velocity vμ by

mvμ = ∇μS + q AμI. (28)

Here, S(xμ) is a phase with components S = (θ − ωt)I,
where ω are constants that can be related to the mass of the
fermion particle by ω = mc2/h̄. In this manner we can write

∇μθI = mvμ − ωδ0
μI − q AμI. (29)

We interpret nν̇ as the density number of fermions and
vμ as its velocity. In what follow we denote ω → ωI unless
otherwise stated. Additionally, we will show that Eq. (24) can
be interpreted as the first integral of the Bernoulli equation
for fermions in an arbitrary space-time. For doing so, we
will use this new interpretation using variables nν̇ and vμ in
the Dirac equation, instead of ψ in order to write a Navier–
Stokes-like equation for fermions, in the same way a it was
done for bosons in [1]. Then, we will see that Eq. (25) can be
interpreted as the generalized first integral of the Bernoulli
equation in the sense that, for obtaining the Navier–Stokes-
like equation, we need to differentiate Eq. (24).

According to [1,2] if we apply the transformation (21) to
Eq. (27), we could expect to obtain the continuity equation
for the imaginary part and the Bernoulli equation for the real
part. However, in the case of the Dirac equation, the four com-
ponents are mixed by the presence of the four dimensional
spinor ψ . Hence, we obtain the following expression

i
[
2(mvμ − ωδ

μ
0 )∇μR − q Aμ + q∇μ(AμR)

+∇μ(mvμ − ωδ
μ
0 − q Aμ)R

]

+
(
m2vμvμ + 2mωv0 + ω2

N 2 + m2
)
R − �R

+ i

2
qγ μγ νFμνR + γ μ(∇μγ ν)

(i(mvν + ω∇ν t)R + DνR) = 0. (30)

Here, we have defined � = ∇ν∇ν . For bosons, the real and
imaginary parts are separated into two independent equa-
tions, namely, the continuity equation and the Bernoulli equa-

tion [1,2]. But in the spinor case, the last line of Eq. (30) mixes
both the imaginary and real parts and there is no natural sep-
aration into real and imaginary parts. The system remains
coupled.

4 Weyl representation

The Dirac equation for 1/2-spin particles is associated with
the SO(1, 3) symmetry group. Nevertheless, we can intro-
duce a new representation as in standard QFT, since there
exists a surjective homomorphism between the SO(1, 3) and
SU (2) ⊗ SU (2) Lie groups.

As we know, the special unitary group SU (2) is formed by
the set of 2×2 complex matrices A, which satisfy det(A) = 1.
Explicitly, we have

A =
(
a −b̄
b ā

)
, (31)

with det(A) = |a|2 + |b|2 = 1, where a and b are complex
parameters. Equivalently, we have the identity A† = A−1.

The Lie algebra su(2) associated to the SU (2) Lie group
is given by the exponential map

exp(su(2)) → SU (2). (32)

For any element X of the Lie algebra, we have exp(X) exp(X)† =
I, implying that X + X† = 0. In what follows, we will indis-
tinctly use exp(X) and eX as the exponential map.

In terms of the Pauli matrices σμ the 4×4 gamma matrices
γ μ can be written as two 2 × 2 block matrices

γ 0 = N γ̃ 0 = N

(
0 I

I 0

)
, (33)

γ j = ê ji (γ̃
i + Ni γ̃ 0)

=
(

0 −ê ji (σ̃
i − Ni

I)

ê ji (σ̃
i + Ni

I) 0

)
, (34)

where σ̃ i are the 2 × 2 Pauli matrices in flat space-time

σ̃ 1 =
(

0 1
1 0

)
, σ̃ 2 =

(
0 −i
i 0

)
, σ̃ 3 =

(
1 0
0 −1

)
,

(35)

and I is the 2 × 2 identity matrix. The γ μ matrices satisfy(
γ 0
)† = γ 0 and

(
γ j
)† = −γ j + 2N jγ 0/N . At this point,

we need to adopt the standard representation for the gamma
matrices in a flat space-time γ̃ μ as follows

