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Abstract

In this work we find solutions of the (n + 2)-dimensional Einstein Field Equations (EFE)
with n commuting Killing vectors in vacuum. In the presence of n Killing vectors, the EFE
can be separated into blocks of equations. The main part can be summarized in the chiral
equation (ag,gg’l),z + (ag,zg’l),z = 0 with g € SL(n, R). The other block reduces to the
differential equation (In fa'='/") . = 1/2atr(g . g~")? and its complex conjugate. We use
the ansatz g = g(&), where & satisfies a generalized Laplace equation, so the chiral equation
reduces to a matrix equation that can be solved using algebraic methods, turning the problem
of obtaining exact solutions for these complicated differential equations into an algebraic
problem. The different EFE solutions can be chosen with desired physical properties in a
simple way.

Keywords Chiral equations - Special linear group - Linear algebra approach to Einstein
equations

1 Introduction

The Einstein Field Equations (EFE) are one of the most interesting field equations in physics
and from a mathematical point of view, the search for methods to obtain solutions has led
to a large number of mathematical results. The first exact solution was obtained by Karl
Schwarzschild in 1916, but his study has been a long debate over the meaning of the solution.
‘We now know that the Schwarzschild solution represents a static black hole. His generaliza-
tion for a stationary solution had to wait more than 40 years to be found by Roy Kerr. These
solutions have been the cornerstone of the theory of general relativity and its interpretation
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and represent a stationary black hole. After the finding of Kerr’s solution, the exact solutions
area of the EFE has been very active, see for example [10]. Several mathematical methods
have been developed with great success to find exact solutions of EFEs. One of the most
successful has been the method of subspaces and subgroups, which is capable of generating
exact solutions on demand. It is possible to decide the exact physical content of the solution
from the beginning. That is why in this work we will adopt this solution method.

On the other hand, interest in higher dimensional theories began in 1919 with Theodor
Kaluza’s proposal for a five-dimensional space-time that unified gravitation with electromag-
netism. Kaluza proposes that the metric of a five-dimensional spacetime can be separated as
glsw = gﬁ,, + IzAuAv, for u,v =1,---,4, ggﬂ =TITA, and ggs = 12, where A, is the
tetraelectromagnetic potential and / is related to a scalar field, called dilaton, see for example
[8]. This theory has evolved to the unification of all interactions; electromagnetic, strong and
weak interactions with gravity. However, the theory includes quantum interactions, but it is
not renormalizable, nor is it quantizable. So people propose string and superstring theory to
have a quantizable renormalizable higher dimensional theory, see for example [2]. The price
they have to pay is that the extra dimensions must be singular. In this paper we propose that
the extra dimensions form an n-dimensional space with n — 2 Killing vectors that may be
singular and interesting enough to be studied.

In this work we pretend to find exact solutions of the EFE from the mathematical point
of view, using the method of space and subgroups which seems very successful to obtain a
great amount of exact solutions.

We start with an (n + 2)-dimensional space and are interested in 4-dimensional spacetimes
that are stationary and axially symmetric. This means that the 4-dimensional spacetime
contains two commuting Killing vectors whose extra dimensional space is (n —2)-dimensional
with n —2 commuting Killing vectors, so that the n-dimensional space contains » commuting
Killing vectors. Thus, in this case we can work in a coordinate system where the metric
depends only on two variables x! and x2, so that the metric tensor has the form

&= f (dx' ®dx! +dx2®dx2)+gwdx"®dx” )
where the components of g, f and g, for u, v =3, ..., n + 2, depend on two variables x!
and x2. In the following, we will denote the uppercase indices as A, B =1,...,n + 2 and

the Greek indices as u,v =3, ..., n+ 2.

Throughout this paper, the set of matrices of size m x n with entries in R is denoted by
M, <, we write M, if m = n. The identity matrix and the zero matrix are denoted by I,
and 0,, respectively, and, Sym,, is the subset of symmetric matrices in M,,.

This work is organized as follows. In Section 2 we follow [6] to write the main field
equations, obtaining the Ricci tensor for an (n + 2)-dimensional space with n commutative
Killing vectors. Section 4 presents the algebraic basis of the matrices used in this work. In
Section 5 we express these matrices by their Jordan normal form in order to solve the final
algebraic equation. In Section 8, using the Jordan form of matrices we obtain the solutions
of the algebraic equations. Finally, Section 9 contains some conclusions.

2 Field Equations

In this section we derive the main field equations for an (n+2)-dimensional Riemannian space
with n commuting Killing vectors. The metric components depend only on the coordinates
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éap = &ap(x', x?). In this case, the Christoffel symbols are given as

1, A N .
riz= EgCD (8pa,B +&DB,A — 8AB,D) - )

For the metric (1) we have

Ph=5nf)1, Th=3Un ), Tyy==3(nf)1, Th = 38"8w,.i,

~ 1 3)
r%z = j(]nf),z s rlzz = j(]nf),l s rfl = —j(ln o2, F;w = —jg}:v,
the remaining components are zero.
In order to compute the Ricci tensor with our metric,
_ rC C C D C D
Rap=T4pc—Tac g+ Tpclap —Tpplac - “

it is convenient to use the variables z = x1 + ix2 and its complex conjugate, z. Hence, the
non-zero components of the Ricci tensor are as follows:

1
Rip = =2(n ),z = 58" o288z = () oz + (@) (In 1) ; ®)

1 1
—Zg““gw,zg”ﬂgﬁu,z —(Inao)zz 4+ (Ina) z(In f) z — Zg““gau,zg”’sgﬁu,z (6)

1
Ry = —2(In fa) .z — Eg““gav,zg”ﬁg,eu,z + (ne) ., — (ne) . (n f) (7

1 1
28" 828 P gpu: + (00 zz — (n) 2(n )z + 28" gon 28 gz (®)

. 1
R =i[(na)zz—(na)z:(n f),z+1gaﬁ,zgﬁ’/gy5,zg§a—(ln a) .+ (na) (n ). (9)

1
_Zgozﬂ,zgﬂygy&zgsa] (10)
1
R/UL = _ﬁ [ (@8uw.z8").: + (81w :8"") 2] (11)
where det g, = —a?.

