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A B S T R A C T 

The scalar field dark matter (SFDM) model, also called Fuzzy, Wave, Bose–Einstein, and Ultra-light Dark Matter, has received 

a lot of attention because it has been able to provide simpler and more natural explanations for various features of galaxies, 
such as the number of satellite galaxies and the cusp-core problem. We recently showed that this model is able to explain the 
vast polar orbits of satellite galaxies around their host, the so-called VPO, and to explain the X-ray and gamma-ray emissions 
in the vacuum regions of our galaxy, that is, the Fermi Bubbles. In all these phenomena, the quantum character of SFDM has 
been crucial. In this work, we study the quantum effects of SFDM at the cosmological level, to see these effects not only at the 
galactic scale, but also at the cosmological scale. Using a convenient ansatz, we were able to integrate the perturbed equations to 

show that the shape of the SFDM haloes resembling atoms is a generic result. The main conclusion of this work is that quantum 

mechanics, the successful microworld theory, could also explain the dark side of the Cosmos. 

Key words: galaxies: haloes – cosmology: theory – dark matter. 
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 I N T RO D U C T I O N  

ark Matter (DM) is considered one of the most important scientific 
hallenges to be solved in this century. So far more than 95 per cent of
he matter in the universe is unknown, of which more than a quarter is
M, some kind of force that forms the structure on large scales, from

uperclusters of galaxies to dwarf galaxies in the Universe. Since its
isco v ery in the early 1930s, the question of what the matter in the
niverse is made of has been a challenge that remains one of the most
mportant unsolved mysteries in science. 

The cold dark matter (CDM) model suffers from a number of
hallenges in terms of its predictions, especially on galactic scales, 
nd this has moti v ated the search for alternatives more consistent
ith the observations (see for example Su ́arez, Robles & Matos
014 ; Oks 2021 ). 
One of them, which we will address here, is the scalar field dark
atter (SFDM) model. In 1998, we proposed that the DM is a scalar
eld, that is, a particle with spin 0, satisfying the Klein–Gordon 
quations that drives the dynamics of the universe. In this work 
Matos & Guzman 2000 ), we show that this hypothesis could explain
he observed rotation curves of the stars and gas around the galaxies.
fter that, the SFDM idea has been redisco v ered man y times such as
uzzy (Hu, Barkana & Gruzinov 2000 ), Bose-Einstein (Boehmer & 

arko 2007 ; Rindler-Daller & Shapiro 2010 ), Wave DM (Bray 2010 ;
chive, Chiueh & Broadhurst 2014 ), etc. This idea started to be a fad
nd one of the fa v ourite candidates to explain DM (Hui et al. 2017 ).
hortly after, Matos and Ure ̃ na-L ́opez studied the same hypothesis 
or the first time, but now from a cosmological point of view in

atos & Urena-Lopez ( 2001 ). The results were spectacular, finding 
or the first time that all cosmological observations up to that point
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ere explained within the error bars by the SFDM. Some of the main
esults of this work are: 

(1) Using the mass of the scalar field as a free parameter, in this
ork, we showed that the scalar field has a natural cutoff of the
ass power spectrum, which implies that the theoretical number 

f satellite galaxies is of the order of magnitude of the observed
nes. This result was corroborated many years later using numerical 
imulations (Schive et al. 2014 ). 

(2) The mass power spectrum and the angular power spectrum 

CMB spectrum) agree with the theoretical results of the model, 
omething that was corroborated many years later (Hlozek et al. 
015 ). That means that the scalar field dark matter model can explain
he galaxies, the number of satellite galaxies in the big ones, and all
he observations made up to that point on cosmological scales. 

Years later, we realize for the first time that there were two
roblems with the model that we had to deal with. The first was
isco v ered in Guzman & Urena-Lopez ( 2003 ). Here, it was found
hat galaxies could be unstable according to this model. And second,
hat supermassive black holes at the centre of galaxies could swallow
he entire scalar field. This last problem was addressed for the first
ime in Ure ̃ na L ́opez & Liddle ( 2002 ) and later in Avilez et al.
 2018 ) and Padilla et al. ( 2021 ), where they found that supermassive
lack holes can coexist with the scalar field halo. This result was
orroborated several times later (Barranco et al. 2011 ). The first
roblem was addressed for the first time in the literature considering
he quantum characteristics of the scalar field using the excited states
f the system. This idea started a new paradigm in the literature called
-boson stars (Alcubierre et al. 2018 ). The problem w as attack ed in
w o w ays. The first w ay w as to consider the scalar field system to have
ev eral wav efunctions as states. In Ure ̃ na L ́opez & Bernal ( 2010 ), the
roperties of gravitationally bound multistate configurations made of 
pin-zero bosons in the Newtonian regime are studied in detail. They

http://orcid.org/0000-0002-0570-7246
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nd that the system is stable if it contains several states at the same
ime. This result was corroborated in Guzm ́an & Ure ̃ na L ́opez ( 2020 )
nd more recently in Guzman ( 2022 ). This result is very important
or this work. This same problem was addressed with quantum field
heory at finite temperature in Matos & Su ́arez ( 2014 ), Robles &

atos ( 2013b ), and Robles & Matos ( 2013a ). 
SFDM could have various origins, for example, in Hui et al. ( 2017 ),

he authors propose that SFDM is derived from superstring theory.
ere, the scalar field is real and has no charge. It is also possible to
ropose that we add the SFDM Lagrangian to the standard model
SM) of particle, or another possibility may be a complex scalar field
 (Rindler-Daller & Shapiro 2014 ). It can also be proposed that the

omplex scalar field is in a thermal bath at temperature T endowed
ith an SFDM potential given by (see for example Robles & Matos
013b for a real scalar field in a thermal bath) 

 = −m 

2 
� 

�� 

∗ + 

λ

2 
( �� 

∗) 2 + 

λ

4 
�� 

∗T 2 + 

π2 

90 
T 4 . (1) 

n this case, the scalar field is not charged and could have an
nteraction term with the SM with a super small interaction constant
r the interaction constant being zero. Another possibility is that
he SFDM is charged and does not interact with any other SM
omponents, but its corresponding dark photon component does
nteract with the SM photon. In this work, this is the version that we
ill adopt, since this version can explain the anisotropic distribution
f satellite galaxies and the super-energetic emissions in empty
egions of the galaxy. Let us clarify these points. All dark matter
odels predict that the satellite galaxies should mo v e in the host

alaxy in homogeneous orbits, all of them uniformly distributed.
o we ver, until no w, current telescopes have seen the satellite galaxies
f three galaxies, the Milky Way (Pawlowski & Kroupa 2013 , 2020 ),
ndromeda (Ibata et al. 2013 ; Conn et al. 2013 ), and Sagittarius
 (M ̈uller et al. 2018 ; M ̈uller et al. 2021 ) and in all of them, the

atellites are not evenly distributed. This phenomenon is called vast
olar orbits (VPO) in galaxies. The other challenge is to explain
he radiation observed in the almost empty intergalactic regions,
here NASA’s Fermi satellite observes continuous emanations of
-rays, gamma rays and even more energetic than that, without

ny reasonable explanation, the so-called Fermi Bubbles (FB) (Su,
latyer & Finkbeiner 2010 ). 
Then the idea is the following. At the beginning of the universe, the

FDM was in thermal equilibrium with the other components of the
M, but decoupled from the SM very early in the universe’s history.
bserv ations sho w that the self-interaction λ to meet the constraints
f nucleosynthesis must be very small, but different from zero (Li,
indler-Daller & Shapiro 2014 ). At the same time, the charge of the
FDM must be very small to comply with the FB constraints (Sol ́ıs-
 ́opez et al. 2021 ). Like the rest of the components, SFDM cools
own and makes a phase transition at T c = 2 m � 

/ 
√ 

λ, very early in
he history of the universe due to its tiny interaction with itself λ
for this part of the idea you can neglect the small SFDM charge).
o w, we follo w the standard model of cosmology. After inflation,
uantum fluctuations become classical and collapse the SFDM to
orm the cosmic structure of the universe (Matos & Urena-Lopez
001 ; Ure ̃ na L ́opez & Bernal 2010 ; Hlozek et al. 2015 ). Due to the
xpansion, the volume of the fluctuations increases causing the scalar
eld to cool to form Bose–Einstein condensates which at the same

ime form haloes of galaxies, where most of the SFDM particles
o to the ground state. But due to gravity, the fluctuations begin
o collapse again the scalar field, causing it a turn around. So the
olume of the fluctuations decreases and the temperature of the halo
ncreases, causing some of the SFDM particles to enter excited states.
NRAS 517, 5247–5259 (2022) 
n Guzm ́an & Ure ̃ na L ́opez ( 2020 ), it was shown that if most of the
articles remain in the ground state, but with a part of them in at
east one excited state, the system stabilizes and remains stable for at
east the age of the univ erse, pro vided the mass of the SFDM particle
s small enough. They also showed that if this does not happen, the
ystem becomes unstable and disappears. 

