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Abstract. Recently, the Scalar Field Dark Matter (SFDM) model (also known as Fuzzy,
Wave, Bose-Einstein, Ultra-light Dark Matter) has gained a lot of attention because it has
provided simpler and more natural explanations for various phenomena observed in galaxies,
as a natural explanation for the center of galaxies, the number of satellite galaxies around
their host and, more recently, a natural explanation for anomalous trajectories of satellite
galaxies called Vast Polar Orbits (VPO) observed in various galaxies. In the present work we
study the assumption that the SFDM is a type of charged dark boson whose gauge charge
is associated with the Dark Photon (DP). Inspired by these results, we study the formation
of compact bosonic objects, such as Boson Stars (BS) and focus on the possibility that,
due to spontaneous U(1) SFDM symmetry breaking, the DP may acquire mass and form
compact objects like Proca Stars (PS). If this is true, we can expect measurable effects on
the electromagnetic field of the Standard Model (SM) of particles due to their interaction
with the DP on the formation of compact objects.
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1 Introduction

Dark Matter (DM) is one of the most fascinating open problems in physics. The Cold Dark
Matter (CDM) model has been one of the most widely used to attempt to explain dark
matter; however, this model presents a number of difficulties in making predictions on a
galactic scale. Because of this, alternative models that are consistent with the observations
have been proposed; the Scalar Field Dark Matter is one of these models.

The idea of SFDM model was proposed in 1994 by Ji S.U. & Sin S.J. [1], and Lee
& Koh in 1996 [2], and later independently by Siddharta & Matos in 1998 [3]. It was
during these years that continued research on scalar field dark matter began. Historical
and analytical reviews on the evolution of this model can be found in [4–9]. The SFDM
model has been rediscovered over the years and has been given different names: Fuzzy Dark
Matter (2000) [10], Quintessential Dark Matter (2001) [11], Wave Dark Matter (2010) [12]
and Ultralight Dark Matter (ULDM), which classifies scalar field dark matter based on its
condensation structure [13].

In general, the SFDM model proposes that dark matter consists of spin-zero ultralight
massive bosons associated with a scalar field Φ that only interacts gravitationally with bary-
onic matter. So, the SFDM must satisfy an equation of the type Klein-Gordon, and the
dynamics of the universe can be found by combining the Lagrangian of this model with
gravity in the Einstein equations.

One of the most fascinating characteristics of SFDM is its quantum nature, recently
studied in [14]. Due to this property, the SFDM model is capable of explaining phenomena
such as the vast polar orbits of satellite galaxies around their host, the so-called VPO [15],
observed in systems such as the Milky Way, Andromeda, and Cen A. The VPOs are explained
using excited states of the scalar field. At galactic regimes, non-relativistic behavior and weak
fields can be assumed for the system. In this approximation, the Einstein-Klein-Gordon
system that describes the SFDM is reduced to a Schrödinger-Poisson system, so that the
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system can be in the ground state or excited states (or both) in analogy to an atom. The
excited states produce an 8-shaped structure, which may explain the alignment of the satellite
galaxies on polar trajectories around the host galaxies. This is a remarkable result as no other
DM model can adequately explain these phenomena in such a natural way.

On the other hand, exotic compact objects, also known as exotic stars or bosonic stars,
have also gained great relevance in recent years due to their ability to mimic significant
astrophysical phenomena such as Black Hole Shadows (BHS) [16–18] and Gravitational Wave
Events (GW) [19]. This becomes even more important with the discovery of the Higgs boson
in 2012, since this was a reaffirmation of the existence of bosons in nature (although the Higgs
boson is too unstable to be a candidate to form boson stars [20]). In general, the term Bosonic
Star (BSS) refers to hypothetical astrophysical compact objects composed fundamentally of
ultralight bosons [16]. If the star is composed of bosons with spin s = 0, it is known as Boson
Star (described by scalar fields) [21], and if it is composed of bosons with spin s = 1, it is
known as Proca Star (described by vector fields) [22]. Both PS and BS have been studied
in the context of DM. In [23] BS were studied at galactic scales, and it was found that for
scalar bosons of mass m ∼ 10−23 eV it is possible to obtain stars of mass M ∼ 1012M� and
radius R ∼ 1013 km. These results are compatible with the SFDM model for the formation of
galactic nuclei presented in [24]. On the other hand, PS have been used to make simulations
that mimic black hole observables. This is possible because, unlike the BS, the PS possess a
robust formational dynamics process [25]. In [19], for example, the gravitational wave event
GW190521 was simulated using the collision of two rotating PS, and when the results were
compared to the observational data, it was found that this model fits the event a little better
than the one proposed by the LIGO-Virgo collaboration [25]. While in [16] it was shown
that PS are capable of producing shadows similar to those of a Schwarzschild black hole if
the observation is made from a polar angle similar to the position of the earth with respect
to M87. Then, the capability of PS to mimic dark objects such as black holes motivates the
possibility of being studied by DM models. Despite these results, it is important to mention
that the dynamical robustness of the Proca model is compromised in the presence of self-
interactions; this is due to the emergence of hyperbolic issues and instabilities, as has been
pointed out in [26–30]. Solutions to these problems have been proposed in [31, 32]; these
proposals involve partial UV completions for the Proca model, so that the dynamic issues
arise only in the effective theory but not in the complete theory. Therefore, these difficulties
must be taken into account in the study of Proca-like models such as the one proposed in
this work.

Inspired by all these results, in this work we study the possibility of obtaining BS and
PS by imposing particular constraints on the SFDM model proposed in [33]. In particular,
we consider the case where the DP associated with the U(1) gauge symmetry of the model
can acquire mass due to the spontaneous symmetry breaking of the system and then form
compact objects such as Proca stars. By doing this, we find that the formation of Proca
stars has effects on the electromagnetic field of the SM due to the mixing terms between the
DP and the SM photon. This is very important because it means that the formation of these
compact objects causes changes in the electromagnetic field of the SM that, in principle, we
could measure.

In section 2 we present the general SFDM model that we use and the derivation of some
particular cases such as BS and CBS. In section 3, we present the physical mechanism for the
spontaneous symmetry breaking considering that the scalar field is inside a thermal bath,
and therefore there is a cut-off term for the temperature that can cause the spontaneous
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symmetry breaking through which the DP acquires mass. In section 4, we focus on the
Proca stars formed by dark photons that acquire mass via the Higgs mechanism induced by
the SFDM, and we study the effects of this process on the maximal mass of the Proca stars.
In section 5, we study the case of Proca stars when the coupling between the DP and SM
photon is manifest. Finally, in sections 6 and 7, we present the numerical results and the
effects of this process on the electromagnetic field of the SM.