We will use matrix notation, let us define the matrix g from the components of the metric
tensor g, as follows:

(&) = &uv - (12)
Note that the matrix g is real and symmetric, that is, denoting by 7' transpose of a matrix,
detg = —a’ (13)
g=g (14)
g' =z¢ (15)

The vacuum Einstein equations are given by
Rap=0. (16)
From Rl‘i = 0 we obtain the chiral equations
(@gz8™ ) + (@g.:87):=0. (17
Its trace gives a differential equation for o:

azz=0. (18)
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From now on, the index Z will take the values z and z. Using Rj; — Ry &+ 2iRj2 = 0 we
find -
o tr -
(n fa) 7 = S22 4 828 ) (19)
oz 4(Ine),,
Both Equations (for z and 7) satisfy
1 _ _
(In fo) 2 == tr(gg'gzg™"). (20)
Using the transformation
g— —a g 1)

we normalize g, i.e., det g = (=1)"*!. Therefore, g is a symmetric matrix in SL(n, R).
The chiral equation (17) does not change under the transformation (21), whereas (19)
takes the form

t —152
(In fa'='/m) , = ozz  w(gzg ) 22)
’ 4(na) 7z
The chiral equation (17) is invariant under transformations
g — CgCT (23)

where C € SL(n, R) is a constant matrix. The general solution of the differential (18) for o
is given as

a(z,2) = az(2) + z(2) (24)

where o, and oz are arbitrary functions. Chosing Weyl coordinates, i.e.,

z2+z
= , 25
o 5 (25)
Equations (22) are reduced to
|

(In fa' =1 7 = Satr(g zg™)?. (26)

The next sections will introduce important quantities to transform the differential equations
7).
3 One-Dimensional Subspaces

Suppose that g depends on parameters & which are arbitrary functions of the variables z and
Z. Then, the chiral equation (17) changes to

200 (868 ebbz + 868 ((@E2)z + (@£2)..) = 0. 27)
Now we assume that the parameter £ satisfies the Laplace equation
(@€ )z + (akz) =0, (28)

1

then g ¢g~ = A is a constant matrix. Note that each new solution of the Laplace equation
gives another solution for g. From the properties of the matrix g we obtain

A=A (29)

trA =0 (30)

Ag = gA" (31

@ Springer
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Equations (29) and (30) imply that A belongs to the Lie algebra sl(n, R), the Lie algebra
corresponding to the group SL(n, R). The matrix A varies as

A — CAC™! (32)

under the transformation (23). The relation (32) separates the set of matrices A into equiva-
lence classes. We will work with a representative matrix of each class.

4 The Subspace Z (A)

It is possible to find the general form of g given A if we consider the property (15), together
with the intertwining relation (31) satisfied for the matrix A. To do so, let us define the
following set.

Definition 1 For any non-zero matrix A € M,,, define the set Z(A) as
I(A) = {g € Sym, : Ag = gA"}. (33)

Observe that g € Z(A). Thus, the problem of finding the form of g has been transformed
into a linear algebra problem. First, let us derive the following useful properties.

Theorem 1 For any non-zero matrix A € My, Z(A) is a subspace of the vector space M,,.

Proof Let o € R and let X, Y € Z(A). We have (¢ X)” = aX” = aX and (X + V)T =
XT +vT = X + Y. Then, A(aX) = ¢(AX) = «(XAT) = (@X)AT and A(X +7)
AX 4+ AY = XAT + YAT = (X + Y)AT,sothataX € Z(A) and X + Y € Z(A). o

Definition 2 For any non-zero matrix A € M,, and & € R, define
EA _ 5 L4k
et = kZO 2 A" (34)

For more information on the exponential matrix, see, for example, [3, 11]. The following
lemmas are corollaries of the above.

Lemma1l Let A, g € M, be non-zero matrices and € € R. Then ¢4 g = geSAT if and only
if Ag = gAT.

Proof We define the matrix function F (&) = eéAge’“T ts derivativeis F/(§) = 54 (Ag—
gAT)e™$A" If g € T(A), then F'(§) = 0, so that F(£) = F(0). Therefore, ef4g = geA’ .
Now, if ef4g = geéAT, then F(£) = F(0). Its derivative at £ = 0 gives Ag = gAT. O

It is convenient to reduce the matrices we work with to simple matrices using the equiva-
lence relation (23). In particular, to facilitate the computation of the matrix exponentials, we
will use the Jordan matrices introduced in the next section.

5 Jordan Matrices

The invariance (23) allows to use normal forms for the matrix A which then is used to
determine the matrix g. In this work we choose the real Jordan form of a matrix, because

@ Springer



270  Page 6 of 28 International Journal of Theoretical Physics (2023) 62:270

of its simplicity, and, since in this representation the matrix A is always real even if it has
complex conjugate eigenvalues. For an example of using the natural normal form of matrices
instead of the Jordan form, see [5], where the group SL(3, R) was discussed. Here we are
going to focus on the group SL(5, R) in its Jordan representations. For more information on
the Jordan form, see, for example, [1, 4, 9].

Itis well-known that any real square matrix may have real and complex eigenvalues, where
for each complex eigenvalue o + Bi, also its complex conjugate o — fi is an eigenvalue. To
avoid to include the complex values explicitly in the Jordan matrix, it is possible to include
each such pair o + Bi as represented by a real 2x2-matrix

o« —p
A:[ﬁa] (35)

Therefore, we will consider Jordan blocks of two kinds, one for the real eigenvalues and
another type for the pairs of complex conjugate eigenvalues. Furthermore, it is convenient
for our work to represent the Jordan matrices as decomposed into blocks which make visible
the type of eigenvalues. In consequence, we introduce several types of Jordan blocks and
matrices, more general as the standard notions from the common literature, as follows.

Definition 3 For A € R, a Jordan cell J, (1) € M,, is an upper triangular matrix of the form

A1 0 ---0

Al .- 0
T = (36)

Al

A

Definition 4 Suppose
_|a—8 .

A—I:'Bai|€M2,Wlth/3>0. (37)

A Jordan A-block of the first kind J,,(A) € My, is a block upper triangular matrix of the
form

AL 0y ---0p
AL -0
J.(N) = . (38)
A D
A

In the remainder of the article, A if not specified, is supposed to have the form in (37) .

Definition5 Let A € Rand ny, ..., n, be positive integers such thatn = nj; + ...+ ny,. A
Jordan matrix J,, _,. (1) € M, is a block diagonal matrix

Jnts i (1) = diag [-’nl ), ..., i ()”)] (39)
where J,;; (1) are Jordan cells foralli =1, ..., m.
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Definition 6 Let n1, ..., n, be positive integers such that n = ny + ... + n,. A Jordan
A-block of the second kind J,,, ., (A) € My, is a block diagonal matrix

,,,,,

Jntrng (N) = diag [Ty, (A, ..., Ju, (A)] (40)
where J,; (A) are Jordan A-blocks of the first kind foralli =1, ..., m.

Definition7 Let; e R,i € {1,2,---, p} and

Ae=| %Pl emy keq2 L g) @1
Bk ok
with B > 0, such that all scalars and matrices are distinct. Let m’] e mii and n]]‘, AU n’s‘k