The mass of SFDM is ultralight, which means that any perturbation
n its temperature is comparable to this mass in energy. In Robles &

atos ( 2013b ), it was shown that for a scalar field in a thermal
ath, the characteristic polynomial is given by equation ( 15 ) in this
eference 

 

2 = k 2 c 2 + m 

2 
� 

c 2 
(

1 − T 2 

T 2 c 

)
, (2) 

here m � 

is the mass of the scalar field, T is its temperature, and
 c = 2 m � 

/ 
√ 

λ is its critical phase transition temperature. We can
ssume that the mass of the scalar field is m � 

∼ 10 −21 eV, which
grees with the constrictions of Ly-alpha and of the satellite galaxies
f the Milky Way (Nadler et al. 2021 ). But because the scalar
eld in a galaxy halo heats up, the ef fecti ve mass decreases as
 

2 = m 

2 
� 

(1 − T 2 /T 2 c ). Therefore, galaxies with different sizes show
if ferent ef fecti ve masses. In the case of large galaxies, such as the
ilky Way, this ef fecti ve mass is of the order of m ∼ 10 −24 eV. This

mplies that the halo of a galaxy is still a Bose–Einstein condensate,
o it continues to behave like DM, but now with some particles in
xcited states. 

The idea, then, is to give the SFDM a small charge and take into
ccount the excited states of the halo of the galaxy, treating the halo of
he galaxy as an atom, to explain the ne w observ ations that have not
een explained so far, such as the VPO (Sol ́ıs-L ́opez et al. 2021 ) and
he FB (Matos, Perez-Lorenzana & Sol ́ıs-L ́opez 2022 ). For doing so,
e consider the internal symmetry of the SFDM to be the group U (1).
he corresponding Lagrangian then contains a new charge q , which
e assume must be dark. This guarantees that the SFDM particles
o not interact with the rest of the SM components, as an observed
eature of DM, a v oiding any conflict with the SM, only the SFDM
hoton interacts with the SM photon, an interaction that manifests
s FB. Because of this, the SFDM can interact with the normal SM
lectromagnetic field, but not (directly) with other particles. In this
ase, Matos et al. ( 2022 ) showed that due to SFDM colliding with
hotons from starlight or the CMB, these photons acquire enough
nergy to be seen as X-rays, gamma rays, or even more energetic
adiation. This is enough to give an alternative explanation of what
e see as FB. 
Thus, we start with the Lagrangian 

 = ( ∇ μ� + iq B μ� )( ∇ 

μ� 

∗ − iq B 

μ� 

∗) − m 

2 
� 

�� 

∗

− 1 

4 
B μνB 

μν − 1 

4 
B 

′ 
μνB 

′ μν − δ

2 
B μνB 

′ μν, (3) 

here B μ is the dark gauge field of the SFDM, with fundamental
harge q and Faraday tensor B μν = B μ; ν − B ν; μ , whereas B 

′ 
μν =

 

′ 
μ; ν − B 

′ 
ν; μ is the electromagnetic gauge field of the SM and δ a

inetic coupling constant between these two fields. By construction,
here is not ad hoc coupling between the scalar field � or B μ and the
est of the field components of the SM. The scalar field is the dark
atter of the universe and has the dominant part of the gravitational
eld, the electromagnetic fields are small and their contribution to the
ravity of the system is negligible. The scalar field satisfies the Klein–
ordon (KG) equation, ho we ver, in a galaxy it suffices to work with

he non-relativistic limit of the KG equations which reduces to the
chr ̈odinger equation. Therefore, we can interpret the SFDM haloes
f galaxies as atoms. In the same limit, Einstein’s equations reduce
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o Poisson’s equation. Thus, to analyse the halo of a galaxy, the
instein–KG field equations reduce to the Schr ̈odinger–Poisson (SP) 
ystem. Quantum mechanics predicts the existence of atoms, and 
toms have various quantum states, called s , p , d , etc. The s states
re spherical but the p states are bubbles at the north and south poles
f the atom and so on. Numerical evolutions of this system have
een performed in Guzm ́an & Ure ̃ na L ́opez ( 2020 ) and the result is
hat the scalar field density profile resembles that of the Legendre 
unction P 

j 

k ( cos ( θ )) of the hydrogen atom, with quantum numbers k
nd j , which implies that the SFDM profile behaves very similarly to
 hydrogen atom. This reminds us very well of the shape of the FB
n the galaxy and can well explain the anisotropic distribution of the
atellite galaxies, the VPO. 

Thus, SFDM has a very clear quantum behaviour. If we take into
ccount the multistate characteristic of the scalar field, we can explain 
he behaviour of the VPO in a very simple and natural way. This was
hown in a recent paper (Sol ́ıs-L ́opez et al. 2021 ). Furthermore, with
his same structure, considering that the scalar field is endowed with 
 minuscule charge that behaves like a dark photon, the FB can be
xplained, again, in a very simple and natural way. This proposal 
as given in Matos et al. ( 2022 ). The SFDM is the only model so far

hat can give a simple, natural and reasonable explanation of these 
wo phenomena. 

The main objective of this work is to study the quantum character
f SFDM at cosmological scales. We do not intend to analyse the
volution of the fluctuation with the scalar field, this has already been
one in Matos & Urena-Lopez ( 2001 ), Ure ̃ na L ́opez & Gonzalez-
orales ( 2016 ), Hlozek et al. ( 2015 ), Medell ́ın-Gonz ́alez, Arturo
re ̃ na L ́opez & Gonz ́alez-Morales ( 2021 ), and Foidl & Rindler-
aller ( 2022 ). Instead, we want to explicitly show the quantum
ehaviour of the scalar field during the evolution of the universe. 
n order to do that, the paper is organized as follows. In Section 2 ,
e write the basic field equations for a charged complex scalar field

nd perform a polar decomposition of the scalar field function � 

nto its norm and its phase. This separation allows us to rewrite the
G equation as a continuity equation and another one that is the
ernoulli equation. This is called the hydrodynamic representation 
f the KG equation. This form of the KG equations allows us to
oint out that the only difference between a classical hydrodynamic 
ystem and the KG equation is a term called the quantum potential.
e can interpret this result as if this term is zero, the system is

lassical. Therefore, we can say that the quantum character of the 
G equation is contained in this term. In Section 2 , we separate

he scalar field function � into its background part and a linear
erturbation and write the field equations in terms of its norm and
hase, as in Section 2 . We propose here the convenient ansatz that
llows us to solve the perturbed field equations in some cases, in
erms of the scale factor and the background scalar field norm. These
olutions are a toy model, but it is very important that they show us
hat quantum character of the scalar field perturbation at the end of its
ollapse. With this result, we see that the SFDM haloes of galaxies
re real atoms. In Section 4 , we perform a Madelung transformation,
hich essentially separates the phase of the scalar field into a function 

nd an evolution parameter. The gradient of this new function can be
nterpreted as the velocity of the scalar field particles as if they were
 fluid. In Section 5 , we perform a Fourier transformation of the field
quations to transform them into a dynamical system and be able to
olve them numerically. Before solving these equations numerically, 
n the Sections 6 and 7 , we deal with a toy model where we first ignore
he electromagnetic field and, using the convenient ansatz, we solve 
he perturbed field equations. The main result here is that without 
nd with electromagnetic field, we show that the final collapse of the
FDM is a halo in the form of an atom, that as usual, its ground state
s spherically symmetric, and its first excited state is like the states
 of an atom, contains bubbles that can explain the VPO and FB in
alaxies. 