2 U(1)-SFDM model

Thus, we start with the Lagrangian proposed in [33]

L=−(∇µΦ+iqBµΦ)(∇µΦ∗−iqBµΦ∗)−V (Φ)− 1
4FµνF

µν− 1
4BµνB

µν− δ
2

2 FµνB
µν , (2.1)

where Φ is the complex scalar dark matter field; Bµ is the DP field associated to the U(1)
local symmetry of the SFDM, with fundamental charge q and Faraday tensor defined as
Bµν = ∇µBν − ∇νBµ; Aµ is the 4-potential of the electromagnetic field of the standard
model, with Faraday tensor defined as Fµν = ∇µAν−∇νAµ; V (Φ) is the potential associated
to Φ, and δ2 is the kinetic mixing parameter which couples the fields Aµ and Bµ. We use
the standard general relativity signature (−,+,+,+) in this work and the natural units
~ = c = kβ = ε0 = 1. In general, to obtain separable solutions in the study of compact
objects, we consider the fields Aµ and Bµ to be complex (each can be described in terms of
two real fields), so the real part of Aµ corresponds to the physical electromagnetic field of
the SM. Thus we rewrite the Lagrangian (2.1) as follows

L = − (∇µΦ + iqBµΦ) (∇µΦ∗ − iqB∗µΦ∗)−V (Φ)− 1
4FµνF

∗µν− 1
4BµνB

∗µν− δ
2

2 Re {FµνB
µν} .
(2.2)

It is important to notice that making Aµ and Bµ complex results in the addition of one extra
vector field for each one, so the U(1) local symmetry for the SFDM model (2.1) may no longer
be present. However, this local symmetry is recovered by constraining Aµ and Bµ to be real
vector fields directly in the Lagrangian (2.2), as is the case for BS, CBS, and SSB. In the
case of PS, which is studied in sections 4 and 5, the complex field approximation introduces
a global symmetry U(1) for the system, which is relevant for the study of PS dynamics. The
reason for proceeding in this way is solely to obtain a time-independent system of differential
equations when solving the Einstein-Proca system. Therefore, this procedure is valid as
long as the correct constraints are applied to preserve the appropriate symmetries in each
particular case studied in this work. We couple this Lagrangian minimally with gravity in
an action S of the form

S =
∫
d4x
√
−g

[ 1
16πGR+ L

]
, (2.3)

where R is the Ricci scalar, g is the determinant of the metric gµν and G is the Newton’s con-
stant. By varying this action with respect to the metric, we derive Einstein’s field equations
Gαµ = 8πGTαµ, where the energy-momentum tensor reads

Tαµ = gαµL+
(
∇µΦ + iqBµΦ

)(
∇αΦ∗ − iqB∗αΦ∗

)
+
(
∇αΦ + iqBαΦ

)(
∇µΦ∗ − iqB∗µΦ∗

)
− Fν(αF

∗ν
µ) −Bν(αB

∗ν
µ) − 2δ2 Re

[
Fν(αB

ν
µ)

]
.

(2.4)
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The variation of the action S with respect to Φ, Aµ, and Bµ, gives the following equations
of motion, respectively

(∇µ + iqB∗µ) (∇µΦ + iqBµΦ)− dV (ΦΦ∗)
d|Φ|2 Φ = 0, (2.5)

∇µFµν + δ2∇µB∗µν = 0, (2.6)

∇µBµν + δ2∇µF ∗µν = −2iqΦ∗ (∇νΦ + iqBνΦ) . (2.7)

As we can see, the equation (2.5) corresponding to the variation of Φ is a Klein-Gordon-type
equation with a modified gauge covariant derivative that makes the complex nature of Bµ
manifest. Additionally, the equation (2.6) corresponding to the variation of Aµ describes the
coupled electrodynamics of the SM photon with the DP. Finally, the equation (2.7) from
the variation of Bµ contains the electrodynamics of the DP coupled with the SM photon,
along with the term that makes the coupling between Bµ and Φ manifest. We can impose
particular constraints on this system to find different cases of compact objects formed by
SFDM bosons. For example, by imposing Aµ = Bµ = 0 (which corresponds to regimes
where electromagnetic fields are negligible) in the Lagrangian (2.2) we obtain the action SBS
associated to scalar boson stars of the form

SBS =
∫
d4x
√
−g

[
R

16πG −∇µΦ∇µΦ∗ − V (Φ)
]
. (2.8)

In the same way, if we now consider Aµ = 0 and Bµ real in (2.2), we find the action SCBS
that describes charged boson stars (CBS)

SCBS =
∫
d4x
√
−g

[
R

16πG + LCBS

]
, (2.9)

where
LCBS = − (∇µΦ + iqBµΦ) (∇µΦ∗ − iqBµΦ∗)− V (Φ)− 1

4BµνB
µν . (2.10)

In both cases, BS and CBS are formed by SFDM ultralight bosons, and the charge q of the
scalar field in CBS is associated with the dark photon. Although we have seen so far that it
is possible to recover the associated Lagrangians for BS and CBS from the Lagrangian (2.2)
by setting Aµ and Bµ to be real and zero, as the case may be, it is important to note that this
is not a solution to the equations of motion (2.5)–(2.7) of the complete model. Therefore,
if we wanted to study solutions for the complete model (2.2), it would be necessary to
directly solve (2.5)–(2.7). In general, the SFDM model assumes ultralight boson masses
between 1–10−24 eV [13], whereas models of bosonic stars in the literature assume masses for
bosonic particles of approximately 10−10–10−20 eV to obtain stars of astrophysical interest
with maximal masses of approximately 1–1010M� [25]. Then, we can consider compatible
mass ranges to use the boson star literature results to study these compact objects in the
context of SFDM presented here. See for example [16] for general solutions in BS and [34]
for solutions in CBS.