γ̃ 0 =
(

0 I

I 0

)
, γ̃ j =

(
0 −σ̃ j

σ̃ j 0

)
. (36)

This representation helps us to build the Weyl representation.
Additionally, in the Weyl representation we can write a Dirac
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fermion as a four-spinor ψ made of two spinors, each of
which having two components, for instance

ψ =
(

ψR

ψL

)
, (37)

where ψR and ψL are the right- and the left- handed Weyl
spinors, respectively. If we write the adjoint spinor ψ̄ and use
the Weyl representation, it follows that

ψ̄ = ψ†B =
(
ψ

†
R, ψ

†
L

)
B, (38)

where B is the matrix from Eqs. (8) and (14). If we use the
relation (8) it is straightforward to see that the matrix B must
have the following form

B =
(

0 Bζ

Bζ 0

)
, (39)

where the 2 × 2 matrix Bζ is a diagonal matrix, Bζ = bI,
with b = b(xμ). Therefore, we get B = bγ̃ 0 and Eq. (15)
transforms into

∇0(Nb) + ∇ j (ê
j
i N

ib) = 0, (40)

∇ j (ê
j
i b)σ̃

i = 0. (41)

Note that in Eq. (40), we assume also a representation to
B matrix. Adopt a specific representation for the symmetry
group, which is done without loss of generality. In fact, it
shall make this choice to build the Weyl fermions and its
field equations. Hence, using the definition of the spinor and
its adjoint we can write the Dirac quadricurrent Jμ from
Eq. (10) as

Jμ =
(
ψ

†
R, ψ

†
L

)
Bγ μ

(
ψR

ψL

)
, (42)

where the gamma matrices are defined by Eqs. (33) and (34)
and, in general, B is given by the previously mentioned con-
ditions. This yields

J 0 = Nb(ψ†
RψR + ψ

†
LψL), (43)

J j = bê ji (ψ
†
R(σ̃ i + Ni

I)ψR − ψ
†
L(σ̃ i − Ni

I)ψL). (44)

In order to simplify the notation, we now define the vectors of
2×2 matrices Sa = (I, σ̃ j +N j

I) and S̄a = (−I, σ̃ j −N j
I)

in terms of the Pauli matrices. Sa and S̄
a are the (general-

ized) Pauli matrices in flat space-time. In terms of these new
definitions, the density currents read

Jμ = bêμ
i (ψ

†
RS

iψR − ψ
†
L S̄

iψL)

= b(ψ†
RσμψR − ψ

†
L σ̄ μψL), (45)

where we have defined the 2 × 2 Pauli matrices in a curved
space-time by σμ = eμ

aS
a and σ̄ μ = eμ

a S̄
a . With this defi-

nition, the matrices γ j read

γ j =
(

0 −σ̄ j

σ j 0

)
. (46)

Furthermore, observe that the σ j matrices follow the same
commutation relations as the flat space-time Pauli matrices.
This means that [σ i , σ̄ j ] = −êik ê

j
l [σ̃ k, σ̃ l ]. For the Weyl

representation we have to obtain two equations for each Dirac
fermion. Thus, we need to redefine the covariant derivative
∇μ and the spinor affine connection 	μ [26] [32], which can

be written as ∇μ = ∂μ + 	μ and 	μ = 1

4
σ̄νσ

ν
;μ, where

σ
μ

;ν = ∂νσ
μ + 	

μ
ανσ

α . Nevertheless, in this representation
we need to introduce two other notations due to the presence
of σ̄ μ. Let ∇̄μ and 	̃μ be the bar covariant derivative and the
bar spinor affine connection, respectively, defined by ∇̄μ =
∂μ + 	̃μ, where 	̃μ = 1

4
σνσ̄

ν
;μ (we stress that we use the

greek indices for denoting the objects in curved space-time
as the gamma and Pauli matrices).