This situation holds for realistic collapses using numerical sim- 
lations, but these analytical solutions tell us that this result is
eneric. In Section 8 , we show the numerical simulation of the
ynamical system, not with the aim of re-analysing the evolution of
he fluctuations, but with the aim of showing the quantum character
f these fluctuations on cosmological scales. We point out that this
eature is the main difference between the SFDM paradigm and other
odels. This feature is just the main point that allows us to explain
 arious DM observ ations especially at galactic scales. Finally, in the
ection 9 , we give some conclusions. In Appendix A, we explain
ow to write the perturbed quantities plotted in the figures using
nitless variables. 

 T H E  FIELD  E QUAT I O N S  

o write the field equations derived from the Lagrangian ( 3 ), we will
onsider a complex scalar field, � = � ( x i , t ), i = 1, 2, 3, where the
avefunction � is assumed to describe a charged particle of spin

ero with point charge q of mass at rest m � 

that is coupled to an
xternal electromagnetic field that is described by the potential of 
he form ( 1 ). For the evolution of the scalar field on cosmological
cales, we can neglect the dark photon interaction, but not for the
nal collapsed SFDM halo, where the dark photon is important. 
herefore, on cosmological scales, the Lagrangian ( 3 ) reduces to 

 = ( ∇ α � + iq B α� ) ( ∇ 

α � 

∗ − iq B 

α� 

∗) 

− V ( | � | ) − 1 

4 
B 

μνB μν, (4) 

here B = ∇ νB μ −∇ μB ν . After symmetry breaking, we can assume
hat the scalar field potential is given only by 

 ( �� 

∗) = m 

2 
� 

�� 

∗ + 

λ

2 
( �� 

∗) 2 , (5) 

here now, the scalar field oscillates near the minimum of the
otential. λ is a self interaction parameter with units of inverse- 
quared distance. The constant m � 

= 

1 
λ� 

is related to the wavelength 
f the scalar field λ� 

, which is also related to the mass of the scalar
eld M � 

given in grams by m � 

= 

M � c 

� 
, where c is the speed of light

nd � is Plank’s constant. 
The corresponding stress energy tensor of the scalar field is then 

 

� 

μν = 

c 4 

16 π G 

[
( ∇ μ� + iqB μ� ) ( ∇ ν� 

∗ − iqB ν� 

∗) 

+ ( ∇ μ� 

∗ − iqB μ� 

∗) ( ∇ ν� + iqB ν� ) 

− g μν

(
g α β ( ∇ α� + iqB α� ) ( ∇ β� 

∗ − iqB β� 

∗) 

+ m 

2 
� 

� � 

∗ + 

λ

2 

(
� � 

∗)2 
)]

, (6) 

he scalar field has units such that κ� is unitless, where κ2 = 8 πG / c 4 

s Einstein’s constant. 
We first write the field equations derived from ( 4 ) (see Matos

t al. 2019 ). To do this, we are going to define the d’Alembert
lectromagnetic operator as 

 E = ( ∇ 

μ + iq B 

μ) 
(∇ μ + iqB μ

)
, (7) 

here B μ is the vector field of the U (1) gauge corresponding
o Maxwell 4-potential, such that the Klein–Gordon (KG) field 
quations are given by 
MNRAS 517, 5247–5259 (2022) 
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 E � − d V 

d � 

∗ = 0 , (8) 

 νB 

νμ = J E μ, (9) 

or the complex scalar field � ( x , t) and its complex conjugate
 

∗( x , t). The conserved 4-current is defined as 

 

E 
μ ≡ i 

q 

2 m 

2 
� 

[
� 

(∇ μ − iqB μ

)
� 

∗ − � 

∗ (∇ μ + iqB μ

)
� 

]
. (10) 

his describes a system of bosonic excitations that condense into a
ingle macroscopic state. 

In what follows, we carry out the Madelung transformation defined
s 

 ( x , t) = 

√ 

n exp ( iθ ) = 

√ 

n exp [ i( S − ω 0 t)] , (11) 

here the complex function � decomposes as any complex function
n its norm n ( x , t) and a phase θ ( x , t). In this way, the Einstein–KG
quation is divided into its imaginary and real parts, respectively, 

 μ

√ 

n (2 ∇ 

μθ + q B 

μ) + q ∇ μ( B 

μ
√ 

n ) + 

√ 

n � θ = 0 , (12) 

 

√ 

n − √ 

n 
[∇ μθ ( ∇ 

μθ + 2 q B 

μ) + q 2 B 

2 + m 

2 
� 

+ λn 
] = 0 , (13) 

here B 

2 = B 

μB μ . Using these results, the current ( 10 ) is transformed
nto 

 

E 
μ = 

nq 

m 

2 
� 

(∇ μθ + qB μ

)
. (14) 

In terms of J E μ , equations ( 12 ) and ( 13 ) read 

 

μJ E μ = 0 , (15) 

 

E 
μJ E μ + 

n 2 q 2 

m � 

4 

(
m 

2 
� 

+ λn − � 

√ 

n √ 

n 

)
= 0 . (16) 

o, interpreting the KG equation via the Madelung transformation,
t splits into the continuum ( 15 ) and the Quantum Hamilton–Jacobi
quations ( 16 ) abo v e. The quantum v ersion of the Hamilton–Jacobi
quation differs from the classical one only by the last term in the
eft side of equation ( 16 ), (see Matos et al. 2019 ) 

 

Q = − 1 

2 m 

2 
� 

� 

√ 

n √ 

n 
, (17) 

hich corresponds to de Broglie’s relativistic quantum potential
Bohm 1952 ). This is the fundamental difference between a hydrody-
amic system and a quantum system. In this work, we will interpret
his term as the contribution of the quantum mechanical part of the
eld equations, if it is zero, the system is a classical system, if not,

his term will give us the contribution of the quantum field. 
On the other hand, it is useful to make the following analogy. In

 flat space–time of a gaseous boson, the 4-electromagnetic moment
orresponds to the sum of the individual mechanical moments,
amely J E μ = ( q/m � 

) nv μ . Therefore, we introduce the speed 

 � 

v μ ≡ ∇ μS + qB μ. (18) 

In terms of v μ , the continuity and quantum Hamilton–Jacobi
quations ( 15 ) and ( 16 ) become 

 

μ( nv μ) − ω 0 

m � 

(∇ 

0 n + n � t 
) = 0 , (19) 

 μv μ − 2 ω 0 

m � 

v 0 − ω 

2 
0 

m 

2 
� 

N 

2 
+ 1 + 

λ

m 

2 
� 

n − 1 

m 

2 
� 

� 

√ 

n √ 

n 
= 0 . (20) 

he equation ( 19 ) is the generalized continuity equation of hydro-
ynamics that go v erns the density evolution of the boson gas, while
NRAS 517, 5247–5259 (2022) 
he equation ( 20 ) is the generalized Bernoulli equation that go v erns
he evolution of its velocity. 

 T H E  PERTURBED  FIELD  E QUAT I O N S  

n this work, we follow the standard idea that the universe is
omogeneous and isotropic and the structure of the universe is due
o fluctuations that grow throughout the history of the universe. We
an separate these fluctuations from the homogeneous and isotropic
ackground by separating the metric into 

 μν = ημν + h μν, (21) 

here the perturbed metric h μν < < 1. In that case, the Einstein
ensor G 

μ
ν and the energy moment tensor T μν can be separated as 

 

μ
ν = G 

0 μ
ν + δG 

μ
ν , T μν = T 0 μν + δT μν , (22) 

eing G 

0 μ
ν the Einstein tensor for the background and δG 

μ
ν for the

erturbation, analogously for the energy momentum tensor. 
For the homogeneous and isotropic background, we use the

riedman–Lem ̂ aitre line element in its conformal time representation 

 s 2 = a 2 ( η) 

(
−c 2 d η2 + 

d r 2 √ 

1 − kr 2 
+ d �2 

)
, (23) 

here d �2 = d θ2 + sin 2 θd ϕ, and a ( η) is the scale factor which
s just a function of η. The background metric can be solved
ndependently of the rest of the equation. The equation for the
erturbation is 

G 

μ
ν = κ2 δT μν , (24) 

Here, we will consider the Newtonian gauge metric only with
calar perturbations. In that case, the perturbed metric can be written
s 

 s 2 = a 2 ( η) 
[−(1 + 2 ψ) d η2 + (1 − 2 φ) ηij d x 

i d x j 
]
. (25) 

hile the scalar field can be separated into the background part and
 perturbed one as 