be positive integers such that m! = m’1 +.. .+m§i, nk = n]]‘ +.. .—l—n];k, m=m'+...+mP
andn =n' +...+n4. A generalized Jordan matrix J € M,,,, is defined as a block
diagonal matrix of the form

~~~~~~~~~~~~~~~~~~~~~~~~

where J_ i . (A;) are Jordan matrices for all A;, and .]nl]<

------

of the second kind for all i € {1,...,plandk € {1,...,q}.

,,,,,

Theorem 2 (from [4]) Each A € M,, is similar via a real similarity transformation matrix, to
a generalized Jordan matrix of the form given in Definition 7 in which the scalars Ay, ..., Ap
are real eigenvalues of A, and its complex conjugate eigenvalues ay =+ i By are represented
by the matrices Ay forallk € {1, ..., q}.

Theorem 3 Let A € R and J,,()) be a Jordan cell. Then Z(J, (X)) coincides with the set of
all real square matrices of order n which are of the form

X1 X2 -+ Xp

x2 x3 -+ 0
(43)
X, 0 -+ 0
Proof Let be
X111+ Xin
X=|: - @ |eM, (44)
Xln = Xnn
The intertwining relation J,(A)X = X JnT (1) implies the following:
Xiy1,j = Xi j+1fori, je{l,...,n—1}, xx, =0fork € {2,...,n} 45)

Equations (45) mean that all entries of any antidiagonal of X, are equal, and, that all antidi-
agonals below the main antidiagonal are zero. O

Lemma 2 Let m and n be two positive integers such that m < n and let X € My, «y,. Then
any Jordan cells J,,, J,, satisfy that

InMX =XIT () & X=[Y0],YeZ(U®). (46)
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Proof Let p be a positive integer such thatm < p <n— 1. If J, (W)X = X JnT (1), then
In(0)X = XJT(0),s0that J}, (0)X = X (J;/(0))T. Therefore X (J (0)T = 0.If p = n—1,

then x;, = O foreachi € {1, ..., m}. Proceeding analogously in decreasing order to p = m
we obtain
X11 ** X1m O “ee 0
X = R (47)
xml ... xmm 0 ... O

Hence, we can write X = [ ¥ 0], where Y € M,,. If we partition J,, (1) as

Jm()\) Eml
J,(A) = ’ 48
1) [ A Jn_mm] (48)
where
Eui= R eMm><(nfm) (49)

then the intertwining relation J,,(0)X = X JnT (0) implies J,,(M\)Y =Y Jn{ (A),sothat Y €
Z(Jm(A)).

Now, let X = [Y 0] € Myx, and let Y € M,,. If Y € Z(J(A), then J,, (L)Y =
Y JT (%), which implies that J,, (A\) X = XJT (1). o

Lemma 3 Let m and n be two positive integers such that m > n and let X € My, «y,. Then
any Jordan cells J,,, J,, satisfy that

In)X =XJT ) = X = [ﬂ LY € ZT(1, (M) . (50)
Proof We rewrite J,,(M)X = XJnT()\) as J,(WXT = XTJ,Z(A). By Lemma 2 we have
xT =[y o]withYeI(J,,(A)),hencex=[ﬂ. o
Theorem 4 Let ny, ..., ny, be positive integers such thatn = ny + ...+ ny, A € R, and
let Jy,,...n,, (X)) € M, be a Jordan matrix. Then every matrix X € Z(Jy,,... n,, (X)) is a block
matrix of the form
X1 Xim
X = P, (51)
Xm1 -+ Xmm
where foreachi, j € {1,...,m}, Xij € My, xn; satisfies XZT/ = X j; and are of the following

form:
(i) If n; = n; then X,’j € Z(-’ni (A)).
(ii) If ni < nj then X;j = [ Yij O] with Y;j € I(J,, ().

(iii) If n; > n; then X,'j = |:Y;Z)Ji| with Yl'j € I(Jnl.()»)).

Proof Leti, j € {l,....,m}.If X € Z(Jy,... .n, (X)) then Jy,  n, (WX = XJ,,T1 """ n,, () and
XT = X, so that Jo, (M) Xij = XU-J”T]_ (A)and X j; = XIC If n; = n; then X;; is symmetric,

..........
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so that X;; € Z(Jy; (A)). By Lemma 2 we have that X;; = [Yij O] with Y;; € Z(Jy; (1)) for

n; <nj.Forn; > n;, by Lemma 3 we find X;; = [I:')J] with Y;; eI(Jnj(k)). ]

Lemma4 Forany A = [Z _a’B:| € My with 8 > 0, Z(A) coincides with the set of all real

symmetric 2x2- matrices of the form

a b
[ b —a ] (52)
Proof For any
X1 x
X_[x3 xJeMz, (53)
from the intertwining relation AX = X AT together with § > 0 we get x3 = x2 x4 = —x1.0

Lemma5 Let X € My, A = [‘; _aﬂ] € My with B > 0. Any Y € Z(A) satisfies that

AX=XAT4+Y — XeZI(A),Y=0. (54)

Xy a b .
Proof Let X = i € M. If Y € Z(A), then Y = b—a € Mj;. The relation
AX = XAT 4 Y together with 8 > 0 impliesa = b = 0, z = y and t = —x. On the other
hand, if X € Z(A) then AX = XAT, hence Y = 0. o

Theorem 5 Let J,(A) be a Jordan A-block of the first kind with complex conjugate eigen-
values represented by A = |:oz —p ] Then

B o
X1 Xo - Xp
Xy X3 --- 0p
I(Ju(N)) = .. | eM,: XieZ(A)foriel,...,n} (55)
Xn 02 02
Proof Forn = 1 see Lemma 4. For n = 2, let
XY
f{=|:ZTi|€M4 (56)
where X, Y, Z, T € M. The intertwining relation Jo(A)X = 3€]2T (A) implies
AT =TAT
AZ=ZAT +T
, 57)
AY+T=YA

AX+Z=XAT+vY

The first one of the (57) implies that 7 € Z(A). Applying Lemma 5 to the second and third
ones of (57), we obtain Y, Z € Z(A) and T = 0. Using Lemma 5 in the last one of (57) we
find that X € Z(A) and Z = Y. Thus

T(h(A)) = {[); g} XY eI(A)} . (58)
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Now, assume that the property is true for n and let us prove that it is satisfied for n + 1.
Ju41(A) can be partitioned as follows:

A E
where E; = [, 0 -+ 0] € Maxa,. Let
TY]
X= [Z X | € Ma(nt1) (60)

where X € My, Y =Yy -+ Y, |, ZT =[Z] --- ZT'], and all matrices T, Y, ..., Y,,
Z1, ..., Z, belong to M.
If Jy11(A)X = XJ] | (A) then
T(M)X = T (A)
J(MNZ =AY + E1X
ZAT + XET =vJl(A)
AT +EZ=TAT +YET