We can now apply the Weyl representation to rewrite the
Dirac equation (5) for a spinor with four components as(
iσμ

(∇̄μ + iq Aμ

)
ψR − mψL

i σ̄ μ
(∇μ + iq Aμ

)
ψL − mψR

)
=
(

0
0

)
. (47)

These are the Weyl equations for a spinor in a curved space-
time coupled to an electromagnetic field. If we apply the Weyl
representation to the transpose conjugated Dirac equation
(16), it is straightforward to obtain the Weyl equation for the
adjoint spinor (38). However, we shall not write the adjoint
spinor equation explicitly because the results are analogous to
the spinor equation as we have seen in the previous sections.

If we set B = bγ̃ 0, the current density now reads

Jμ = b
(
ψ

†
RσμψR − ψ

†
L σ̄ μψL

)
. (48)

Explicitly, we have for the spatial part

J j = bê ji

(
ψ

†
R σ̃ iψR − ψ

†
L σ̃ iψL + Ni

Nb2 J
0
)

. (49)

On the other hand, the last line of Eq. (30) can be obtained
from the identities

γ μγ νFμνψ =
{

(2NNkF0k + i F̂i jεi j k σ̃ k)ψR

−(2NNkF0k − i F̂i jεi j k σ̃ k)ψL
, (50)

and using definition (46), we find that

γ μ(∇μγ ν)(Dνψ)

=
{−S̄

a
S
b(∇̂aêν

b)(DνψR)

−S
a
S̄
b(∇̂aêν

b)(DνψL)

=

⎧⎪⎪⎨
⎪⎪⎩

(N (∇0N ) − σ̄ j (∇ j N ))(D0ψR) + (N (∇0σ
i )

−σ̄ j (∇ jσ
i ))(DiψR)

(N (∇0N ) + σ j (∇ j N ))(D0ψL) − (N (∇0σ̄
i )

−σ j (∇ j σ̄
i ))(DiψL)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∇̂0N − S̄
k(∇̂k N ))(D0ψR) + (Sk∇̂0êik

−S̄
k
S
l∇̂k êil ))(DiψR)

(∇̂0N + S
k(∇̂k N ))(D0ψL) − (S̄k∇̂0êik

−S
k
S̄
l(∇̂k êil ))(DiψL),

(51)
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where εi j k is the usual Levi-Civita tensor, F̂i j = êli ê
m
j Flm

is the directional Maxwell tensor F̂i j = (êli ∇̂ j − êlj ∇̂i )Al ,

and ∇̂a = êα
a∇α is the directional covariant derivative which

defines the Cartan connection ∇̂cêν
b = 	a

bcê
ν
a . The Cartan

connection 	a
bc = êaν ∇̂cêν

b determines the Cartan first funda-
mental form dêa + 	a

b ∧ êb for the connections 	a
b = 	a

bd ê
d

with the property that 	ab + 	ba = 0, where 	ab = ηad	
d
b .

In this section, we have introduced the field equations
for Weyl fermions using the relation with the Dirac fermion
equations. Moreover, we assume a certain representation for
the symmetry Lie group to describe the Weyl spinors. In the
next section, we will use the field equations found here to get
a hydrodynamic representation as in the Dirac spinor case.

5 Weyl hydrodynamic representation

We now have all the ingredients to propose a hydrodynamic
representation for the Weyl fermions, following the same
procedure as the one developed for the Schrödinger and KG
equations in Refs. [1,2].

We start to propose our Madelung transformation in the
Weyl spinor, using the exponential map, that is

ψ =
(

ψR

ψL

)
=
(
RR

RL

)
eiθ . (52)

Since ψR and ψL are two spinors, we observe that RR and RL

are two two-dimensional vectors. The Weyl representation of
the adjoint spinor ψ̄ when B = bγ̃ 0 is

ψ̄ = b
(
ψ

†
R, ψ

†
L

)
γ̃ 0 =

(
R†
R, R†

L

)
e−iθ . (53)