 = � 0 ( η) + δ� ( x i , η) , (26) 

here � 0 ( η) is the background scalar field and δ� < < 1 is a linear
erturbation. Using this metric, the Einstein’s equations reduce to 

ȧ 2 

a 2 
− 2 ̈a 

a 
= κ2 

(
�̇ 0 ̇� 

∗
0 − V a 2 

)
, 

3 ̇a 2 

a 2 
= κ2 

(
�̇ 0 ̇� 

∗
0 + V a 2 

)
, (27) 

or the background. Here, dot means deri v ati ve with respect to η, i . e .
= d/d η. It’s easy to see that (

3 ̇a 

a 

)·
= κ2 

(−2 ̇� 0 ̇� 

∗
0 + V a 2 

)
. (28) 

The density ρ� 0 and the pressure p � 0 of the scalar field are defined
s 

� 0 = �̇ 0 ̇� 

∗
0 /a 

2 + V , (29) 

 � 0 = �̇ 0 ̇� 

∗
0 /a 

2 − V . (30) 

From the conservation of the energy moment tensor ( 6 ), we obtain
he KG equation for � 

 � − dV 

d� 

∗ = 0 , (31) 
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nd the corresponding equation for � 

∗. This equation for the 
ackground is the time-varying minimally coupled KG equation 

¨
 0 + 2 H �̇ 0 + V ,� 

∗
0 
a 2 = 0 , (32) 

sing equation ( 28 ), we can obtain the deri v ati ve of the density ρ� 0 .
e obtain 

˙� 0 = −6 H 

�̇ 0 ̇� 

∗
0 

a 2 
. (33) 

In what follows, we derive the field equations for the perturbations 
f the scalar, metric, and electromagnetic fields. We get 

G 

0 
0 = 6 H 

(
φ̇ + H ψ 

) − 2 

a 2 
∇ 

2 φ, (34) 

G 

0 
j = −2 

(
φ̇ + H ψ 

)
,j 

, (35) 

G 

i 
j = 2 

[
φ̈ + H 

(
2 ̇φ + ψ̇ 

) + 

(
2 Ḣ + H 

2 
)
ψ 

]
δi 
j 

− 2 

a 2 
( φ − ψ ) ,i ,j , (36) 

here, for simplicity, we have defined the parameter H as H = ȧ /a,
ut this is not the Hubble parameter H. Note that H = 1 /a d a/ d η =
 a/ d t , where t is the cosmological time d t = a d η, thus the Hubble
arameter is given by H = 1 /a d a/ d t = H /a. 
In terms of the Newtonian metric, the perturbed scalar field energy 
omentum tensor ( 6 ) reduces to 

T 0 0 = 

1 

a 2 

[
( ̇� 0 ˙δ� 

∗ + �̇ 

∗
0 

˙δ� ) − 2 ψ �̇ 0 ̇� 

∗
0 + a 2 δV 

]
+ 

iq 

a 2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 , (37) 

T 0 j = 

1 

a 2 

(
�̇ 0 δ� 

∗
,j + �̇ 

∗
0 δ� ,j 

)
+ 

iq 

a 2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B j , (38) 

T i j = − 1 

a 2 

[
( ̇� 0 ˙δ� 

∗ + �̇ 

∗
0 

˙δ� ) − 2 ψ �̇ 0 ̇� 

∗
0 − a 2 δV 

]
δi 
j 

+ 

iq 

a 2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 δ

i 
j . (39) 

rom here, we can define 

ρ� 

= − 1 

a 2 

[
( ̇� 0 ˙δ� 

∗ + �̇ 

∗
0 

˙δ� ) − 2 ψ �̇ 0 ̇� 

∗
0 + a 2 δV 

]
+ 

iq 

a 2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 . (40) 

s usual, the perturbation of the potential is given by the Taylor
eries up to first order for the variables � and � 

∗ around ( � 0 , � 

∗
0 ),

e get 

 ( �, � 

∗) = V ( � 0 , � 

∗
0 ) 

+ 

∂V 

∂� 

∣∣∣∣
0 

( � − � 0 ) + 

∂V 

∂� 

∗

∣∣∣∣
0 

(
� 

∗ − � 

∗
0 

) + · · ·

= V 

(
� 0 , � 

∗
0 

) + δV + · · · , (41) 

here | 0 = | ( � 0 ,� 

∗
0 ) 

, δ� = � − � 0 and δV = V − V | 0 . Explicitly, we
ave 

V = V , � 0 δ� + V , � 

∗
0 
δ� 

∗. (42) 

In the same way, we can derive the corresponding derivative 

dV 

d� 

∗ = V ,� 

∗ | 0 + V ,�� 

∗ | 0 δ� + V ,� 

∗� 

∗ | 0 δ� 

∗ (43) 

or the scalar field potential. 
Observe that, if we compare the equations ( 36 ) and ( 39 ) for i �= j ,
e see that ( φ − ψ ) ,i ,j = 0. The simplest solution to this constraint is
 = φ. 
Therefore, the Einstein’s equation for the perturbed part of the 

calar field reads 

 ∇ 

2 φ − 6 H ( ̇φ + H φ) 

= κ2 
[
( ̇� 0 ˙δ� 

∗ + �̇ 

∗
0 

˙δ� ) − 2 φ�̇ 0 ̇� 

∗
0 + a 2 δV 

]
+ iqκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 , (44) 

( ̇φ + H φ) ,j = κ2 
(
�̇ 0 δ� 

∗
,j + �̇ 

∗
0 δ� ,j 

)
+ iqκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B j , (45) 

 

(
φ̈ + 3 H φ̇ + (2 Ḣ + H 

2 ) φ
)

= κ2 
[
( ̇� 0 ˙δ� 

∗ + �̇ 

∗
0 

˙δ� ) − 2 φ�̇ 0 ̇� 

∗
0 − a 2 δV 

]
+ iqκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 . (46) 

Then, the field equations for the perturbations φ, ψ , and B j are the
quations ( 44 ), ( 45 ) using the equation ( 42 ). 

As in the case of the real scalar field (Magana et al. 2012 ), if we
ubtract the equation ( 46 ) from ( 44 ), we obtain a unique equation for
he gravitational potential φ

¨ + 6 H φ̇ + 2 φ
(
Ḣ + 2 H 

2 
) − 1 

a 2 
∇ 

2 φ + κ2 δV = 0 . (47) 

For the perturbation of the scalar field δ� , the KG equation takes
he form 

 

2 δ� − ¨δ� − 2 H 

˙δ� − iq 

a 2 
( a 2 � 0 B 0 ̇) 

+ 4 ̇φ�̇ 0 + V ,� 0 � 

∗
0 
a 2 δ� + V , � 

∗
0 � 

∗
0 
a 2 δ� 

∗

− 2 V , � 

∗
0 
a 2 φ = 0 . (48) 

here we have used the KG equation in the background ( 32 ). This
ast equation completes the system of field equations to be solved. 

 T H E  M A D E L U N G  TRANSFORMATI ON  F O R  

G  FLUCTUATI ONS  

n this section, we apply the Madelung transformation to the 
erturbed equations ( 44 )–( 45 ) and ( 48 ). The goal of this is to separate
he perturbation into two parts, one function that can be interpreted
s number density and the other as the velocity of the scalar field as
uid. We introduce an ansatz that allows us to give exact solutions

n some cases. These solutions are not necessarily physical, but we
an deduce some physical aspects of them, as we will see next. 