(61)

From the one of the (61) we obtain X € Z(J,(A)). By the induction hypothesis we can write

X1X2...Xn
Xy X3 -+ 0

X=| . . . . (62)
X, 0 --- 0

The second and third one of (61) imply that
AZy =Z, AT + X, AY, 4+ X, =Y, AT
AZp i+ Zp=Zn AT + Xp_t, AYuo1 + Xu1 = Yot AT 4+ Y,
(63)
AZy+Z3=20AT + X, A1+ Xo=VAT + 13
AZi1+Zy=ZIAT + X1, AV1+ X1 =V AT+ 7, .

Using Lemma 5 for (63), one obtains X, =0, Z, =Y, = Xy—1,..., Z3 =Y3= X3, 72 =
Y> = X1and Z1, Y1 € Z(A). Then, applying Lemma 5 in the last one of (61) gives Z; = Y.
Therefore,
T Y Xp- Xp—i
Yi X1 X,--- 0
x=| X XX 0 (64)

Xpo1 00 - 0
Finally, it is obvious that X7 = X. O

Lemma 6 Let m and n be two positive integers such that m < n, and let X € My, x2,. Then

In(M)X = XJ](A) ifand only if X =[Y 0], Y € Z(Ju(A)) (65)
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Proof Let
X1 X
X = o € Mayixon (66)
X1 - Xonn
where X;; € Mp foralli € {l,...,m} and j € {1,...,n}. The intertwining relation

In(M)X = XJnT (A) implies the equations
AXpn = Xmn AT
AXin + Xiz1n = Xin AT
AXmj = X AT 4 X i1
AXij+ Xiv1j = Xij AT + Xi j1

(67)

foreachi € {I,...,m — 1} and j € {1,...,n — 1}. The first one of the (67) implies
Xmn € Z(A). Moreover, applying Lemma 5 to the second and third ones of (67), one obtains
that X1, € Z(A), X0y, = -+ = Xpyp = 0and X1 € ZA), X2 = -+ = Xy = 0,
respectively. Now, we will only use the last one of (67). Let us write X, instead of X1,. For
Jj = n — 1, taking into account Lemma 5, we get X ,—1 € Z(A), X2.0—1 = X, X3 p—1 =
«o+ = Xy -1 = 0. Also, let us write X,,_ instead of X ,_. Proceeding analogously as
before, it turns out that

X1 o Xpemt1 Xn—m+2 -+ Xa
X=| : - : ; ol (68)
Xy X 0 . 0

where X; ;1 = X;; withi + j < n + 1. However, we had found that only X,, is non-zero
in the last row. Then, X, = --- = X,, = 0, so that

X Xn0---0
X=| t . ot (69)
Xp-- 00---0

On the other hand, we may partition J,,(A) as

_ Jm(A) Em,l
-]n(A)—|: 0 Jnfm(A)] (70
where
00---0
Eni=| " - | € Mamx20—m)- (71)
00---0
LO---0

Let X € My, and X = [ X 0] € Myyon. If X € Z(J,u(A)) then J, (A)X = X I (A),
hence J,, (A)X = XJT(A). O

Lemma 7 Letm andn be two positive integer numbers suchthatm > n, andlet X € Moy, x25-
Then
Y

In(MX =XIT(A) &= X = [0

] , Y eZ(J,(A)). (72)
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Proof This can be proved in a similar way to the proof of Lemma 6. O
Theorem 6 Let ny,...,n, be positive integers such that n = ny + ... + ny, and let
Jnp,onm (N) € Moy, be a Jordan matrix with complex conjugate eigenvalues represented

o —

byA:|:

B o | 1hemeverymatrix X € LUn,....
X1 Xim

X = (73)
Xml e Xmm

where foreachi, j € {1,...,m}, X;; € M2n,-><2nj and X j; = Xl.T/ which are of the following

form:
(i) If n; = nj, then X,‘j € Z(Jn,- (N)).
(ii) If ni < nj, then X;j = [ Yij 0] with Y;; € I(Jn, (A)).

(iii) If ni > nj, then X;; = [%] with Y;j € (Jy;(A)).

Proof Leti,j € {1,....m}.1f X € Z(Jn,....n, (A)) then Jy, _p, (MX = X (A)
and XT = X, hence J (M) X = Xl-jJnTj(A) and X;; = X£ It is obvious that X;; €
T(Jn; (M) for nj = nj. If n; < nj, by Lemma 6 we have X;; = [Y;; 0] with ¥;; €

..........

Z(Jy; (A)). Using Lemma 7 we find that X;; = [I:’)’ ] with Y¥;; € I(Jnj (A) forn; >nj.0

Theorem7 Let J be a generalized Jordan matrix due to Definition 7. Then Z(J) is the
set of all matrices diag [Xl, s Xp, YL Yq] such that X; € I(Jm;] mi. (Ap)) for all

.....

.....

Proof Leti, j € {l,...,p}andk,l €{1,...,q}. Let
[ X1 - Xip Z11 - Zig ]
Xp1 - Xpp Zpt -+ Zpg

eM 74
Ty --- Tlp Yy - qu m+2n (74

_qu qu qu qu_

where X;; € M, iy ni> Yo € Mokyonts Zit € Myiyo, and Tyj € My iy, I JX = xJT,
then

Dot G)Xij = XijJ 1,5 () (75)
i [RERUL

Jnlf ..... né‘k (A Yk = Yu Jnjl; ’’’’’ ”.[s'[ (Ap) (76)

Do, OV Zi = Zid e (M) )

Since the Jordan matrices do not have common eigenvalues, by the Sylvester’s theorem on
linear matrix equations [1, 4] we have X;; = Ofori # j, Yy = O0fork #1,Z; =0
and Ty; = 0. Furthermore, if X is symmetric, X;; and Yy are also symmetric, so that
Xii € I(‘Im’i m;,' (A;)) and Yy € I(J”]fﬁ---’"fk (Ag)). O

,,,,,
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Theorem 8 Forany x; € R, i € {1, ..., n}, the following determinant formula holds:

X1 X2 - Xp

X2 x3--- 0 _ (_)n(n_1)/z A (78)
o 0 o 0
Proof Let 1
K, = . eM, (79)
1

be the exchange matrix. Using that det K, = (—)""~1/2 we find

X1 X2 -+ Xp Xn Xp—1 -+ X1 1
.o 0 0 e
X2 X3 _| x.n X2 1 _ (_)n(n—l)/2 . xr': (80)
X, 0 - 0 0 0 ---x,| Il
O
Theorem 9 Let X; € Z(Z) fori € {1, ..., n}. The following determinant formula holds:
X Xo - X,
X2 X3--- 0
.o = | Xu/" (81
X, 0 --- 0
Proof By means of the properties of the determinants we have
I K>
=(-D" =(—1)"detKy, =1 (82)
I K>
Then,
X1 Xo - Xn Xn Xn—1 - Xi b
Xy X3--- 0 0 X, -+ X» L
R P Y e b A (83)
X, 0 0 0 0 X, I
O

6 Computing One-Dimensional Subspaces

Now we will apply the properties of Jordan matrices deduced in the last section, to obtain
knowledge about the matrix g.