The particular case that concerns us in this work is to consider a Higgs-type potential for
the scalar field of dark matter so that the dark photon field Bµ can acquire mass through an
spontaneous symmetry braking (SSB) of the system and then form compact objects like Proca
Stars (PS). In the next section, we propose a thermal bath for Φ as a physical mechanism for
the SSB. Thus, there is a range of temperatures and a cutoff temperature for SSB to occur.
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3 Spontaneous symmetry breaking

In order to consider a Higgs-type potential for the SFDM model (2.2), we propose that
the complex scalar field of dark matter is in a thermal bath at temperature T , which is
characterized by the potential of the form [35, 36]

V = −m2
ΦΦΦ∗ + λ

2 (ΦΦ∗)2 + λ

4 ΦΦ∗T 2 + π2

90T
4, (3.1)

where mΦ is the mass parameter of the scalar field Φ, and λ is the self-interaction parameter.
In this work we just consider the case λ > 0 (repulsive interactions). It is convenient to
redefine the zero potential value of this potential and factorize V as follows

V = λ

2

(
ΦΦ∗ − m2

λ

)2

, (3.2)

where we define the effective mass parameter m of the scalar field as

m2 ≡ ±m2
Φ

(
1− λ

4m2
Φ
T 2
)
. (3.3)

The plus and minus signs in this definition depend on the sign of the expression between
parentheses. To illustrate this, we define the spontaneous symmetry breaking parameter as
η ≡ (1 − λT 2/4m2

Φ). If η > 0, then m2 is given by the plus sign in (3.3). In this case the
potential (3.2) describes a Higgs-type potential (Mexican hat shape), and therefore we can
expect a SSB for the system. On the other hand, if η ≤ 0, then m2 is given by the minus
sign in (3.3). In this case the Mexican hat shape is lost for (3.2), so there is no Higgs-type
potential and therefore no SSB. We must note that in both cases m2 > 0, so the effective
mass is always real. From this analysis, we define the critical temperature Tc for SSB to
occur. This temperature is given in terms of η as η (Tc) = 0, so that

Tc ≡
2mΦ√
λ
. (3.4)

The SSB is then possible for temperatures in the range T ∈ [0, Tc), while for T > Tc there is
no SSB. We are only interested in the case where there may be an SSB, so from now on we
consider only temperatures T < Tc. Hence we take the plus sign on (3.3) and we can rewrite
m2 in terms of T and Tc as

m2 = m2
Φ

(
1− T 2

T 2
c

)
. (3.5)

The associated Higgs potential has a double minimum at |Φ|2 ≡ ΦΦ∗ = m2

λ . Then, the
expected value of Φ at the vacuum can be expressed as

〈Φ〉0 = Φ0 = ± m√
λ
. (3.6)

We must note that the vacuum state depends on the effective mass m and hence on the
temperature T that we consider for the thermal bath. This is noteworthy because it is
this effective mass that we can use to impose constraints in the search for dark matter and
comparisons with observables.
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Now, we put the potential (3.2) into the general Lagrangian (2.2), with m given by
equation (3.5). In this case we can rewrite the complex scalar field Φ as excitations of
the ground state Φ0 (3.6) associated to the potential (3.2). So, using Polar notation, we
decompose Φ in terms of two real scalar fields, ρ(x) and θ(x), by doing radial perturbations
around Φ0 as follows

Φ = [Φ0 + ρ(x)] eiθ(x). (3.7)
By substituting this expression of Φ in the general Lagrangian, only the terms of the covariant
derivatives and of the potential V are modified, and by choosing the unitary gauge θ(x) = 0
to break the symmetry of the ground state, then the Lagrangian L is now written as

L = −1
4FµνF

∗µν − 1
4BµνB

∗µν − δ2

2 Re {FµνB
µν} − ∇µρ∇µρ− q2 (Φ0 + ρ)2BµB

∗µ − V (ρ)

+ 2q (Φ0 + ρ)∇µρ Im {Bµ} ,
(3.8)

where
V (ρ) = λ

2
{

4Φ2
0ρ

2 + 4Φ0ρ
3 + ρ4

}
. (3.9)

As we can see, this Lagrangian already contains a mass term q2Φ2
0BµB

∗µ for the DP. So, now
we can define the mass µ of the dark photon field as

1
2µ

2 ≡ q2Φ2
0 = q2m

2

λ
. (3.10)

Therefore, in this model, the mass µ of the DP is limited by the self-interaction parameter
λ, the effective mass m of the scalar field dark matter, and the gauge charge q. The La-
grangian (3.8) also contains a mass term 2λΦ2

0ρ
2 for the ρ field. This term is also known

as Higgs mode, which, as we saw previously, is associated with radial perturbations of the
ground state in the Higgs potential. The Higgs mode has an associated mass defined as
mρ ≡

√
2λΦ0 =

√
2m. In order to decouple the ρ and Bµ fields and obtain a Proca-like La-

grangian from (3.8), we could in principle consider a Stueckelberg mechanism, which could
be obtained in the case where λ� q (so that the mass mρ of the Higgs mode is much larger
than that of the dark photon µ). This process could be studied in the context of a UV
completion theory for the Proca model, so that the Proca model is obtained at low effective
energies. However, the Ly-alpha observations adjusted for self-interacting SFDM constrain
the value of λ to be much less than 1 (of about 10−86 for ultralight scalar fields with masses
of about mΦ ∼ 10−22 eV) in order to satisfy the constraints of nucleosynthesis [37]. While,
in [33], the production of Fermi bubbles was studied using model (2.1), with values for q
around q ∼ 10−13. Therefore, although it is interesting to explore both ranges (λ > q and
λ < q), what we can expect is that for SFDM models with ultra-light masses, λ is less than
q. Due to this, the approximation that we use in this work is to consider regions where the
scalar dark matter field Φ is quenched at its expected value in vacuum (Φ(x) = Φ0), which
is equivalent to considering that the radial perturbations of the ground state associated with
the Higgs mode are negligible and therefore ρ(x) = 0. In this case, the Lagrangian (3.8) can
be written simply as

L = −1
4FµνF

∗µν − 1
4BµνB

∗µν − 1
2µ

2BµB
∗µ − δ2

2 Re {FµνB
µν} . (3.11)

We should note that although up until now we have considered the case where Aµ and Bµ
are complex, the discussion presented is still valid for the case where both are real, and is
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in this case when we recover the usual SSB process for the DP. So the Lagrangian (3.11)
simply describes a dark photon with mass µ and a kinetic mixing parameter δ2. From this
Lagrangian, we can study the formation of Proca stars composed of dark photons, as has been
previously done in the general case of spin-1 bosons. The difference in this case is that the DP
acquires mass from its interaction with the SFDM, which imposes constraints on the mass
of the dark photon. The approximation studied in this work also has the consequence that
in places where there is SFDM, we could find not only massless dark photons, as described
in [33], but also dark photons with mass, which can form astrophysically interesting objects.