As in Sect. 3, we use RL and RR as complex two-spinors
and θ as a complex function. Therefore, using the Madelung
transformation (52) in the Weyl equations (47) and applying
the Lie algebra and the Lie group, we can get the following
expression

(−σμ
(∇̄μθ

)
RR + iσμ

(∇̄μRR
)− qσμAμRR

−σ̄ μ
(∇μθ

)
RL + i σ̄ μ

(∇μRL
)− qσ̄ μAμRL

)

=
(
mRL

mRR

)
. (54)

These are the Weyl equations in curved space-time with the
Madelung transformation. We can also apply the Madelung
transformation (52) and (53) to the current density (48),
thereby obtaining

Jμ = b
(
R†
R σ̄ μRR − R†

LσμRL

)
. (55)

Its components are

J 0 = Nb(R†
R RR + R†

L RL) = Nbn, (56)

J j = b
(
ê j3(n1̇ − n2̇ − n3̇ + n4̇)

+ 2ê j1(
√
n1̇n2̇ − √

n3̇n4̇) + ê ji N
in
)

. (57)

We note that the zero component, where n = ∑4̇
ν̇=1̇ nν̇ is the

density number of fermions in the system, gives the number
of both right- and left-handed particles. We can write the
following expressions |ψR |2 = ψ

†
RψR = R†

R RR = nR and

|ψL |2 = ψ
†
LψL = R†

L RL = nL for the right- and left-handed
spinors, as in the Dirac case. Thus, nR , nL are the right- and
left- handed particle number and n = nR + nL is the total
density number.

Furthermore, Eq. (30) using the Weyl representation,
which has been discussed in this section, it becomes

i
[
2(mvμ − ωδ

μ
0 )∇μRR − q Aμ + q∇μ(AμRR)

+∇μ(mvμ − ωδ
μ
0 − q Aμ)RR

]

+
(
m2vμvμ + 2mωv0 + ω2

N 2 + m2
)
RR − �RR

+(2NNkF0k + iεl j k F̂l j σ̃
k)RR

+(N (∇0N ) − σ̄ j (∇ j N ))((mv0 − ω)RR + D0RR)

+(N (∇0σ
k) − σ̄ j (∇ jσ

k))(imvk RR + Dk RR) = 0.

(58)

A similar equation is obtained for the left-handed spinor RL

with the substitution R −→ L and S ←→ S̄ in Eq. (58).
Simplifying the first line in this equation for ν̇ = 1, 2 corre-
sponding to right-handed components, we get

i
m√
nν̇

[
− ω

m
∇0nν̇ + ∇μ(nν̇v

μ) + ω

m
�t
]

+√
nν̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
nν̇√
nν̇

]

+(2NNkF0k + iεl j k F̂l j σ̃
k)RR

+ − (∇̂aê
α
b )S̄aSb((mvα − ωδ0

α)RR + DαRR) = 0.

(59)

The equation for the left-handed components ν̇ = 3, 4 is
obtained by changing RR −→ RL and S ←→ S̄. Note that,
although in Eq. (59) the first line is multiplied by i , we cannot
consider the separation between the real and imaginary part,
since from the Madelung transformation (21) we assume R
and θ as complex parameters. Additionally, the first line of
Eq. (59) represents the hydrodynamic part of the fermionic
fluid. The second line in Eq. (59) is written the Bernoulli
equation. In this respect, we note that Eq. (24) is the first
integral of this equation. Then, the last lines of Eq. (59 are
the source of the fermionic fluid, something that is not present
in the case of bosons. This is because the Dirac equation was
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introduced [33] in order to eliminate the negative probability
problem of the KG equation. As a result, the Dirac equation
involves only first derivatives while the KG equation is a sec-
ond order equation. We will identify the terms in Eq. (59) as
terms of the first law of thermodynamics in the next section.