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Theorem 10 Let & € R, and let J, () be a Jordan cell. Suppose g € Sym,, as a matrix
Sfunction such that g ¢ = J,(L)g. Then

X1 Xo -0 Xp
X X3--- 0
a=| . . (84)
X, 0 --- 0
where .
n—i g/
A
Xi() =e*y " Gt (85)
j=0
and C; is constant for eachi = 1, ..., n.

Proof Applying g = g7 to ge=Ju(M)g wegetJ,(A)g = anT (A), then g € Z(J,,(1)). By
Theorem 3, g has the form given in (84). From g ¢ = J,(1)g we obtain

Xne = AX,
Xn—l,é =AXp-1+ Xy
(86)
X1e=2X1+ X2
Integrating successively we get (85). O
Theorem 11 Let ny, ..., ny be positive integers such that n = ny + ...+ n,,. Let A € R,

and let Jy, ... n, (M) € M, be a Jordan matrix. If g € Sym,, is a matrix function such that
8. = Jni,..n, ()8, then
Xt Xim
8niveny (M) = 87)
X1 - Xoum
where for each i, j € {1,...,m}, the matrix X;; satisfies XIC = Xj; and is defined as

follows:

(i) ifn; = nj then X;; = gn; (A),
(ii) ifn; < nj then X;; = [gni(k) 0],

(iii) if n; > nj then Xij = |:gn_,~0()\)i|’

where gy, (A) is defined as in Theorem 10.

Proof Leti, j € {1,...,m}. Applyingg = g” toge = Ju,...n, M)gWegetJy, (Mg =
gJr . (W), then g € I(Jy,....n, (M)). By Theorem 4,
X116 - X1m(8)
g) = : (88)

Xml(é) e Xmm(é;—)
where X;; € M, xn satisfies X j; = X; and is of the following form:

) Iftn; = n; then X,‘j € I(Jn,- Q).
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(ii) If n; < nj then X;; = [ Yy, 0] with Y,,, € Z(J,,,(A)).

(iii) If n; > n; then X;; = |:Y8-f ] with Yy, € I(J,,j (A)).

From g & = Ju,....n, (Mg We have X;j ¢ = Jn, (M) Xij. Observe that Xj; ¢ = (Jp, Xij)" =
le.JnTi ) = Jnj (M) X ;. By Theorem 10 we obtain
(i) If n; = nj, then X;; = gy, (A).
(i) If n; < nj, then Xijg = Jy, (V) Xij implies Yy, ¢ = Ju, (W)Y, 0 that Y, = gu, ().
Therefore X;j = [ gn;(A) 0]
(i) If ni > nj, then Xjje = Jo,()Xyj = XijJ,[ () implies Y, ¢ = Yo, /() =

Jnj ()L)Ynj, so that Ynj = &n; (A). Hence Xij — |:gn]0()\) ]
[}

Theorem 12 For any Jordan A-block of the first kind J,(A), if g € Sym,, is a matrix
Sfunction such that g ¢ = J,(A)g, then

Z\ Zs -+ Zp
ZyZz - 0
amy =] 0 (89)
Z, 0 -2 0
where
_| X1 N
2= 3 %)
n—l Sk n—l Ek
— & £
Xi(§) = €% cos p& Z HCkJrl — €% sin p& Z EDIFFI (90)
k=0 k=0
n—l g_—k n—I Sk
V(&) = e cos pE Y = Dy + e sinpE Y - Ci
k=0 k=0
and Cy, Dy are constant forl =1, ..., n.

Proof Leti,j e (1,...,n}. Applying g = g7 to 8. = Jn(N)g we get Jy(A)g = anT(A),
then g € Z(J,(A)). By Theorem 5 we can express

Z1(8) Z2(8) -+ Zn(§)
Z5(8) Z3(§) --- 0

o= . O1)
Zyé&) 0 - 0
where
_ | Xi) Yi§)
L) = [Y,-@) —X,»@)} ' ©2)
From g ¢ = J,(A)g we have
Zne =M\Zy
anl,E =Ay-1+ 2y
(93)

Zig =M1+ 2o
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Integrating successively we get

n—i j
ey EA 1P | G Di
Zi§) =e ;‘)ﬂcﬁ,, c,—[Di —ci]' (94)
Using
EA _ af | COSBE —sin BE
e =¢ [sinﬁs cos BE ©3)
we obtain (90). ]
Theorem 13 Let ny, ..., n, be positive integers such that n = ny + ... + ny, and let
Jnponn (N) € Mo, be a Jordan A-block of the second kind. If g € Sym,, is a matrix
Sfunction such that g ¢ = Jyu, . 5, (A)g, then
X1 Xim
&npny (A) = . (96)
Xml e Xmm

The matrices X;j satisfy X 5 = Xj; and are defined as follows:

(i) ifn; = nj, then X;j = gn; (N),
(ii) if ni < nj, then X;j = [ gn;(A) 0],

(iii) if n; > nj, then X;; = |:gn_,»(§A)i|’
where for each i, j € {1,...,m}, gy;(N\) is defined as in Theorem 12.
Proof The proof is similar to that of Theorem 11. O

Theorem 14 Let J be a generalized Jordan matrix due to Definition 7 and g € Sym,,, ,, a
matrix function such that g ¢ = Jg. Then

g = diag [gm !

................

......

respectively, for each i, j € {1,..., plandk,l € {1,...,q}.

Proof Applying g = g” to ge = Jg we get Jg = gJT, then g € Z(J). By Theo-
rem 7 we have g = diag [X1(§), ..., X, (&), Y1(§), ..., Yy ()], where X;(§) € M, and
Y (&) € M, x are matrix functions fori € {1,..., p}and k € {1, ..., g}. The linear differ-

...........

..........

eachi € {l,...,plandk € {1, ..., ¢} O

7 Equivalence Classes for the Matrix A
In this section we resume some facts from linear algebra which permit to describe the simi-

larity equivalence classes for the matrix A € SL(n, R) from Section 2, recall that A is a real
traceless matrix which satisfies that Ag = gAT.
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Definition 8 A real square matrix is non-derogatory if its minimal polynomial and charac-
teristic polynomial are equal.

Definition 9 Let

P = A"+ ap T L aih +ag (98)
be a polynomial and ¢; € R fori = {1, ..., n}. The matrix
o 1 0 -+ 0
o o 1 --- 0
: : Lo : 99)
o o o0 --- 1
—ap —ay —az -+ —dp—1

is the companion matrix of the polynomial p(A). The matrices of the form (99) are called
natural normal cells.

Theorem 15 (from [4]) Let A be a real square matrix with characteristic polynomial p(\).
If A is non-derogatory, then A is similar to the companion matrix of p(A).

Definition 10 Letny, ..., n,, be positive integers such that n = ny + ... 4+ n,,. A matrix of
the form
A =diag[A, ..., An]l €M, (100)

is called natural normal form if

(i) A; € M, arenatural normal cell with characteristic polynomial p; (A) fori € {1, ..., m},