4 Proca stars

As a first approximation we consider the case where there is no electromagnetic field of the
SM (or it is negligible), so we can set Aµ = 0. In this case (3.11) reduces to a Proca-type
Lagrangian that we can write as

LP = −1
4BµνB

∗µν − µ2

2 BµB
∗µ. (4.1)

We couple this Lagrangian minimally with gravity and we obtain a Proca-Einstein action SP
of the form

SP =
∫
d4x
√
−g

[
R

16πG + LP

]
. (4.2)

By varying this action with respect to the metric, we find the following Einstein equations

Gµν = 8πG
[
gµνLP −Bα(µB

∗α
ν) + 2ÛB(µB

∗
ν)

]
, (4.3)

and the variation with respect to Bµ gives Proca’s equations of motion

∇µBµν = 2ÛBν , (4.4)

where, following the same notation as in [16], we have defined a general potential U
(
B2) =

1
2µ

2BµB
∗µ (this notation is useful for the case in which self-interaction quartic potentials

are considered for Bµ) and Û ≡ dU
dB2 , where B2 ≡ BµB

∗µ. This system has been arduously
studied in a general way in [22] for spherical symmetric and static space-times and in [38] for
the spinning case. In this work, we just consider the spherical symmetric and static case as
a first approximation. We proceed in the same manner as in [16, 22] and propose a metric
of the following form

dS2 = −σ2(r)N(r)dt2 + dt2

N(r) + r2dΩ2, (4.5)

and for the dark photon field we propose a Proca-type ansatz of the form

B(r, t) = [f(r)dt+ ig(r)dr]e−iωt, (4.6)

where N(r) ≡ 1− 2m(r)/r; σ(r), m(r), f(r) and g(r) are real functions of the radial coordi-
nate r, and ω is a real frequency parameter. We must be careful not to confuse the function
m(r) associated with the metric with the effective mass parameter m of the scalar field of

– 7 –



J
C
A
P
0
1
(
2
0
2
4
)
0
1
8

dark matter, defined in (3.5) (which is a constant). Substituting the metric (4.5) and the
ansatz (4.6) into equations (4.3), we obtain that the non-zero Einstein equations are [22]

m′ = 4πGr2
[

(f ′ − ωg)2

2σ2 + µ2

2

(
g2N + f2

Nσ2

)]
, (4.7)

σ′

σ
= 4πGrµ2

(
g2 + f2

N2σ2

)
, (4.8)

while the Proca equations (4.4) are

d

dr

{
r2 [f ′ − ωg]

σ

}
= µ2r2f

σN
, (4.9)

ωg − f ′ = µ2σ2Ng

ω
, (4.10)

where the ′ indicates derivation with respect to the radial coordinate r. This system can
be solved numerically. We can do expansions at r → ∞ and r → 0, as in [22], in order to
investigate the behavior of the functions and propose pertinent boundary conditions to solve
the system. The maximal ADM mass MADM of this type of solution is given in terms of the
dark photon mass µ by the following relation [39]

Mmax
ADM = αBS

M2
Pl
µ

= αBS1.34× 10−19M�
GeV
µ

, (4.11)

where MPl is the Planck’s mass, and αBS is a constant numerical parameter which is set to
αBS = 1.058 for static and spherically symmetric metrics [39]. Using the definition (3.10) of
µ we can write MADM in terms of m, q and λ as

Mmax
ADM = αBS1.34× 10−19M�

√
λ√

2qm
GeV. (4.12)

In figures 1 and 2, we plot the maximal ADMmassMmax
ADM for different values of λ and q. From

figure 1, we can observe that for a fixed λ = 10−50 and an effective mass of the scalar field
of m = 10−24 eV , the maximal mass MADM of the Proca star reaches values of astrophysical
relevance when q < 10−8, while for larger values of q, the masses are considerably smaller
than a solar mass. On the other hand, if we fix q = 10−15 now, from figure 2 we can observe
that MADM increases for large values of λ. However, due to the constraints of Ly-alpha
observations adjusted for self-interacting SFDM studied in [37], we know that for ultra-light
effective masses of self-interacting scalar fields, the self-interaction parameter λ must be very
small (but different from zero). In figure 2, we consider values of λ ∼ 10−51 that, although
not as small as predicted in [37], can be considered within the physical range of SFDM.
Therefore, we can conclude that, as expected, the λ, m, and q parameters of the SFDM field
strongly influence the mass of the associated dark photons, and thus also affect the masses
of the Proca stars obtained from this system.

5 Proca stars and dark photon

We now consider the case where the electromagnetic field of the SM is not negligible. In this
case, the nature of the DP and its interaction with the SM photon becomes manifest, so we

– 8 –



J
C
A
P
0
1
(
2
0
2
4
)
0
1
8

1. ×10-154. ×10-16

40000

80000

120000

0 2.×10-8 4.×10-8 6.×10-8 8.×10-8 1.×10-7
0.0000

0.0005

0.0010

0.0015

q

M
A
D
M

(M
⊙
)

Figure 1. Maximal ADM mass for different values of the gauge charge q with λ = 10−50 and
m = 10−24 eV.
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Figure 2. Maximal ADM mass for different values of the self-interaction parameter λ of the SFDM
field with q = 10−15 and m = 10−24 eV.

consider the Lagrangian (3.11), which from now on we call LDP, so that

LDP = −1
4FµνF

∗µν − 1
4BµνB

∗µν − U
(
B2
)
− δ2

2 Re {FµνB
µν} , (5.1)

where U
(
B2) is defined the same as in the previous section. Following the same anal-

ysis as in the case of Proca, we find that the action for the system is given by SDP =∫ [ 1
16πGR+ LDP

]√
−gd4x. The variation of this action with respect to the metric leads us

to the following Einstein equations

Gµν = 8πG
(
gµνLDP − Fα(µF

∗α
ν) −Bα(µB

∗α
ν) + 2ÛB(µB

∗
ν) − δ

2
[
Fα(µB

α
ν) + F ∗α(µB

∗α
ν)

])
. (5.2)

While varying Aµ and Bµ we obtain the following equations of motion for the fields. Varying
Aµ we have

∇µ
(
Fµν + δ2B∗µν

)
= 0, (5.3)

and varying Bµ we have
∇µ

(
Bµν + δ2F ∗µν

)
= 2ÛBν . (5.4)

From these field equations we observe that for the case where the kinetic mixing parameter
is δ2 = 0, the Maxwell and Proca electrodynamics are recovered for the fields Aµ and Bµ
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respectively, which was to be expected. The equations (5.3) and (5.4) also imply the modified
Lorentz condition for the DP field Bµ