Writing explicitly each component of Eq. (59), we can
obtain for ν̇ = 1̇:

i
m√
n1̇

[
− ω

m
∇0n1̇ + ∇μ(n1̇v

μ) + ω

m
�t
]

+√
n1̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
n1̇√
n1̇

]

= i
[
F12

√
n1̇ + F23

√
n2̇

−2	a
21((mv̂a − ωδ̂0

a)
√
n1̇ + D̂a

√
n1̇)

]

−2i(	a
21N

1 − 	a
32N

3 + 	a
20 + 	a

32)

×((mv̂a − ωδ̂0
a)

√
n2̇ + D̂a

√
n2̇)

+2N (F01N
1 + F02N

2 + F03N
3)

√
n1̇ − F13

√
n2̇

+
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+	a
33(1 − (N 3)2)2	a

31N
1 + 2	a

32N
2 − 	a

00 + 2	a
30

]

×((mv̂a − ωδ̂0
a)

√
n1̇ + D̂a

√
n1̇)

+(−2	a
21N

2 − 2	a
31N

3 + 2	a
10 + 2	a

31)

×((mv̂a − ωδ̂0
a)

√
n2̇ + D̂a

√
n2̇), (60)

for ν̇ = 2̇:

i
m√
n2̇

[
− ω

m
∇0n2̇ + ∇μ(n2̇v

μ) + ω

m
�t
]

+√
n2̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
n2̇√
n2̇

]

= i
[−F12

√
n2̇ + F23

√
n1̇

+2	a
21((mv̂a − ωδ̂0

a)
√
n2̇ + D̂a

√
n2̇)

]

+2i(	a
21N

1 − 	a
32N

3 + 	a
20 − 	a

32)

×(mv̂a − ωδ̂0
a)

√
n1̇ + D̂a

√
n1̇)

+2N (F01N
1 + F02N

2 + F03N
3)

√
n2̇ + F13

√
n1̇

+
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+	a
33(1 − (N 3)2 )

+ −2	a
31N

1 − 2	a
32N

2 − 	a
00 − 2	a

30

]

×((mv̂a − ωδ̂0
a)

√
n2̇ + D̂a

√
n2̇)

+(−2	a
21N

2 − 2	a
31N

3 + 2	a
10 − 2	a

31)

×((mv̂a − ωδ̂0
a)

√
n1̇ + D̂a

√
n1̇), (61)

for ν̇ = 3̇:

i
m√
n3̇

[
− ω

m
∇0n3̇ + ∇μ(n3̇v

μ) + ω

m
�t
]

+√
n3̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
n3̇√
n3̇

]

= i
[
F12

√
n3̇ + F23

√
n4̇

−2	a
21((mv̂a − ωδ̂0

a)
√
n3̇ + D̂a

√
n3̇)

]

+2i(	a
21N

1 − 	a
32N

3 + 	a
20 − 	a

32)

×((mv̂a − ωδ̂0
a)

√
n4̇ + D̂a

√
n4̇)

+2N (F01N
1 + F02N

2 + F03N
3)

√
n3̇ − F13

√
n4̇

+
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+	a
33(1 − (N 3)2)

+ −2	a
31N

1 − 2	a
32N

2 − 	a
00 − 2	a

30

]

×((mv̂a − ωδ̂0
a)

√
n3̇ + D̂a

√
n3̇)

+(2	a
21N

2 + 2	a
31N

3 − 2	a
10 + 2	a

31)

×((mv̂a − ωδ̂0
a)

√
n4̇ + D̂a

√
n4̇), (62)

and for ν̇ = 4̇:

i
m√
n4̇

[
− ω

m
∇0n4̇ + ∇μ(n4̇v

μ) + ω

m
�t
]

+√
n4̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
n4̇√
n4̇

]

= i
[−F12

√
n4̇ + F23

√
n3̇ + 2	a

21

× ((mv̂a − ωδ̂0
a)

√
n4̇ + D̂a

√
n4̇)

]

−2i(	a
21N

1 − 	a
32N

3 + 	a
20 + 	a

32)

×((mv̂a − ωδ̂0
a)

√
n3̇ + D̂a

√
n3̇)

+2N (F01N
1 + F02N

2 + F03N
3)