(ii) for every j € {1, ..., m — 1}, the polynomial p; (1) is a divisor of p;,1(A).

Theorem 16 (from [1]) Every real square matrix is similar to a unique natural normal form.

Definition 11 Let
pit(d) -+ pia(d)

pP= e M, (101)

pni(X) -+ pun(A)
be a polynomial matrix and Dy ()) the greatest common divisor of all minors of order k in P
for k € {1, ..., n}. The invariant factors of P are defined as follows:

Dz(}»)’m ) = Dy (2) ’
Di(3) Dy_1(0)

di(0) = D1 (h), dy(h) = A1) =0, dy)=0.  (102)

If all minors of order k are equal to zero, then D (1) = 0.

Lemma 8 (from [5]) Let A € M,, be the companion matrix of the polynomial p(}). The
invariant factors of the matrix A are equal to 1, ..., 1, p(X), where the number of the I’s
equals (n — 1).

Lemma9 (from [5]) Let A be the matrix of Definition 10. The invariant factors of the matrix
A,areequaltol, ..., 1, p1(A), ..., pm(X), where the number of the 1’s is given by (n —m).

Theorem 17 (from [1]) Two real square matrices are similar if and only if they have the
same invariant factors.
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Definition 12 Let n and m be positive integers such that | < m < n.
Nun={mn1,....np) €Z™:0<n) < <np,n=n;+...+ny} (103)

Theorem 18 Let n and m be positive integers such that 1 < m < n. The equivalence classes
of the matrix A € sl(n, R) are as follows:

o 1 0 --- 0 O
o o 1 -~ 0 0
A=y @ 0 o |eM,
o o0 o0 --- 0 1
—ap —ay —az -+ —ap— 0
and [Alw,,...n,), Which is the set of matrices diag[A1, ..., A;yl, where the matrices
Ay, ..., Ay satisfy the following:
— A; € My, are natural normal cells fori = {1, ..., m},

- (n1,...,nn) € Ny,
pa;(X) is adivisor of pa;,,(A) for j ={1,...,m — 1},
trA; +...4+trA, =0.

Proof Let X € sl(n,R). By the Theorems 15 and 16 we have that if X is non-derogatory,
then X is similar to a natural normal cell, or, is similar to a natural normal form. Suppose
that X is similar to A.

First case, A has the form (99). Since that trX = 0, then trA = 0, so that a,,_; = 0.

Second case, there exist an integer m € {2,...,n} such that A has the form
diag[Ay, ..., A,l, where A; are natural normal cell with characteristic polynomial p4, (1)
of degree equal ton; fori = {1,...,m}andn = ny+...+4n,. Since that DA, (A) is adivisor
of ij+1(A), thenn; < n;; foreach j € {1,...,m — 1}, so that (ny,...,n,) € Ny p.
Using the properties of the trace of a matrix we gettrA; + ... +trA,, = 0, then for m = n,
we have A = 0,,.

By the Theorem 17 we find that X has the same invariant factors that A. This means
that the equivalence classes are determined by the invariant factors of A. Therefore, A is a
representation of the equivalence class where X belongs. O

8 Example: One-Dimensional SL(5, R)-Subspaces

As an example to illustrate our results we will find the solutions for g considering A as
member of the Lie algebra s[(5, R). For this, the following steps must be performed:

(i) compute the sets Ny, p,

(i) find the equivalence classes for A,
(iii) obtain the real Jordan forms for every equivalence classes,
(iv) determine g for each real Jordan form.

The method can be used for n > 2. It is easy to find the sets

Naos = {(1,4), (2,3)} (104)
N3s =1{(1,1,3),(1,2,2)} (105)
Nys =1{(1,1,1,2)} (106)
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Hence, we have six equivalence classes: 2 = [A]y, B = [A]23), € = [Ala4), D =
[Al1.2,2), € = [A](1,1,3) and § = [A](1,1,1,2).

In what follows, we will explain in detail how to determine B. The other five equivalence
classes can be obtained in a similar way, all classes are shown in Table 1. Let A € ‘B, then
A has the form diag [A, A>], where A| € M, and Ay € M3 are natural normal cells. By
Lemma 9 the invariant factors of the matrix A are given as 1, 1, 1, pa, (1), pa, (1), where
pa,(A) and pa,(X) are characteristic polynomials of A and A, respectively. Note that the
degree of the polynomials p4, () and pa,(A) are 2 and 3, respectively. Now, assume that
pa,(A) = A2 — b — a, where a,b € R. Since pa,(A) is a divisor of pa,(A), we can
suppose, without loss of generality, that pa, (1) = (A — ¢)pa, (1). From the characteristic
polynomial of A, pa(A) = pa,(A)pa,(X), we find trA = —2b — ¢ = 0, then pas, (1) =
(A 4 2b)(A2 — bA — a). The matrices A; and A, are also the companion matrices of p4, (1)
and pa,(A) = A3+ bA2 — ch — 2ab, respectively, hence

010

01
A1=|:ab]A2= 0 01 (107)
2ab ¢ —b
Table 1 Equivalence classes for the matrix A € sl(5, R)
Class Matrices Invariant factors
r0o1000
00100
A 00010 LLLLA -3 —ca2—br—a
00001
labcdO
rol
ab
B 010 L1, 1,22 —br—a, (A +2b)A2 —br —a);
001 c=a+2b?
2ab ¢ —b
M4q
0100
¢ 001 0 L1, A—q, A —q)(A3 +2gA2 +br+a):
000 1 c=(bg—a),d=2¢*—b
L agcd—q
[q
0 1
D 3¢%/2 —q/2 LLa—q. 0o—q)(*+39/2). 0.— )0+
0 1 3¢/2)
L 3¢%/2 —q/2
cy _
q
¢ 01 0 1,l,k—g,k—q,(k—q)(k2+3qk+a);
00 1 b=3q"—a
L aq b —2q |
" Z
q
S q LA—q,A—q,A—q,(—q)(A+4q)
0 1
L 4q —3q |
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where ¢ = a + 2b%.