∇ν
(
ÛBν

)
= 0, (5.5)

so now this is a dynamical requirement. While for the SM photon field Aµ we are free to
choose the gauge fixing, which we decide to be also a Lorentz gauge condition

∇ν (Aν) = 0. (5.6)

The system (5.1) possesses an U(1) global invariance of the form Bν → eiαBν , with Aν →
e−iαAν , where α is a real constant. This implies that there is a conserved 4-current Jµ, which
we have split as Jµ = JµB + JµAB, where we have defined

JµB ≡
i

2 {BνB
∗µν −B∗νBµν} ,

JµAB ≡
i

2 {A
∗
νF

µν −AνF ∗µν}+ δ2 Im {AνBµν −BνFµν} ,
(5.7)

we can see that JµB corresponds to the usual 4-current for the Proca field, while JµAB cor-
responds to the 4-current for the SM photon field Aµ plus the cross terms between Aµ and
Bµ. As we can see, the cross terms in the current disappear as δ2 becomes zero. Finally,
from (5.3) and (5.4) we have ∇µJµ = 0, so there exist a total Noether charge Q defined
as Q =

∫
Σ d

3x
√
−gJ t. In the same way, it can be shown from (5.7), (5.3) and (5.4) that

∇µJµB = ∇µJµAB = 0, so we may write the total Noether charge Q as

Q = QB +QAB, (5.8)

where we have defined QB ≡
∫
Σ d

3x
√
−gJ tB, and QAB ≡

∫
Σ d

3x
√
−gJ tAB. These charges

are convenient ways to rewrite the total Noether charge Q associated with the global U(1)
symmetry of the system.

To find solutions to the system, we again consider a static and spherically symmetric
metric like the one proposed in (4.5) and, inspired by Proca’s ansatz [22], we propose that
Aµ and Bµ are of the following form

B = e−iωt[f(r)dt+ ig(r)dr], (5.9)
A = eiωt[h(r)dt− ij(r)dr], (5.10)

where, as in the case of Proca, f(r), g(r), h(r) and j(r) are real functions that only depend
on the radial coordinate, while ω is a frequency parameter. It’s important to note that we are
using the same frequency parameter ω for the time evolution of both fields. This is proposed
in this way just to be able to obtain a time-independent system of differential equations after
we substitute the ansatz in the Einstein equations and field equations of motion; otherwise,
we could not find a time-independent system, at least with this ansatz. Substituting these
forms of Aµ, Bµ and the metric (4.5) we obtain that the non-zero Einstein equations are

m′ = 4πGr2
{
µ2
[
Ng2

2 + f2

2Nσ2

]
+ 1

2σ2

[(
ωg− f ′

)2 + 2δ2 (wg− f ′) (ωj−h′)+
(
wj−h′

)2]}
,

(5.11)

σ′

σ
= 4πGrµ2

[
g2 + f2

N2σ2

]
. (5.12)
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The field equations resulting from varying Bµ are

d

dr

{
r2

σ

[(
f ′ − ωg

)
+ δ2 (h′ − ωj)]} = r2µ2f

σN
, (5.13)

(
ωg − f ′

)
+ δ2 (ωj − h′) = µ2σ2gN

ω
, (5.14)

and the field equations resulting from varying Aµ are

d

dr

{
r2

σ

[(
h′ − ωj

)
+ δ2 (f ′ − ωg)]} = 0, (5.15)

h′ − ωj = −δ2 (f ′ − ωg) . (5.16)

Thus, in principle we have a system of 6 differential equations with 6 functions to deter-
mine. Note, however, that the penultimate equation (5.15) holds trivially because of the
last (5.16). Furthermore we can see that by substituting the equation (5.16) into the first 4
equations (5.11)–(5.14), we can eliminate the functions j(r) and h(r) from these equations.
Then the system is reduced to 5 equations with 6 functions to determine. Now Einstein’s
equations can be written as

m′ = 4πGr2
[

(1− δ4) (f ′ − ωg)2

2σ2 + µ2

2

(
g2N + f2

Nσ2

)]
, (5.17)

σ′

σ
= 4πGrµ2

(
g2 + f2

N2σ2

)
, (5.18)

and the field equations in this case reduce to

d

dr

{
r2 [f ′ − ωg]

σ

}
= µ2r2f

σN(1− δ4) , (5.19)

ωg − f ′ = µ2σ2Ng

ω(1− δ4) , (5.20)

h′ − ωj = −δ2 (f ′ − ωg) . (5.21)

We can see that the first 4 equations (5.17)–(5.20) of this new system simply correspond
to a system of equations of the type Einstein-Proca as obtained in the Proca stars section
above, except for a constant term (1 − δ4) that multiplies the equations. The constraints
for δ are δ2 6= 1; δ2 6 10−6 [40] (because very weak interactions are requested between both
photons), therefore

(
1− δ4) 6= 0 and the system is well defined. While the functions h(r)

and j(r) that describe the field of the SM photon are defined in terms of those of the dark
photon f(r) and g(r) through the equation (5.21). To close the system we can consider a
gauge fixing for Aµ, such as the Lorentz condition ∇µAµ = 0 (which is a requirement and
not a choice for the case of Bµ [22]). In this case, considering the ansatz (5.10) and the
metric (4.5), the Lorentz condition for Aµ can be written as

d

dr

{
σjr2N

ω

}
= −r

2h

σN
. (5.22)
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In the same way, using the ansatz (5.9), (5.10) and (4.5) the total Noether charge Q, and the
charges QA and QAB read in this case as

Q = 4πµ2

ω

∫ ∞
0

drr2g2σN,

QB = 4πµ2

ω (1− δ4)

∫ ∞
0

drr2g2σN,

QAB = −4πµ2δ4

ω (1− δ4)

∫ ∞
0

drr2g2σN,

(5.23)

so for this ansatz, we have the interesting special case of QAB = −δ4QB, and therefore the
total Noether charge Q can be written as Q =

(
1− δ4)QB.