√
n4̇ + F13

√
n3̇

+
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+ +	a
33(1 − (N 3)2)

2	a
31N

1 + 2	a
32N

2 − 	a
00 + 2	a

30

]

×((mv̂a − ωδ̂0
a)

√
n4̇ + D̂a

√
n4̇)

+(2	a
21N

2 + 2	a
31N

3 − 2	a
10 − 2	a

31)

×((mv̂a − ωδ̂0
a)

√
n3̇ + D̂a

√
n3̇), (63)

where we have used that 	ab + 	ba = 0 and defined the
directional quantities va = vα êα

a , δ̂0
a = δ0

α ê
α
a = Nδ0

a and
D̂a = êα

a Dα .
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Observe that the structure of Eqs. (60)-(63) is

i
m√
nν̇

[
− ω

m
∇0nν̇ + ∇μ(nν̇v

μ) + ω

m
�t
]

+√
nν̇

[
m2vμvμ + 2mωv0 + ω2

N 2 + m2 − �√
nν̇√
nν̇

]

= i
[
e1ν̇F12

√
nν̇ + F23

√
nν̈

−2e1ν̇	
a
21((mv̂a − ωδ̂0

a)
√
nν̇ + D̂a

√
nν̇ )

]

−2i(	a
21N

1 − 	a
32N

3 + 	a
20 + e2ν̇	

a
32)

×((mv̂a − ωδ̂0
a)

√
nν̈ + D̂a

√
nν̈ )

+2N (F01N
1 + F02N

2 + F03N
3)

√
nν̇ − e1ν̇F13

√
nν̈

+
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+ 	a
33(1 − (N 3)2)

+ 2e2ν̇ (	
a
31N

1 + 	a
32N

2 + 	a
30) − 	a

00

]

×((mv̂a − ωδ̂0
a)

√
nν̇ + D̂a

√
nν̇ )

+(−2e3ν̇ (	
a
21N

2 + 	a
31N

3 − 	a
10) + 2e1ν̇	

a
31)

×((mv̂a − ωδ̂0
a)

√
nν̈ + D̂a

√
nν̈ ), (64)

where the coefficients ei ν̇ are ±1 with e1ν̇ = (+,−,+,−),
e2ν̇ = (−,+,−,+) and e3ν̇ = (+,+,−,−), and the sub-
index ν̈ are the conjugate of the sub-index ν̇, such that 1̈ = 2̇,
2̈ = 1̇, 3̈ = 4̇ and 4̈ = 3̇. In comparison with the boson case,
we cannot separate them in real and imaginary part. Due to,
the generalized transformation, that we assume, has complex
parameters. Therefore, we shall work with the full equations,
which are more complicated than the standard equations for
fermions in curved space-time, that themselves are compli-
cated. An advantage for the hydrodynamic representation,
that we found, is to give directly an interpretation of quan-
tum theory through the De Broglie–Bohm interpretation.

6 Energy balance

From Eq. (59), we can identify the different energy contri-
butions to the Fermi gas, and obtain an energy balance equa-
tion for fermions analogous to the one obtained for bosons in
[1,2]. In order to simplify the notations, we can re-write the
Eq. (59) in terms of the ν̇ coefficients with the understand-
ing that the subindex R refers to each component R = 1̇, 2̇
individually. We get

i

[
−ω∇0 ln(nν̇ ) + m∇μ(nν̇v

μ)

nν̇

+ ω

nν̇

�t

]

+2m2
(
K + 1

m
ωv0 + 1

2
UN +UQ

)
+ E +US = 0.