As usual, to find the shape of the perturbations δ� , we expand
 0 , using the polar representation of a complex function � = R e iθ ,
here R = || � || is the norm and θ the phase of the scalar field, we
ave 

 = � 0 + 

∂� 

∂R 

∣∣∣∣
0 

( R − R 0 ) + 

∂� 

∂θ

∣∣∣∣
0 

( θ − θ0 ) + · · · , (49) 

here | 0 = | ( R 0 ,θ0 ) . Thus, we obtain 

� = 

(
δR 

R 0 
+ iδθ

)
� 0 + · · · . (50) 

We will define the following quantities as ansatz to simplify 
he field equations, which will help us reduce the equations to
uadratures. Let be 

 0 = 

√ 

n 0 e 
iθ0 = 

√ 

n 0 e 
i( S 0 −ω 0 η) , (51) 
MNRAS 517, 5247–5259 (2022) 
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� = 

√ 

n e i ( S 0 + δS −ω 0 η) , (52) 

The physical interpretation for n 0 , n , S 0 , δS, and S could be
ontro v ersial, but here this transformation is used only as ansatz
o analytically solve the equations. If we compare ( 50 ), ( 51 ) with
 52 ), we can see that R 

2 
0 = n 0 , δR 

2 = n , and δθ = 

√ 

n/n 0 δS. We will
ake perturbations where if φ is of the order ε, then δ� , δR, and δS
re also of this order, while δθ and n are perturbations of order ε2 .
e will neglect perturbations of order ε2 and beyond. 
With this in mind, we can rewrite the equation ( 27 ) in terms of

hese definitions, we get 

� 0 = 

1 

4 

ṅ 2 0 

n 0 
+ n 0 ̇θ

2 
0 + ( m 

2 + λn 0 ) n 0 a 
2 , (53) 

hile, equations ( 44 )–( 46 ) written in terms of the definitions ( 51 )
nd ( 52 ), become 

 ∇ 

2 φ − 6 H ( ̇φ + H φ) 

= κ2 

[
ṅ 0 

2 
√ 

n 0 

ṅ √ 

n 
+ 2 

√ 

n 0 n ̇θ
2 
0 −

(
2 n 0 ̇θ

2 
0 + 

1 

2 

ṅ 2 0 

n 0 

)
φ

]
+ κ2 [2 qn 0 ̇θ

2 
0 B 0 + a 2 δV ] , (54) 

( ̇φ + H φ) ,j = κ2 

(
ṅ 0 

2 
√ 

n 0 

n ,j √ 

n 
+ 2 qn 0 θ̇0 B j 

)
, (55) 

 

(
φ̈ + 3 H φ̇ + (2 Ḣ + H 

2 ) φ
)

= κ2 

[
ṅ 0 

2 
√ 

n 0 

ṅ √ 

n 
+ 2 

√ 

n 0 n ̇θ
2 
0 −

(
2 n 0 ̇θ

2 
0 + 

1 

2 

ṅ 2 0 

n 0 

)
φ

]
+ κ2 [2 qn 0 ̇θ

2 
0 B 0 − a 2 δV ] . (56) 

In terms of the new variables, the perturbed scalar field potential
V reads 

V = 2( m 

2 + λn 0 ) 
√ 

n 0 n . (57) 

ith the same definitions, the KG equation ( 8 ) is separated into its
eal and imaginary parts. For the background, we get 

1 

a 2 

(
a 2 ṅ 0 √ 

n 0 

)˙

− 2( 
√ 

n 0 ̇θ
2 
0 − V ,� 0 a 

2 e −iθ0 ) = 0 , (58) 

(
a 2 n 0 ̇θ0 

)̇ = 0 , (59) 

hile, for the perturbation, we obtain [ 

1 

a 2 

(
a 2 ṅ 0 √ 

n 0 

)˙

− 2 
√ 

n 0 ̇θ
2 
0 

] 

φ − 1 

2 a 2 

(
a 2 ṅ √ 

n 

)˙

(60) 

+ ( ̇θ2 
0 + m 

2 + 3 λn 0 ) 
√ 

n + 

2 ̇n 0 √ 

n 0 
φ̇ + 

√ 

n 0 ̇θ0 B 0 + 

� 

√ 

n √ 

n 
= 0 , 

1 √ 

n 
( a 2 n θ̇0 ) 

˙ − 1 

φ
√ 

n 0 
( a 2 n 0 φ

2 θ̇0 ̇) + 

1 

2 
( a 2 

√ 

n 0 B 0 ̇) = 0 , (61) 

or the real and imaginary parts, respectively. 
We will use the standard definition for density contrast δ, which

s 

= 

δ� 

� 0 
≈

√ 

n 

n 0 
. (62) 

It is convenient to use the equation ( 59 ) and the density contrast
efinition ( 62 ) in the perturbed equations. With this in mind, the
quations ( 54 ) and ( 55 ) transform into 

2 ∇ 

2 φ − 6 H ( ̇φ + H φ) = (63) 
NRAS 517, 5247–5259 (2022) 
2 

[
ṅ 0 ̇δ + 

(
1 

2 

ṅ 2 0 

n 0 
+ 

2 s 2 0 

a 4 n 0 

)
( δ − φ) + a 2 δV + 2 q 

s 0 

a 2 
B 0 

]
, 

2( ̇φ + H φ) ,j = κ2 

(
ṅ 0 δ,j + 

2 q s 0 
a 2 

B j 

)
. (64) 

n the other hand, the imaginary part of the KG equation ( 61 )
ecomes 

˙ − 2 ̇φ + 

√ 

n 0 

2 

(
a 2 

√ 

n 0 

s 0 
B 0 

)̇
= 0 , (65) 

here we have used the equation ( 59 ) and stated that a 2 n 0 ̇θ0 = s 0 ,
here s 0 is a constant. 
Maxwell’s equation ( 9 ) reduces to 

ναB μν,α = 

2 a 2 n 0 
m 

2 
( qB μ + θ̇0 δδ

0 
μ) 

= 

2 a 2 n 0 
m 

2 
qB μ + 

2 s 0 
m 

2 
δδ0 

μ (66) 

he electromagnetic energy stress tensor is quadratic in B μ and
herefore has no contribution to the Einstein equations. 

 T H E  FOURI ER  SPAC E  

n this section, we rewrite the field equations in Fourier space, where
he perturbations will become 

 = 

∫ 
f k e 

i k i x 
i 

d 3 k (67) 

or any perturbation f where, as usual, k is the wavenumber, being
 = 2 π / λk where λk is the length scale of the perturbation. In Fourier
pace, the equations ( 44 )–( 46 ) reduce to 

2 k 2 φk − 6 H ( ̇φk + H φk ) 

κ2 
[
( ̇� 0 ˙δ� 

∗
k + �̇ 

∗
0 

˙δ� k ) − 2 ψ k ̇� 0 ̇� 

∗
0 + a 2 δV k 

]
+ iqκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 k , (68) 

( ̇φk + H φk ) = κ2 
(
�̇ 0 δ� 

∗
k + �̇ 

∗
0 δ� k 

)
+ qκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

) B jk 

k j 
, (69) 

 

(
φ̈k + 3 H φ̇k + (2 Ḣ + H 

2 ) φk 

)
= κ2 

[
( ̇� 0 ˙δ� 

∗
k + �̇ 

∗
0 

˙δ� k ) − 2 ψ k ̇� 0 ̇� 

∗
0 − a 2 δV k 

]
+ iqκ2 

(
� 0 ̇� 

∗
0 − � 

∗
0 ̇� 0 

)
B 0 k . (70) 

n the same way, the KG equation ( 48 ) in Fourier space becomes 

− k 2 δ� k − ¨δ� k − 2 H 

˙δ� k − iq 

a 2 
( a 2 � 0 B 0 k ̇) 

+ 4 ̇φk �̇ 0 + V ,� 0 � 

∗
0 
a 2 δ� k + V ,� 

∗
0 � 

∗
0 
a 2 δ� 

∗
k 

− 2 V ,� 

∗
0 
a 2 φk = 0 . (71) 

It is more convenient to write this last equation in terms of the
ensity contrast δ, we can set in ( 71 ) that δ� = � 0 δ to obtain 

¨
k + 2 

(
H + 

�̇ 0 

� 0 

)
δ̇k −

(
V ,� 0 � 

∗
0 
+ 

V ,� 

∗
0 � 

∗
0 
− V , � 0 

� 0 

)
a 2 δk 

+ k 2 δk + k j B 

j 

k + i( ̇B 0 k + 2 H B 0 k ) 

−4 

(
φ̇k + H φk − 1 

4 
B 0 k 

)
�̇ 0 

� 0 

+ 2 

(
2 H 

�̇ 0 

� 0 
+ 

V ,� 0 

� 0 
a 2 
)

φk = 0 (72) 
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imilarly, the equation for the Newtonian potential φ in Fourier space 
eads 

k̈ + 6 H φ̇k + 2 φk 

(
Ḣ + 2 H 

2 
) + 

k 2 

a 2 
φk + κ2 δV k = 0 , (73) 

here δV k = ( V , � 0 � 0 + V , � 

∗
0 
� 

∗
0 ) δk 

The equations ( 68 )–( 70 ), the KG equation ( 72 ) along with
axwell’s equations ( 66 ) form a complete system of linear differ-

ntial equations in the variable η that can be solved numerically. 
e can proceed in the following two ways. We can solve the

ystem by finding reasonable initial conditions for the system, where 
e know nothing about the electromagnetic field. We can guess 

he behaviour and say something about it. The second way is the
ollo wing. We kno w that for the de velopment of fluctuations, the
lectromagnetic field plays a non-essential role, the fluctuations 
re dominated by the gravitational field. In this case, then, we can
olve the system without taking Maxwell’s equations into account, 
eglecting the electromagnetic field due to the evolution of the 
uctuations and then, with the same equations, e v aluate the behaviour 
f the electromagnetic field. Before doing this, we will take two 
pproximate situations of the system. 