On the other hand, we can calculate the Komar mass MK associated with the system
by considering the following integral

MK = 2
∫

Σ

(
Tab −

1
2Tgab

)
naξbdV, (5.24)

where Σ is an asymptotically-flat spacelike hypersurface, na is the unit future pointing
normal to Σ, and dV is the natural volume element on Σ. So, the Komar mass for the
ansatz (5.10), (5.9) and (4.5) is given by

MK = 4π
∫ ∞

0
dr

r2

σN

[(
f ′ − ωg

)2(1− δ4)N + 2f2µ2
]
. (5.25)

Finally, we follow the analysis presented in [41–43] to find that the Lagrangian (5.1) must
obey a virial identity of the form∫ ∞

0
drr2σ

[
µ2
(
g2 − f2(4N − 1)

σ2N2

)
− (f ′ − wg)2 (1− δ4)

σ2

]
= 0. (5.26)

In order to assess the quality of our numerical solutions, we can verify that the virial identity
is satisfied, as well as compare the Komar mass obtained from (5.25) with the ADM mass
M calculated by evaluating the mass function m(r) at the numerical infinity.

In order to find the solutions for the functions that describe the system, we must si-
multaneously solve the equations (5.17)–(5.22). In the next section we solve the system
numerically for the non-asymptotic regions, and we study graphically how the solutions for
each function are modified. We are particularly interested in the functions j(r) and h(r) that
describe the photon of the SM, since, in principle, it is from these functions that observations
could be obtained.

6 Results

To preserve the regularity of the system of equations at the origin, it is necessary to consider
series expansions for the functions around r = 0, so that [22, 44]

f(r) = f0 +O
(
r2
)
,

g(r) = O(r),
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m(r) = O
(
r3
)
,

σ(r) = σ0 +O
(
r2
)
,

h(r) = h0 +O
(
r2
)
,

j(r) = O(r),
(6.1)

where σ(0) = σ0, f(0) = f0 and h(0) = h0 are the boundary conditions at the origin.
Additionally, to preserve the asymptotic flatness, it is necessary that the mass functions f
and g of the dark photon decay exponentially at infinity, therefore

f(∞) = g(∞) = 0. (6.2)

While the functions N and σ of the metric must approach 1 at infinity. Therefore we impose

m(∞) = M, σ(∞) = 1, (6.3)

where M is the total mass of the star, which can be identified as the ADM mass of the
system. Finally, for the electromagnetic field of the SM photon, we can consider constant
electric and magnetic potentials at infinity

h(∞) = h∞, j(∞) = j∞, (6.4)

where h∞ and j∞ are constants that, in this case, we fix equal zero in order to satisfy the
asymptotic behavior of the system of differential equations (5.17)–(5.22). By analyzing the
asymptotic behavior of the system, we find that as r → ∞, the functions allow expansions
of the form

f(r) = c0e
−r
√

µ2
1−δ4−ω2

r
+ . . . ,

g(r) = c0ωe
−r
√

µ2
1−δ4−ω2

r
√

µ2

1−δ4 − ω2
+ . . . ,

h(r) = −c0δ
2e
−r
√

µ2
1−δ4−ω2

r
+ c1 cos(ωr)

r
+ c2 sin(ωr)

2rω + . . . ,

j(r) = −c0ωδ
2e
−r
√

µ2
1−δ4−ω2

r
√

µ2

1−δ4 − ω2
+ c2 cos(ωr)

2rω − c1 sin(ωr)
r

+ . . . ,

m(r) = M + . . . ,

log σ(r) = − 4πGµ4c2
0e
−2r
√

µ2
1−δ4−ω2

2 (1− δ4) r
(

µ2

1−δ4 − ω2
)3/2 + . . . ,

(6.5)

where c0, c1 and c2 are constants. We observe from these expansions that now the bound
state condition for Proca stars is modified in terms of the kinetic mixing parameter δ2, and
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now reads
ω <

µ√
1− δ4

. (6.6)

These expansions also introduce condition (1−δ4) > 0, which is compatible with the physical
constrictions of δ2 for the DP.

The numerical results are calculated using the rescaled quantities r → µr, m → µm,
ω → ω/µ and the rescaled potentials f →

√
4πGf , g →

√
4πGg, h →

√
4πGh, and j →√

4πGj. In addition to these rescalings, the system also possesses the following symmetry

{σ, ω, f0, h0} → ξ {σ, ω, f0, h0} , (6.7)

where ξ is fixed in such a way that σ(∞) = 1.
To solve the system we use “NDSolve” command inMathematica and evaluate the initial

conditions at r = 10−6. We can vary f0 in analogy to a shooting method and set σ0 and M
numerically. To calculate the branches of M and Q as a function of ω, we followed the same
process, but we adapted the Mathematica Notebook for boson stars made by Macedo et al.,
mentioned in [45], for our system. In all cases, we fix the commands AccuracyGoal → 13
and PrecisionGoal → 12 for NDSolve. Using the virial equation, we found an estimated
error of the order of 10−2–10−7 in the solutions. While comparing the Komar mass with the
ADM mass, we found a difference of less than 1% in all solutions. We attribute a part of the
numerical error to the fact that the code implements a logarithmic step succession; however,
we also found that the error increases for relatively high δ values, such as δ > 0.5. We think
that this error may be due to the indeterminacy of the system of differential equations as δ
approaches 1 due to factors of (1− δ4) in the denominator.

In figures 3 and 4, we use approximately the same values for the parameters as in figure 2
in [22] to compare how the Proca case solutions differ due to the presence of the SM photon.
In both figures, we take δ2 ∼ 10−14 based in the Ly-alpha observations adjusted for dark
photons in reference [46]. We must remark that in figures 3 and 4, as well as in all the results
presented in this paper, the family of solutions for the function f(r) possesses one node, while
the solutions for g(r) are nodeless, just as in the case of the mini Proca stars studied in [22].

As we can observe, the functions m(r) and σ(r) of the metric and the functions f(r)
and g(r) of the dark photon vary very little from the case where δ2 = 0 (the pure Proca case
presented in [22]). This is to be expected due to the δ4 factor in the differential equations.
In fact, at a given numerical radius, R, the variations of the numerical solutions for the
functions m(r) and σ(r) when δ2 = 0 and when δ2 ∼ 10−14 are of the order of m(δ2 =
0)−m(δ2 = 10−14) ∼ 10−7. Variations in these functions become noticeable until the kinetic
mixing parameter δ2 takes on values so large that they are outside of the physical ultralight
DP range. In figure 5, for example, we take δ2 > 10−3; in these cases, the changes in the mass
function m(r) for the star become considerable, and therefore changes in the maximal ADM
mass could be expected; however, taking values of δ in the physical range, these differences
become increasingly negligible. The solutions for the functions g(r), f(r), j(r), and h(r)
present similar behavior with respect to the variations in δ2.