(65)

The first line in Eq. (65) describes the free density evolution
of the fermions, while the contribution of the different energy

terms appears in the second line. The first one is the kinetic
energy K ν̇ defined as

K = 1

2
vμvμ. (66)

The lapse potential UN is given by

UN = ω2

m2

1

N 2 + 1. (67)

It represents the energy contribution due to the chosen lapse
function N . The quantum potential UQ is defined as

UQ = − 1

2m2

�√
nν̇√
nν̇

. (68)

The contribution of the electromagnetic interaction E is given
by

E = (2NNkF0k + iεl j k F̂l j σ̃
k),

= 2N (F01N
1 + F02N

2 + F03N
3) − e1ν̇F13

√
nν̈

nν̇

+i

(
e1ν̇F12 + F23

√
nν̈

nν̇

)
. (69)

It depends on the Faraday tensor, shift vector and lapse func-
tion that are related to the Pauli matrices. This relationship
is due to the interaction between the electromagnetic field
and the fermionic spin. Finally, the potential US

ν̇ describes
the interaction between the spin and the geometry of space-
time. It is given by

US = −
(

(mv̂Rd − ων̇ δ̂
0
d) + D̂α

√
nν̇√

nν̇

)
	d
ba S̄

a
S
b, (70)

=
[
	a

11(1 − (N 1)2) + 	a
22(1 − (N 2)2)

+ 	a
33(1 − (N 3)2)

+ 2e2ν̇ (	
a
31N

1 + 	a
32N

2 + 	a
30) − 	a

00

]

×
(

(mv̂a − ωδ̂0
a) + D̂a

√
nν̇√

nν̇

)

+(−2e3ν̇ (	
a
21N

2 + 	a
31N

3 − 	a
10) + 2e1ν̇	

a
31)

×
(

(mv̂a − ωδ̂0
a)

√
nν̈

nν̇

+ D̂a
√
nν̈√

nν̇

)

+i

[
−2e1ν̇	

a
21

(
(mv̂a − ωδ̂0

a) + D̂a
√
nν̇√

nν̇

)

− 2(	a
21N

1 − 	a
32N

3 + 	a
20 + e2ν̇	

a
32)

×
(

(mv̂a − ωδ̂0
a)

√
nν̈

nν̇

+ D̂a
√
nν̈√

nν̇

)]
, (71)

Note that US disappears if we assume a flat space-time or
if we consider particles without spin. Furthermore, US is
constructed with the generalized gamma matrices (46), which
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are related to the spin (the Pauli matrices) and to the space-
time geometry (tetrads).

Finally, we can also write Eq. (27) as a Gross–Pitaevskii-
like equation. If we perform the transformation ψ = �eiω0t ,
where � is a four spinor that depends on all the variables xμ,
Eq. (27) becomes

i∇0� − 1

2ω0
�E� + m2

2ω0
� +

(
− ω0

N 2 − 2q A0 + i�t
)

�

+ 1

2ω0

(
2NNk F0k + i F̂i jεi j k σ̃ k 0
0 −2NNk F0k + i F̂i j εi j k σ̃ k

)
�

− 1

2ω0

(
S̄
a
S
b 0

0 S
a
S̄
b

)
	d
ba(D̂d� + iω0Nδ0

d�) = 0. (72)

Equation (72) is the generalization of the Gross–Pitaevskii
equation [34] for fermions with electromagnetic field inter-
action in an arbitrary space-time.

7 Conclusions

A non-standard representation for fermions was worked
using an analogy as in the boson and quantum mechanics
case, where it was proposed the Madelung transformation.
We extended this transformation for the spinor case, either
Dirac or Weyl fermions. Thus, it was possible to get a success-
ful hydrodynamic representation for fermions in an arbitrary
framework coupled to an electromagnetic field. Although,
the full equations that describe the Fermi gas behaviour are
more complicated than in standard description. This is closer
to the De Broglie–Bohm interpretation in quantum theory,
where the measure problem can be solved by a statistic way.
Furthermore, a non-obvious result using this new description
was the first law of the thermodynamics or the energy bal-
ance equation, where different energy contributions of these
kind of particles were found.

The main difference between the hydrodynamic represen-
tation of bosons [1] [2] and fermions, concerns the form of
the Bernoulli equation. For bosons, after doing the Madelung
transformation, we can separate the KG equation into real and
imaginary parts. By contrast, for fermion particles we have
to work with the complete equations of motion because the
real and imaginary parts cannot be easily separated. This is
related to the fact that the gamma matrices are a represen-
tation of the SO(1, 3) group and the generalized Madelung
transformation used, because it only admits complex param-
eter to fulfill the Lorentz invariance.