 A  TOY  M O D E L  W I T H O U T  

LECTROMAG NETIC  FIELD  

n this section, we integrate some of the equations that we have
erived in terms of the variables a and n 0 for the case that the
lectromagnetic field disappears. Note that the equation ( 65 ) implies 
hat δ = 2 φ + X ( x j ), where X is an arbitrary function. We start with
 toy model that integrates the system assuming X = 0. As we will
ee, this choice of the function X does not lead to realistic results,
ut it allows us to integrate the system very easily and gives us an
nsight into the realistic results. If we do so, the equation ( 64 ) can be
ntegrated to give 

φ = P 0 e 
κ2 n 0 , (74) 

here P 0 = P 0 ( x i ) is an arbitrary function. Now, using the equa-
ion ( 63 ), we can substitute the two previous results and obtain 

 

2 P 0 + �2 P 0 = 0 , (75) 

here 

2 = −κ2 

[
κ2 ṅ 2 0 + 

2 ̇a ̇n 0 
a 

+ 

(
1 

4 

ṅ 2 0 

n 0 
+ 

s 2 0 

a 4 n 0 

)
+ 2 a 2 ( m 

2 + λn 0 ) n 0 
]
. 

The simplest solutions of this equation are P 0 = P lj RY 

j 

l , where
 lj are constants, R = R ( r ) and Y 

j 

l ( θ, ϕ) are the spherical harmonic
olynomials. With this ansatz, this equation reduces to 

d 

d r 

(
r 2 

d R 

d r 

)
+ ( �2 r 2 − l( l + 1)) R = 0 . (76) 

he simplest solution of the equation ( 75 ) is for l = 0, this is 

 0 = P 00 
sin ( �r) 

r 
, (77) 

here P 00 is a constant and r is the radial spherical coordinate, r 2 =
 

2 + y 2 + z 2 is the radius of a sphere. The following solutions in
egree of difficulty are the solutions with l = 1. The density of the
uctuation that collapses to form the structure is δ�δ� 

∗. In this case,
sing the equations ( 62 ), ( 74 ) and the previous results, we obtain 

�δ� 

∗ = 4 | P lj | 2 R 

2 Y 

j 

l Y 

∗j 

l 

� 0 � 

∗
0 e 

2 κ2 n 0 

a 2 
. (78) 
o we ver, the spherical harmonic functions Y 

j 

l Y 

∗j 

l for l = 1 contain
wo bubbles, one north and one south of the origin of coordinates.
hese bubbles are a direct consequence of the quantum nature of the
calar field. These solutions are very interesting, since they are the
 states of an atom. In this simple case, these solutions are obtained
irectly as an exact solution. Ho we ver, in Guzman ( 2022 ), it will
e shown that in the physical case, solved with numerical methods,
hese solutions are very similar to the numerical ones and this p
tate behaviour of an atom is practically the same. This form of dark
atter can explain the anomalous trajectories observed in satellite 

alaxies, the VPO, and the FB observed in our galaxy. 
Now, we can know the complete behaviour of the fluctuation δ� ,

s δ = 2( P 0 /a) e κ
2 n 0 , we obtain that 

� = 2 P 00 
sin ( �r) 

r 

e κ
2 n 0 

a 
� 0 . (79) 

To obtain a solution of the quantities δ� , φ, and δ, we have
o integrate the equations ( 27 ) and ( 32 ) together with the rest of
quations for the components of baryons, radiation, dark energy, and 
urvature. 

In what follows, we solve the field equations using a numerical
ode. To do so, we first have to define variables without units. As
ackground, we have that the complete system that we have to solve
s then 

 

2 = 

κ2 

3 

(
�̇ 0 ̇� 

∗
0 

a 2 
+ V + ρb + ρr + ρν + ρ� 

)
, (80) 

here b is for baryons, z for radiation, ν for neutrinos, and ρ� 

for
he cosmological constant which here is dark energy. 

It is convenient to derive the equation ( 80 ) to have two pair
ifferential equations instead of one. We obtain 

˙
 = −κ2 

2 

(
2 
�̇ 0 ̇� 

∗
0 

a 2 
+ ρb + 

4 

3 
ρr + 

4 

3 
ρν

)
, (81) 

here H = H /a. The continuity equations for the components of
he universe are as usual ρ̇X = −3 H (1 + ω X ) ρX 

It is convenient to change the variable η to the e-folding variable
 = ln ( a ). Note that the scalar field density can also be written in

erms of n 0 and N as 

� 0 = H 

2 

(
n ′ 2 0 

4 n 0 
e −2 N + 

s 2 0 

n 0 

e −6 N 

H 

2 
+ ( m 

2 + λn 0 ) 
n 0 

H 

2 

)
, (82) 

here now a prime means a deri v ati ve with respect to N , that is,
 = d/d N . We now write the KG equation in the background, this
quation in terms of the new variables reads 

 

′′ 
0 + 

H 

′ 

H 

n ′ 0 −
1 

2 

n ′ 2 0 

n 0 
+ 2 n ′ 0 

− 2 s 2 0 

n 0 

e −4 N 

H 

2 
+ 2( m 

2 + λn 0 ) n 0 
e 2 N 

H 

2 
= 0 . (83) 

Using the equation ( 28 ), in terms of the new variables, the
eri v ati ve of the scalar field density is 

′ 
� 0 

= −6 H 

(
n ′ 2 0 

4 n 0 
e −2 N + 

s 2 0 

n 0 

e −6 N 

H 

2 

)
. (84) 

ote that the equations ( 80 ) and ( 81 ) are a system of differential
quations for n 0 and H , together with the continuity equations for
ach component and the equation of KG ( 32 ) that can be solved
MNRAS 517, 5247–5259 (2022) 
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Figure 1. The evolution of the density rates �SFDM 

(black line), �b (red 
line), �r (blue line), �ν (yellow line), and �� 

(green line) for the SFDM 

model. The evolution is almost exactly the same in the LCDM model. This 
behaviour was first introduced in Matos & Urena-Lopez ( 2001 ). 
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umerically. To do this, we define unitless quantities as follows 

 = 

κ√ 

3 

�̇ 0 

aH 

, y = 

κ√ 

3 

�̇ 

∗
0 

aH 

, 

 = 

κ√ 

3 

m� 0 

H 

, v = 

κ√ 

3 

m� 

∗
0 

H 

, 

b = 

κ√ 

3 

√ 

ρb 

H 

, l = 

κ√ 

3 

√ 

ρ� 

H 

, 

ν = 

κ√ 

3 

√ 

ρν

H 

, z = 

κ√ 

3 

√ 

ρz 

H 

, 

s = 

m 

H 

. (85) 

In terms of these variables, the Friedmann equations and the
ontinuity equations for each component are 

 

′ = −3 x − su + 

3 

2 
�x, 

 

′ = −3 y − s v + 

3 

2 
�y , 

 

′ = sx + 

3 

2 
�u, v ′ = sy + 

3 

2 
�v, 

b ′ = 

3 

2 
( � − 1) b, l ′ = 

3 

2 
�l, s ′ = 

3 

2 
�s, 

z ′ = 

3 

2 
( � − 4 

3 
) z, ν ′ = 

3 

2 
( � − 4 

3 
) ν, (86) 

here � is defined as 

− Ḣ 

H 

2 
= 

3 

2 
(2 xy + b 2 + 

4 

3 
z 2 + 

4 

3 
ν2 ) = 

3 

2 
�. (87) 

If we define, as usual, �X = ρX / ρc as the density ratio correspond-
ng to the density ρX , where ρc = 3 H 