In order to obtain the real Jordan forms of 3, we consider the fact that a quadratic equation
with real coefficients can have either one or two distinct real roots, or a pair of complex
conjugate roots. Hence we can rewrite

(i) pa,(A) = = r))(A —12), pa,(A) = (h — r1) (A — r2)?, where ry # 12

(i) pa, (M) = (A —=r1))(A —12), pa,(A) = (A —r11)(A —1r2)(A —r3), Wwhere r| # 1y # 13
(iti) pa, M) = (A — )%, pa, (W) = (A — r1)>.

(V) pa,(A) = = rD)2, pay(A) = (O — 1) (A — r2), where 11 # .

V) pa, (W) = (A —r)? 462, pa,(W) = (. —r1)? + 62 (A — r2), where 6 > 0

so that A; and A, are similar to

(1) diag [J1(r1), J1(r2)] and diag [J1(r1), J2(r2)]

(ii) diag [J1(r1), J1(r2)] and diag [J1(r1), J1(r2), J1(r3)]
(iii) J2(r1) and J3(r1)
(iv) J2(r1) and diag [J2(r1), J1(r2)]

™) i [’0} ;19] and diag [11 [’6‘ ;19] i (rz)]

respectively. Therefore, A is similar to

(i) diag [11,1(“), J12(r2)]

(ii) diag [J1,1(r1). J1.1(r2). J1(r3)]
(iii) J2,3(r1)
(iv) diag [ J2,2(r1), J1(r2)]

(v) diag |:le1 [g :19:| /i (r2)j|

Applying the condition trA; 4 trA; = 0 we get

(i)rl 2—351/27”2:%61 #0
(ii) 2r1 +2rp+r3 =0

(i) r; =0
(iv)yri=q,r2=-4q,9 #0
WMri=q,rn=-4q9,9 #0

The real Jordan forms for every equivalence class of A is presented in the Tables 2, 3, 4, 5, 6
and 7. Note that ¢ is a real constant, also r and 6, with or without indices, are real numbers.
Finally, we determine g for J5 3(0). By Theorem 11 we obtain g = |:§1Tl ?2 i|, where
12 822
g12=[h 0] € Max3:g11,h € Mpand g2, € M3 are matrix functions given by Theorem 10.
Thus

(A + A Ay
g1 = 4 0 ] (108)

[ Bi + B2§ + B3£%/2 By + B3E B3
§n = B> + B3¢ B3 01, (109)
B3 0 0

_[Ci+CECr0
g1 = G 0 0:| (110)

The Tables 2, 3, 4, 5, 6 and 7 show the other solutions. Note that all letters A, B, C, D, E,
with and without indices, are real constants.
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Table 2 Solutions for g considering A € 2
A g
mr 7 rX; 0 0 0 0
2 0 X, 0 0 O
r 0 0 X300 X; = Ajei fori=1,...,5
r4 0 0 0 X4 0 ritra+r3tratrs=0
L rs | L0 0 0 0 Xs TLFEFE3FETLFETS
rr 7 rX; 0 0 00
" 0 X, 000
3 0 0 X300 X; = Ajei& fori =1,2,3
4 1 00 0N Y1 = (B) + Byf)e’s
L rq LO 0 0 Y, 0 Yy = Bpe'#
ri+r+r3+2rp=0
rLFEFETIFET
r X1 0 0 00
) 0 X, 000
310 0 0 Y Y73 X; = AjeiS fori =1,2
2
r3 1 00 ¥ 0 Yy = (31-4-1-’325-1-33%)6’3s
" 0 0Y300
Yy = (By + B3£)e'3*
Yg:Bge‘r3'§
ri+r+3r3 =0
L FFT3
r1 X000 0
ry 1 0Y Y, 0 O
" 0Y, 0 0 0 X = Ae"té
r3 1 00 0 Z Z Y1 = (B] + Br£)e2t
3 0002 0 Yy = Bre'2
Zy = (C1 + CaE)e™
Zy = Cpe'3
ri+2rn+2r3=0
rLFEER
—4q X0000
qg100 0Y Y31y
g10 0Y, Y37 0 X = Ae— %4 ,
q1 0Y3Y 00 Y = (Bi + Bk + B35 +
q 0Y;0 00 £
B4T)eq€
2\ gt
Y2 = (By + B3é + By )ed
Y3 = (B3 + B4&)ed®
Y4 = Byet
q#0
qg10 X1 X2 X3 0 0
q1 X, X3 0 00 5
q X3 0 0 00 X1 = (A + Agé + A3 5 )eté
—-3q |1 00 0¥ Xy = (Ag + Azé)eds
-y 00 0Y0 X3 = Agett
_3¢&
Y]y = (By + By§)e 2
_ 34§
Y = Be 2
q#0
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Table 2 continued

A g
01000 X1 X2 X3 X4 X5
0100 X2 X3 X4 X5 0 2 3 4
010 X3 X4 Xs 0 0 X1 = A1+ Ask+ A3 S +AsS + A5y
2 3
0(1) ?; X(I)S 8 8 8 X2=A2+A3€+A4%2+A5%
X3=A3+A4$+A5%
X4 = Aq+ Asé
X5 = As
r X1 0 00 O
" 0 X, 00 0
3 0 0 X300 X; = AjeiS fori =1,2,3
ra —64 00 0U V U = ¢"45 (B cos 04 — C sin 048)
04 14 00 0V-U V = "8 (C cos64€ + B sin 04€)
ry+rp+r3+2rp =0
I FT2FT3
64 >0
rl X000 0
r 1 0Y Y0 O
" 0Y, 00 0 X = Aeé
r3 —63 000U V Y] = (B| + By§)e™f
03 r3 00 0V-U Yy = Bye'2t
U = ¢"3% (C cosO4é — D sin64€)
V = e"3% (D cos04€ + C sin 04€)
ry+2rn+2r3=0
ry#Fr
63 >0
qg10 X1 X2 X330 0
q X X3 0 0 0 2
q X3 0 00 0 X1 = (A1 + Azé + A3 5 )ett
_%q —36 00 00U V X, = (A2+A3§)eqé
0 —3q 0 0 0V-U X3=A3eq§
3
U:e_%é (C cosB& — Dsinb§)
3
V:e_%"3 (D cos & + Csinb§)
6>0
q X0 0 0 0
ry —6; ouUu; vi 0 0
0 0V, -U 0 0 X = Aett
ry —6 00 0 U W U; = ¢'i% (B; cos6;€ — C; sin ;&)
0 r 00 0 V-Uh Vi = €' (C; cos 0;€ + B; sin6;€)
q+2r1+2rp=0
ri+i0) #rp+ibr
—4q X0 0 0 0
qg—-010 0OU Vi Uy Vp
0 g 01 0V, —U V, =V, X = Ae %48
q —0 00U V» 0 O Uy = %% ((B) + Ba&) cos 0 — (C1 + C28) sin 0§))
0 g 0V, —Uy 0 0 Vi = e95 ((C} + C2&) cos € + (B] + Bo&) sin 6&)

Uy = 9% (D cos0& — E sin 0€)
Vo = ¢9% (E cos 0 + D sin &)
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Table 3 Solutions for g considering A € B

A g
01 X1 X271 727 0
0 X1 0 Z, 0 0
010 Z1 Z, Y1 Y 13 X1 = A1+ Axé
01 Z, 0 Yo Y3 0 Xy =A4Ap
0 0 0 Y3 00 Y1=Bl+st+33§
Y, = By + B3é
Y3 =83
Z1 =C1+ 8
Zr =(Cy
ri X1 X2 0 00
r X, X3 0 00
r 0 0Y Y0 X; = A;jef" fori =1,2,3
r 0 0 ¥,730 Yj = Bief"2 for j =1,2,3
r 0 000Z 7 — Co—2bE
2r1 +2rp+r3 =0
ro#Er #Er3
—dq X000 0
q 1 0Y Y TT T
q 0Y, 07 0 X = Ae— %8
q1 0TI T Z Zy Y| = (B] + By£)ed®
q 07, 0 Z, 0 Yy = Boet
Zy = (C1 + CrE)e?®
Zy = Crel
T = (D) + Dy§)ed®
Ty = Dyett
q#0
[q X; X2 0 0 0
g1 X, Y1 Y 0 0
q 0 Y0 0 0 X; = A;jet fori=1,2
-3q 0002 2 Y = (B) + Byf)eds
_3 0 0 0 Z Z3 Yy = Byedt
- 29 39§
Zj :Cje_T forj=1,2,3
q#0
r—dq X0 0 0
q —0 oOuU Vi Uy W
0 q 0V, =U Vo —Us X = Ae— %8
q 00U, Vo U3 V3 U; = e95 (B; cos € — C; sin &)
L 0 0 Vo =Uy V3 —U3 Vi = 9% (CjcosO& + D;sin6é) fori =1,2,3

0#0

In general relativity, the Boyer-Lindquist coordinates are very important. They are defined