The spin is a fundamental outcome of the Dirac equation
[33], which combines both elements of special relativity and
quantum mechanics, that was introduced to solve the problem
of negative probability present in the KG equation – first
proposed as a relativistic generalization of the Schrödinger
equation. Here, we observe that the general relativistic Dirac
equation involves an additional contribution due to geometry
and spin through the generalized gamma and Pauli matrices.

These terms arise from endowing a quantum field with a
curvature (geometry) given by a metric in General Relativity.
Such a contribution is absent in a flat space-time and in a
system without spin as for a scalar field.

With this work we open the possibility of studying in detail
the behavior of fermions in different situations (such as mas-
sive stars or dark matter halos harboring a central black hole),
where general relativity effects may be important. We solved
the problem of energy balance for both bosons and fermions.
In this manner, we can compare the result of the hydrody-
namic representation for classical and quantum fluids in the
various geometries mentioned above.
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A solutions to the Dirac equation in flat space-time

Equation (5) in flat space-time, using the Pauli matrices (35),
reads⎡
⎢⎢⎢⎢⎢⎣

∂
∂t ψy − ∂

∂x ψz + i ∂
∂yψz − ∂

∂zψy − mψt

∂
∂t ψz − ∂

∂x ψy − i ∂
∂yψy + ∂

∂zψz − mψx

∂
∂t ψt + ∂

∂x ψx − i ∂
∂yψx + ∂

∂zψt − mψy

∂
∂t ψx + ∂

∂x ψt + i ∂
∂yψt − ∂

∂zψx − mψz

⎤
⎥⎥⎥⎥⎥⎦

= 0, (73)

where we have defined the spinor as ψ = (ψμ̇) =
(ψx , ψy, ψz, ψt )

T . In order to find an exact solution of the
previous equation, we use the ansatz ψμ̇ = R0μ̇ exp(i(x0x+
y0y+z0z+t0t)), where x0 · · · t0 and R0μ̇ are constants. Here,
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we have the simplest solutions of the Dirac equation where
the exponential is the same for all components. We obtain
four linear equations

i R0zζ
∗
0 + i R0yη0 + mR0t = 0,

i R0yζ0 − i R0zξ0 + mR0x = 0,

R0xζ
∗
0 + R0tξ0 + imR0y = 0,

R0tζ0 − R0xη0 + imR0z = 0, (74)

where ζ0 = x0 + iy0, η0 = z0 − t0, and ξ0 = z0 + t0. The
solutions of these equations are

R0t = − 1

m
(i R0yη0 + i R0zζ0),

R0x = 1

m
(i R0zξ0 − i R0yζ

∗
0 ), (75)

where x2
0 + y2

0 + z2
0 − t2

0 = m2.
Now, we use the ansatz ψμ = R0μ exp(iθ), where θ is an

arbitrary function of the coordinates. Substituting this ansatz
into (73), we obtain

i R0z Z
∗
0 + i R0y E0 + mR0t = 0,

i R0y Z0 − i R0z F0 + mR0x = 0,

R0x Z
∗
0 + R0t F0 + imR0y = 0,

R0t Z0 − R0x E0 + imR0z = 0, (76)

where Z0 = θ,x + iθ,y , E0 = θ,z − θ,t , and F0 = θ,z + θ,t .
The solution of the previous system of differential equations
is

θ = F(X) − i t + m

2R0t R0z + 2R0x R0y

×
(
iζ ∗

0 (R2
0x − R2

0z) − iζ0(R
2
0y − R2

0t )
)

, (77)

where F(X) is an arbitrary function of

X = R0t (−ζ R0y − ζ ∗R0x + ξ R0y − ηR0z)

2R0t R0z + 2R0x R0y
. (78)
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