On the other hand, due to the way the functions are coupled in the system of differential
equations, we know that the initial values f0 and σ0 strongly determine the behavior of the
metric and DP functions, while the initial value h0 of the SM photon has a weak influence
on these functions. In fact, by varying h0 as shown in figure 6, the difference between the
numerical solutions for the functions f(r), g(r), σ(r), and m(r) at a given numerical radius
R is of the order of ∼ 10−6. This suggests that the SM photon has a relatively small effect on
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Figure 3. Numerical solutions for the functions m(r) (red), σ(r) (black), f(r) (blue), g(r) (green),
h(r) (dashed magenta), and j(r) (dashed orange) are obtained with fixed M = 0.745, ω = 0.817,
f0 = h0 = 0.394, and δ2 = 10−14.
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Figure 4. Numerical solutions for the functions m(r) (red), σ(r) (black), f(r) (blue), g(r) (green),
h(r) (dashed magenta), and j(r) (dashed orange) are obtained with fixed M = 1.016, ω = 0.839,
f0 = 0.165, h0 = 0.4 and δ2 = 10−14.
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Figure 5. Numerical solutions for the function m(r) are obtained for different values of δ2 with fixed
ω = 0.817, and f0 = h0 = 0.394.
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Figure 6. Numerical solutions for the function h(r) are obtained for different values of h0 with fixed
M = 0.745, ω = 0.817, f0 = 0.394, and δ2 = 10−14.

the behavior of the other functions in the system and that it may be possible to neglect it in
certain cases. However, the choice of h0 strongly influences the functions of the SM photon
j(r) and h(r). Therefore, we can vary h0 to fix the values of j(r) and h(r) at infinity without
significantly modifying the metric and DP functions. This would allow us, in principle, to
vary h0 to adjust the observables of the electromagnetic field of the SM photon associated
with a Proca-like star.

In figure 7 we plot the ADM massM and the charge QB as functions of ω for a relatively
large value of δ2 = 0.25 in order to observe the behavior of the branch. At first glance, we
can see that the maximum value allowed for ω in this case does not tend to 1 but tends to

1√
1−δ4 ≈ 1.032, this is due to the modified bound condition (6.6) found from the asymptotic

expansions for the system. This same behavior is exhibited by the other branches of M and
QB for different values of δ2. In each of these branches, we observe that as ω → 1√

1−δ4 , M
and QB tend to zero, with M/QB → 1. Which corresponds to a behavior analogous to mini
PS. In the same way, in all the solutions, the spiral behavior of M and QB is maintained
around a central value of ω, which varies for each branch of δ2. From figure 7, we can also
see that there are still two regions, one where M > QB and another where M < QB. Both
regions are divided by a point close to the minimum value of ω. On the other hand, from
figure 8, we can explicitly see the shift of the maximum value of ω for each branch of M for
different values of δ2. We see that the greater the δ2, the greater the shift in the branch of
M , and the smaller the δ2, the closer it is to the case of mini PS. In order to compare the
maximal ADM massMmax

ADM in each case, we can use symmetry (6.7) of the system and define
an auxiliary ω̃ of the form

ω̃ ≡ ω
√

1− δ4. (6.8)
Always keep in mind that ω is the physical numerical frequency fixed by the asymptotic
condition σ(∞) = 1, while ω̃ is just an auxiliary frequency to better visualize the graphs.
Figure 9 shows exactly the same branches as in figure 8 but as a function of ω̃, so the shift
in the branches of M has disappeared. From this figure we can see that the higher the δ2

value, the smaller the maximal ADM mass Mmax
ADM reached by the branch, where the highest

maximal mass is possessed by the δ2 = 0 branch with a maximal ADM massMmax
ADM = 1.0582

(corresponding to mini PS case), while the smallest value of maximal ADM mass is found
for δ2 = 0.25, with a maximal ADM mass of Mmax

ADM = 0.998. As we can see from table 1, the
branches of QB exhibit similar behavior.
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Figure 7. ADM mass M and charge QB vs. the frequency parameter ω, for a fixed δ2 = 0.25. The
inset corresponds to M vs. the shooting parameter f(0).
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Figure 8. ADM mass M vs. the frequency parameter ω, for δ2 = 0 (dashed green), δ2 = 0.01
(orange), δ2 = 0.09 (dashed blue), and δ2 = 0.25 (magenta).

0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

ω
˜

M

Figure 9. ADMmassM vs. the auxiliary frequency parameter ω̃, for δ2 = 0 (dashed green), δ2 = 0.01
(orange), δ2 = 0.09 (dashed blue), and δ2 = 0.25 (magenta).

In table 1, we list the maximal ADM mass Mmax
ADM for each value of δ2. Here ωmax

and ω̃max correspond to the frequency values associated with Mmax
ADM; QBmax is the maximal

value of QB, which also corresponds to ωmax and ω̃max, and MKomar is the Komar mass

– 17 –



J
C
A
P
0
1
(
2
0
2
4
)
0
1
8

ωmax ω̃max Mmax
ADM QBmax MKomar

δ2 = 0.00 0.873 0.873 1.0582 1.0881 1.0582
δ2 = 0.01 0.873 0.873 1.0581 1.0880 1.0581
δ2 = 0.09 0.877 0.873 1.0504 1.085 1.0508
δ2 = 0.25 0.900 0.871 0.998 1.0645 1.0013

Table 1. Proca stars for different values of δ2.

Q

QB

QAB

0.85 0.9 0.95 1 1.032
0

0.2

0.4

0.6

0.8

1

ω

Figure 10. Noether charge Q (orange) and charges QB (magenta) and |QAB | (dashed blue) vs. the
frequency parameter ω, for a fixed δ2 = 0.25.

associated with ωmax. From table 1, we can also see that ω̃max is approximately the same for
all δ2 values. Finally, it should be noted that for δ2 values less than 0.01, the changes in the
parameters M , QB, and ω vary very little with respect to the case of δ2 = 0 corresponding
to mini PS; therefore, for very small δ2 values, it is possible that a substantial difference
will not be noticed. However, although the parameters of the Proca star show very small
changes, we can still measure the observables associated with the electromagnetic field of
the SM photon Aµ, as we do in the next section. Finally, in figure 10, we plot the total
Noether charge Q and the charges QB and |QAB| as a function of the frequency parameter
ω for the same δ2 = 0.25 value. The difference between the branches in this case is given by
the proportionality factors QAB = −δ4QB and Q =

(
1− δ4)QB, described in (5.23), which

are valid for our ansatz (5.9), (5.10) and (4.5). As we can see, in this case, the QB charge is
always the largest, and, as expected from its definition (5.7), it is the one that comes closest
to the curve for the Noether charge of the mini PS case. As δ2 approaches zero, |QAB| goes
to zero, while Q and QB become the same curve that corresponds to the Noether charge for
mini PS.