asp = ~/r2 —2mr +co2sinfand¢ = (r—m) cos 6, where m and o are constant parameters.

The Laplace equation (28) is transform to

1 .
((r2 —2mr + oz)g,r),r + —(E9sin0)p =0,
sin 6

(111)
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Table 4 Solutions for g considering A € €

A g
ro rAB 0 0 O
0100 B X1 X2 X3 X4 g2 &3
010 0 Xy, X3 X4 0 X1 =C1+C§+C3>5 +Cs%
01 0X3X4 00 2
0 0X, 0 0 0 Xo =+ CE+ oy
- - X3 =C3+ C4é
X4 =0Cy
M —4q rX 000 0
q 0Y Y, 0 0
g10 0Yy Z Zr Z3 X = Ae— %48
g1 00 273 0 Y; = Bjedt fori =1,2
2
- a S00 7000 Z1 = (C1+ Cot + G35t
Zy = (Cy + C38)et
Z3 = C3ett
qg#0
g10 X1 X2 X300
q 1 X2 X3 0 0 0 2
q X3 0 000 X1 = (A] + Agé + A3 5 )edt
—24 0.0 0¥ Xy = (Ay + A3§)ed®
~3q 0 0 01,VY; X3 = Azedé
3q¢
Yi:Bie_Tfori:l,2,3
q#0
q X1 X2 0 0 0
g1 X, Yy Yo 0 0O
q 0 Y0 0 0 X; = A;ed€ fori =1,2
-3q 0 0 02 2 Y| = (B + By§)edt
_3 0 0 02 0 Yr = Byets
29 3q¢
Z1= (C1+C26)e 2
_3¢
Zy =Cre 2
q#0
q X1 X 0 0 0
g1 X, Y1 Y2 00
q 0 Y0 0 0 X; = A;ed€ fori =1,2
" 0002 0 Y| = (B + Baf)et*
) 0 0 0 0 2 Yg:BzeqS
Z; = Cje"i% fori = 1,2
3g+r1+mn=0
q#Fr#r
q X1 X200 O
q1 X, Y1 Y20 O
q 0 Y 00 0 X; = A;jett fori=1,2
-39 —0 000UV Y| = (B 4 By§)ets
0 —%é[ 0 0 0V-U Y, = Bpet

_ 348 .
U=e 2 (Ccosf&—Dsinb§)

3q¢
V= e_% (D cosO&+C sinb§)
6>0
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Table 4 continued

A g
Mg 7 FfX; X, 0 0 07
q X, X3 0 00
rl 0 0Y 00 X; = A;je?s fori=1,2
) 00010 Y; = Bje* for j=1,2,3
L r3 | LO 0 0 0 Y3 2g+r1+rp+r3=0
qFErLERET
Mg 7 FX; X0 0 07
q X, X330 0 O
rl 0 0Y 0 0 X; = A;jets fori=1,2
1 0 0 02Z 2 Y = B¢
L r LO 0 02Z 0 Z) = (Cy + Cr§)e"28
Zy = Cre2
2q+r;+2rp=0
qFELER
q X1 X200 0
q X, X300 O
r 0 0YO O X; = A;e?s fori=1,2
r —6, 000U V Y = Be'1é
0 r 0 00V-U U = 25 (CcosO& — Dsin0§)

V = ¢"28 (D cos g + C sin &)
2g4+r;+2rp =0

q #r1

6 >0

Some solutions of (111) can be found in [7]. As an example we consider that the parameter
& depends only on r and o = 0, then

2m
=L m(1-") 45 (112)
2m r
Table 5 Solutions for g considering A € ®
A g
0 AL Ay 0 A3 0
01 Ay Y1 h T T
0 0 Y, 07 O Y| = B| + Byé
01 A3 T Th Z1 Z» Y, =By
0 0 7b 0 Z, 0 Z1 =C1 + (¢
Z=C
Ty = D1 + Dy§
T, = Dy
q X1 X2 X300
q X2 X4 X5 0 0
7 X3 X5 X6 0 0 X;=Aje?S fori=1,...,6
—24 0 0 OY1Y2 y,_B._37q§f s
3 j = Bje orj=1,2,3
—-3q 00 0¥V ¢#0
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Table 6 Solutions for g considering A € &

A g
ro TAj Ay By 0 0
0 Ay A3 B 0 O 2
010 By By X1 X2 X3 X1=C1+C2$+C3%
01 0 0 X, X3 0 Xy =Co + Cat
L 0 L0 0 X3 0 0 X3 =C3
M —4q "X 000 0
q 0OY Yo Ys O
q 0Y, Y3 Y5 O X = Ae— %8
g1 0 YyYs Z| Z» Y; = Bjeds fori=1,...,5
L q L0 0 0 2Z 0 Z1 = (Cy + Cr§)et
Zy = Cped
q#0
K FX; X2 X3 0 0
q X2 X4 X5 0 0
q X3 X5 X6 0 0 X; = AjetS fori=1,...,6
r 00 0VY 0 Y; = Bje'i® fori = 1,2
L r L0 0 00X 3g+r1+rn=0
q#r#r
[q rX; X> X3 0 0
q X2 X4 X5 0 0
q X3 X5 X¢ 0 0 X; = Aje€ fori=1,...,6
—-5q9 1 00 0 2z 2, 71 = _ 348
1= (C1+Crf)e 2
L _%q LO 0 0 Z, 0 3gE
Zy = Cre 2
q#0
q X1 X2X30 0
q X2 X4 X550 0
7 X3 X5 X6 0 0 X; = Ajet fori=1,...,6
~3q -0 00 0U V _ OF _C <
5 —%q 00 0V —U U=e s (B cosf& —Csinbé&)
V=e 2 (CcosO&+Bsinb§)
6>0
Table 7 Solutions for g considering A € §
A g
ro F[A; A A3 B O
0 Ay A4 As B O
0 Az A5 Ag Bz 0 X1 =C1 + Cyé
01 By By Bz X1 X3 X =Cp
L L0 0 0 X, 0
M —4q rx0 o o 0
q 0Y1 Y2 Y3 Yy
q 0 Y, Ys Yo Yy X = Ae—%4¢
q 013 Y Yg Yo Y; = Bjedé fori=1,...,10
L q L O Y4 Y7 Y9 Yo q#0
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where y and § are real constant. For n = 2, we choose A = diag[X, —\], then its
corresponding matrix g is diag [ee’\s, —e™H /e], where A and € are real constant. Thus,
g = diag [—C (1-2)" (1- 2’—_’”)’7/C], where p = —;‘—}"1 and C is a real constant.
Also, the differential equations for the function f (26) are transform to
2m? p? sin? 0 r—m
In = 113
(nfVP), r2 —2mr +m?sin® 0 r> — 2mr (1
2m? p? sin 6 cos O
In = — 114
( fﬁ)ﬁ r2 —2mr +m2sin? 6 (114
Solving them, we get
po o (115)
' NG
where D is a constant and
2 «in2 0
A=qq Y (116)
r2 —2mr
Therefore, a exact solution to EFE is
DAY 5
§=———(dr®dr+ (" —2mr)do ® do)
NG
» » 117
2 2m\
—%(1— —m) dt®dt+C,0<l - —m> dx* ® dx*
r r

9 Conclusions

EFE are one of the most interesting and complicated equations to solve in physics. Techniques
to solve them have been developed for 4-dimensions in the past. One of the most successful
techniques relies on subspaces and subgroups. This method helps to generate solutions of
the 4-dimensional EFE on demand, such that the Laplace equation gives the solutions for
monopoles, dipoles, etc. In this work we used this technique to solve the (n 4-2)-dimensional
EFE in vacuum, reducing the final matrix equation to its normal Jordan form, which permits
to solve the equations with some facility. We obtained a great amount of solutions of the
EFE in terms of the Laplace parameter, such that for each solution of the Laplace equations,
we may get a different solution of the EFE. One can play with the different combinations of
solutions to obtain even more solutions.
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