2 / κ2 is the critical density, �� 

s the cosmological constant, �0 b , �0 r , and �0 ν respectively are
he value of the current density rate for the baryons, radiation, and
eutrinos and the scalar field density ratio is �� 0 = ρ� 0 /ρc , in this
ase the equations system reads 

� 0 = x y + uv, �b = b 2 , 

�r = z 2 , �ν = ν2 , �� 

= l 2 . (88) 

The Friedmann equation transforms into a constraint equa-
ion given by 

 = xy + uv + b 2 + z 2 + ν2 + l 2 = 1 . (89) 

This last equation can be used to control the convergence of the
umerical code. It can be seen that if we derive the equation ( 89 ),
sing equations ( 86 ), we get 

 

′ = (6 x y + 3 b 2 + 4 z 2 + 4 ν2 )( F − 1) , (90) 

hich is 0 if F = 1, that is, if the Freedman restriction ( 89 ) is satisfied.
We solve equations ( 86 ) numerically, using an Adams–Badsforth–
oulton algorithm. The results are represented in the figures. In

ig. 1 , we see the complete evolution of the density rates. We
ee that this evolution is very similar to the LCDM model. Fig. 2
ho ws the e volution of n 0 , the scalar field density number for the
ackground. This evolution is independent of the approximation
hat we are dealing with in this case, this behaviour for n 0 will
e maintained in the following cases that we will present in this
ork. Fig. 2 also shows the evolution of the density number n for the
uctuation. Of course, this behaviour of n is not expected in a realistic
niverse, remember that for these solutions, we have set X = 0, and
his is not the case in a realistic universe. This can also be seen in the
NRAS 517, 5247–5259 (2022) 
volution of the Newtonian potential φ and the perturbation δ� in
ig. 3 . Ho we v er, observ e the evolution of the quantum potential U 

Q 

0 

n Fig. 4 , these oscillations are a typical characteristic of a quantum
eld. Again, this behaviour does not depend on the approximations
e are dealing with here. Note that these oscillations throughout the
istory of the universe are the most important feature of the SFDM
odel. We see that this potential, which is just the difference between
 quantum field and a classical one, plays a very important role in
he evolution of the universe, if the DM is of a scalar field nature. 

 A  TOY  M O D E L  WI TH  ELECTRO MAGNETIC  

IELD  

n this case, again, the entire system can be solved numerically as
sual, taking the Fourier transform and solving the transformed set
f differential equations as a dynamical system. But to elucidate the
hysical behaviour of the system, as in the previous example, it is
ot necessary to solve the system, we will make a toy model to
ee its beha viour, b ut now with an electromagnetic field. Galaxies
enerally contain a complicated magnetic field; it has been speculated
n Hernandez, Avilez-L ́opez & Matos ( 2019 ) that this field could be
 consequence of SFDM with the Lagrangian ( 4 ), so the solution of
axwell’s equations could be very complicated for a real magnetic

eld of a scalar field fluctuation. In addition, the magnetic field
oes not have a determining influence on the gravitational field of
 fluctuation; it is generally very weak in the galaxy. The important
act here is that the Lagrangian ( 4 ) predicts its existence. Therefore,
or this toy model, we will ignore that the electromagnetic field must
e a complicated solution of Maxwell’s equations ( 66 ) and write
ust a toy electromagnetic field. To solve the toy system, here, we
ill assume that the electromagnetic potential B μ can be derived

rom a superpotential, for this, we define two functions, A and
 , such that B j = a 2 ( ̇B φ) ,j and Ȧ = 

√ 

n 0 ( a 2 
√ 

n 0 B 0 ̇) . These two
unctions cannot al w ays be defined like this, but the existence of
he superpotential for B μ can allow them. In this section, we limit
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Figure 2. Upper panel: the evolution of the background density rate n 0 . The 
oscillations are the unmistakable imprint of the quantum behaviour of density, 
when combined with the evolution of the potential energy φ0 , the result is 
the line observed in Fig. 1 for the SFDM. Lower panel: the evolution of the 
fluctuation density rate n . Here, the evolution is very similar to n 0 , due to the 
approximation we are using in this example. 
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with the solution ( 74 ), we plot the Newtonian potential φ and the fluctuation 
of the scalar field δ� of the equation ( 79 ). Note that the Newtonian potential 
evolves smoothly during the history of the universe, while the scalar field 
fluctuation has strong oscillations as a consequence of its quantum nature. 
This solution is just a toy model. 
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urselves to this case. With these definitions, the equations ( 64 ) and
 65 ) reduce to 

( ̇φ + H φ) ,j = κ2 
(
ṅ 0 δ,j + 2 q s 0 ( ̇B φ) ,j 

)
, (91) 

˙ − 2 ̇φ + 

1 

2 s 0 
Ȧ = 0 . (92) 

In this case, it is possible to integrate ( 91 ), we get that 

= 

P 0 

a 
e κ

2 ( n 0 + qs 0 B+ T ( t)) , (93) 

= 2 φ + 

1 

2 s 0 
A + Y ( x i ) , (94) 

here the function P 0 again satisfies the equation ( 75 ) with solution
 77 ) for l = 0 and the corresponding solutions for l �= 0, again similar
o an atom, with Y and T arbitrary integration functions. Note that
he entire integration of the system depends on the functions n 0 and
 , and of course on how we choose the arbitrary functions Y and T .
he solutions are in general similar to the previous ones with B μ =
, if the arbitrary functions are zero. 

 T H E  G E N E R A L  CASE  

n the general case, we have to add the equations ( 44 ) and ( 48 ).
ere, we remark that the electromagnetic field is not essential for the
evelopment of the fluctuations; it is essential in the final fluctuation
o explain the magnetic field of the galaxies (Hernandez et al. 2019 )
nd the FB, and for the purpose of this work, we can also neglect the
roper interactions λ. So, let’s substitute B μ = 0 and take the scalar
eld potential as V = m 

2 �� 

∗. 
As in the toy models, we separate the function φ = P 0 T ,

here again the function P 0 = P 0 ( x i ), depends only on the spatial
MNRAS 517, 5247–5259 (2022) 
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Figure 4. The quantum potential U 

Q 

0 defined in ( 17 ) for the SFDM model. 
Here, the quantum potential U 

Q is plotted for the cosmological background. 
This is the main difference between the classical hydrodynamic behaviour of 
the DM, such as LCDM, and the SFDM model. The regions where U 

Q ∼ 0, 
the SFDM behaves like a fluid, but the regions where it is not, the quantum 

characteristic of the SFDM is important and differs from the hydrodynamics. 
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oordinates, and T = T ( η). We make an analogous separation with
he fluctuation of the scalar field δ� = P 1 T 1 . It is easy to see that the
quation ( 44 ) can again be written as 

 

2 P 0 + �2 P 0 = K, (95) 

here now 

2 = κ2 �̇ 0 ̇� 

∗
0 T − 3 H 

(
Ṫ + H T 

)
(96) 

nd K is a small function given by 

 = 

κ2 

2 

[(
�̇ 0 

Ṫ 1 

T 1 
+ a 2 m 

2 
� 

� 0 

)
δ� 

∗ + c .c . 

]
. 

f the function K remains small, the solutions of the differential
quation ( 95 ) should be very similar to the previous one representing
toms. Therefore, our conclusion is that, in general, it will be very
ommon for the collapse of the SFDM to be a halo very similar to
n atom. 

In Fourier space, the equations ( 44 ) and ( 48 ) read 

− 2 k 2 φk − 6 H ( φ̇k + H φk ) 

= κ2 [( ̇� 0 δ�̇ 

∗
k + �̇ 

∗
0 

˙δ� k ) − 2 φk ̇� 0 ̇� 

∗
0 

+ a 2 m 

2 ( � 

∗
0 δ� k + � 0 δ� 

∗
k ] , (97) 

− k 2 δ� k − ¨δ� k − 2 H 

˙δ� k − iq 

a 2 
( a 2 � 0 B 0 k ̇) 

+ 4 ̇� 0 φ̇k + m 

2 a 2 δ� k − 2 m 

2 � 0 a 
2 φk = 0 . (98) 

e now define the unitless variables for the perturbation 

δx k = 

κ√ 

3 

δ�̇ k 

aH 

, δy k = 

κ√ 

3 

δ�̇ 

∗
k 

aH 

, 

u k = 

κ√ 

3 

mδ� k 

H 

, δv k = 

κ√ 

3 

mδ� 

∗
k 

H 

, (99) 
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e find that the equations ( 97 ) and ( 98 ) become 

 

k 2 

m 

2 
s 2 φk + 6( φ′ 

k + φk ) 

= −3( x δy k + y δx k ) + 6 xyφk − 3( uδv k + vδu k ) , 

×
(

− k 2 

m 

2 
+ 1 

)
sδu k − δx ′ k −

(
3 

4 
� + 1 

)
δx k 

+ 4 x φ′ 
k − s uφk = 0 . (100) 

e can also write the scalar field density ( 29 ) and the scalar field
ensity fluctuation ( 40 ) in terms of these variables, we get 

κ2 

3 m 

2 
ρ� 0 = 

1 

s 2 
( xy + uv) , (101) 

κ2 

3 m 

2 
δρ� 

= − 1 

s 2 
( x δy k + y δx k − 2 φk xy + uδv k + vδu k ) . (102) 

The system ( 86 ), together with the previous equations, can be
ntegrated numerically. The results are given in the figures. In Fig. 5
e see the evolution of the absolute value of the fluctuation of the

calar field δ� . We have to plot the absolute value because the
scillations go from very large positive values to very large negative
alues. The absolute value is presented only to see the behaviour.
n observer will measure the average of this behaviour. In Fig. 6 ,
e represent the absolute value of the density contrast δ and the

volution of the numerical density n . Here, we see just the opposite
f Fig. 3 where the density contrast for the exact solution evolves
moothly, here its quantum character predominates showing strong
scillations. The number density n here oscillates very little, so the
volution is similar to that of a fluid. 

Finally in Fig. 7 , we see the absolute value of the evolution of the
ensity fluctuation of the scalar field δρ� 

. As also shown in Magana
t al. ( 2012 ) for a real scalar field, here the density fluctuation of
he complex scalar field oscillates strongly. Ho we v er, an observ er
ill only detect the average of this oscillation, whose behaviour

esembles that of a fluid. Therefore, the SFDM can be confused with
hat of a fluid in its behaviour. This important result is also valid for
he charged complex scalar field. 

 C O N C L U S I O N S  

n this work, we have established the bases for a complete model of
ark matter where the nature of it is an ultralight scalar field, that
s, a particle with zero spin and an extremely small mass, with an
xtremely small self-interaction. So that this scalar field could explain
ost of the observed phenomena in a galaxy, such as the core centres

f galaxies, the small number of satellite galaxies around their hosts,
he VPO or polar orbits of satellite galaxies around their host, the

agnetic fields of galaxies, the FB, etc. in addition to the excellent
t with cosmological observations, we have to propose a charged
calar field. The real scalar field cannot be charged, so we must start
ith a complex scalar field whose Lagrangian is invariant under the
roup U (1). Ho we ver, there are two possibilities. 

(1) The corresponding photon of the complex scalar field is the SM
hoton. In this case, the charge must be ultralight to be in agreement
ith the observational constrains in this respect that we have so far. 
(2) The corresponding photon interacts with the SM photon but

ot with the rest of the matter, the so-called Dark Photon. 

In this work, we have established the field equations for the
osmological evolution of the charged scalar field fluctuations. On
osmological scales, we do not see that dark matter can be charged;
e do not have any evidence of it, so we conclude that the charge can

art/stac3079_f4.eps
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Figure 5. The evolution of the absolute value of the Newtonian potential φ
(upper panel) and the evolution of the fluctuation of the scalar field δ� (lower 
panel). Note that in contrast to Fig. 3 , now the Newtonian potential has a 
strong quantum behaviour, while the scalar field perturbation evolves almost 
without oscillations, exactly the opposite situation as in Fig. 3 . This behaviour 
of δ� has been shown in several articles in the past, (see for example Matos & 

Urena-Lopez 2001 and Hlozek et. al. ( 2015 ) for a real scalar field and Foidl & 

Rindler-Deller ( 2022 ) for the complex scalar field. We put it here to compare 
these results with those presented in this work. Note that the evolution of 
these functions depends weakly on the character of the scalar field, for real, 
oscillations, and for complex scalar fields the evolution is similar. The charge 
does not play an important role here. This result is also compatible with 
Tellez-Tovar et al. ( 2021 ). 
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nly be generated as a fluctuation that we consider to be small, due
o observations in galaxies. This charge could be the origin of the
agnetic field observed in galaxies, as speculated in Hernandez et al. 

 2019 ). In this work, using the ansatz ( 51 ) and ( 52 ), we were able to
ntegrate the perturbed field equations in terms of the two background 
unctions a and n 0 , which can be easily integrated numerically. We
id it without and with the electromagnetic field. The interesting 
oint here is that these two toy models show us the fact that the
pace–time configuration of the final SFDM halo is the same as that
f an atom. This point is important, because this result is replicated
n realistic SFDM halo formation using numerical simulations. The 
ain conclusion we have, then, is that the SFDM haloes of galaxies

re real atoms and thus have, like an atom, different excited states
hat must be taken into account. This result is precisely the reason
hy the SFDM can explain the VPO and the FB in galaxies. This

esult, of course, has consequences. The first is that if this result is
orrect, we have to see the VPO phenomenon in many more galaxies.
he second is that FB must also be present in these galaxies and that

he energy of the flashes that we see now as X-rays or gamma rays
ust be even more energetic and we should be able to see them with

he right instruments in the near future. 
In conclusion, the quantum nature of the scalar field is the

undamental difference between SFDM and other models, and it 
s precisely this characteristic that can explain some phenomena 
bserved in galaxies that other models are unable to explain. 
uantum mechanics was developed to explain the microworld, but 
MNRAS 517, 5247–5259 (2022) 
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Figure 7. In this figure, we show the absolute values of the evolution of 
the fluctuation of the density of the scalar field. Again, the oscillations are 
a consequence of the influence of the quantum mechanical character of the 
SFDM. What we can measure is the average of fluctuation of the scalar field, 
which can be seen as almost classical. 
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ere we conclude that quantum mechanics might also be able to
xplain the dark side of the cosmos. 
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PPENDI X  A :  T H E  FIELD  E QUAT I O N S  IN  

ERMS  O F  T H E  UNITLESS  VA R I A B L E S  

sing definitions ( 85 ), we can extract the different values of the
hysical variables. First observe that we have 

v = 

κ2 

3 

m 

2 

H 

2 
n 0 = 

κ2 

3 
s 2 n 0 ; 

u 

v 
= e 2 iθ0 (A1) 

nd � 0 = 

√ 

3 u/s. 
If B μ = 0, using ( 77 ) as δ = 2 φ, and n = n 0 δ, we have 

= P 0 exp ( 
3 uv 

s 2 
− N ) , n = 

2 P 0 

κ2 

3 uv 

s 2 
exp ( 

3 uv 

s 2 
− N ) . (A2) 

n the other hand, δ� = � 0 δ = 

√ 

n e iθ0 , thus 

� = 

√ 

6 P 0 

κ

u 

s 
exp ( 

3 uv 

2 s 2 
− 1 

2 
N ) . (A3) 

Finally we calculate the quantum potential, in ( 17 ) the quantum
otential is defined as 
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n 0 . In order to see this value, we
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 . Using equations ( 86 ), we obtain that 
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In the general case, using variables ( 99 ) and that κ2 n 0 = 3 uv / s 2 ,
e have 
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We take the scalar field potential as V = m 

2 �� 

∗. Then, equa-
ions ( 72 ) and ( 73 ) reduce to 
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We can rewritte the previous equations in the N variable, taking
nto account that ẍ = H 

2 ( x ′′ − 3 / 2 �x ′ ). We obtain 
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MNRAS 517, 5247–5259 (2022) 


	1 INTRODUCTION
	2 THE FIELD EQUATIONS
	3 THE PERTURBED FIELD EQUATIONS
	4 THE MADELUNG TRANSFORMATION FOR KG FLUCTUATIONS
	5 THE FOURIER SPACE
	6 A TOY MODEL WITHOUT ELECTROMAGNETIC FIELD
	7 A TOY MODEL WITH ELECTROMAGNETIC FIELD
	8 THE GENERAL CASE
	9 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: THE FIELD EQUATIONS IN TERMS OF THE UNITLESS VARIABLES