7 Observables

Due to the form of the ansatz (5.10) for Aµ, the solutions are associated with a system with
zero magnetic field B̄ = 0 and an electric field Ē given in terms of the electromagnetic tensor
Fµν as follows

Ei = Fi0, (7.1)

where i = {r, θ, φ}, so that
Ē =

[
h′(r)− ωj(r)

]
eiωtr̂, (7.2)
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Figure 11. The expected value for the volumetric energy density of the electric field E is obtained
for a solution with µ = 8.4× 10−14 and δ2 = 4.6× 10−15.

where r̂ is the unit vector in the radial direction. Therefore, the physical electric field is
given by

Re{Ē} =
[
h′(r)− wj(r)

]
cos(wt)r̂, (7.3)

and from now on we change the notation for the electric field to Ē → Re{Ē}. From here,
we can calculate the expected value of the volumetric energy density associated with this
electric field, given by 〈1

2E
2
〉

= 1
4
[
h′(r)− wj(r)

]2
. (7.4)

In order to use the numerical solutions calculated in the previous section, it is necessary
to return to the non-scaled functions. Therefore, in natural units, the electric field can be
written in terms of the numerical solutions as follows〈1

2E
2
〉

= µ2

16πG
[
h′(num ) − w(num )j(num )

]2
. (7.5)

Finally, in order to avoid numerical noise, we can use equation (5.21) to rewrite h(r) and
j(r) in terms of f(r) and g(r), and directly introduce the δ4 factor in the previous equation,
so that 〈1

2E
2
〉

= µ2δ4

16πG
[
f ′(num ) − w(num )g(num )

]2
. (7.6)

In figure 11, we present the density plot for numerical solutions with fixed values of
M = 0.745, ω = 0.817, f0 = h0 = 0.394, and δ2 = 4.6 × 10−15. We then return to the
non-scaled functions by using a value of µ = 8.4 × 10−14 eV (motivated by the simulations
made in [46] for DP) and express the results in SI units. For these specific parameter values,
we obtain a maximum for the volumetric energy density at approximately 0.24 J/m3. As we
can observe, due equation (7.6), the expected value of the volumetric energy density of the
electric field strongly depends on the chosen value of δ2. This energy decays to zero at infinity,
as expected. In principle, it is this electric field and this density that we can use to adjust
observations in the regions where Proca stars associated with dark photons are expected to
be found. We hope to use this observable in future works to adjust real observational data.

One last important consideration to take into account is that, given the form of the
complex electric field of the SM (7.2), we can once again use equation (5.21) to rewrite (7.2) as

Ē =
[
h′(r)− ωj(r)

]
eiωtr̂ = δ2 [ωg(r)− f ′(r)

]
eiωtr̂. (7.7)
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From here, we observe that in the limiting case of δ = 0, we obtain that the complex electric
field of the SM is equal to zero (as well as the magnetic field of the SM due to the form of
the ansatz, as we mentioned before). Then, we can conclude that in the case of δ = 0, the
electromagnetic field of the SM disappears, leaving only the Proca field of the dark photon
as the only contributor to the formation of the Proca star, consistent with the results of the
previous section, where for δ = 0, we obtain the pure Proca case. However, it is important
to note that having Ē = B̄ = 0 when δ = 0 does not imply that the potentials h(r) and
j(r) are necessarily equal to zero. Actually, what happens in this limiting case is that the
solutions for h′(r) and ωj(r) are equal to each other, so it is true that [h′(r)− ωj(r)] = 0.
This behavior of the SM photon potentials can be appreciated directly in their expansions at
r →∞, given by (6.5). First, we can use equations (6.5) to write the asymptotic expansion
for the spatial part of the magnitude of Ē at r →∞ for any value of δ (within the constraints
of the model) as

[
h′(r)− ωj(r)

]
→ c0δ

2µ2e
−r
√

µ2
1−δ4−ω2

r (1− δ4)
√

µ2

1−δ4 − ω2
+ . . . (7.8)

From this expression, we immediately see that, keeping only the first terms of the expansions,
the oscillatory contributions of h′ and ωj cancel each other (even for non-zero δ), so that
the difference between h′ and ωj corresponds only to the exponential contributions. If we
set δ = 0, this difference disappears, and we obtain that the first terms of the asymptotic
expansions for h′ and ωj are equal to each other, which is consistent with the equation
h′ − ωj = 0. Therefore, we may expect the following behavior, depending on the value of δ:

• For δ 6= 0 (and within the constraints of the model), h and j decay with exponential
and oscillatory contributions, while the spatial part of the magnitude of Ē decays
exponentially.

• For δ = 0, h and j decay only with oscillatory contribution. In this case, the solutions
for the functions h′ and ωj are equal to each other, guaranteeing that the spatial part
of the magnitude of Ē is equal to zero.

This behavior is verified directly from the numerical solutions for h and j. Finally, it is crucial
to note that this behavior of the system when δ = 0 is valid for our ansatz (5.9)–(5.10), and
therefore, it is not a general result for system (5.1). In fact, we can see that if we impose
δ = 0 in (5.1) (or in the resulting equations of motion), this results in a complex Maxwell
and complex Proca system minimally coupled to gravity. Therefore, in this more general
case, setting δ equal to zero does not necessarily imply that the electromagnetic field of the
Standard Model disappears.

8 Conclusions

From this proposed model where SFDM possesses a gauge symmetry U(1) whose gauge
charge is associated with the dark photon, it is possible to obtain the description of scalar
boson stars, both charged and uncharged. Moreover, by considering a spontaneous symmetry
breaking in which the dark photon acquires mass, it is possible to obtain Proca-type stars
composed of these dark photons.

In the case where the mixing between the dark photon and the SM photon is negligible,
the result is the usual mini-Proca stars described in [22], with the only difference being that
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the mass of the DP is in terms of the effective mass, charge, and self-coupling parameter
of the dark matter scalar field. This causes the maximal mass of these Proca stars to be
modified in terms of the scalar field parameters.

On the other hand, the presence of the kinetic mixing term between the DP and the
SM photon has an influence on the solutions for Proca-type stars. Specifically, the larger
the kinetic mixing parameter δ2, the further the solutions deviate from the pure Proca case.
However, when δ2 takes physical values under the ultralight DP context, the differences in
the numerical solutions become increasingly negligible. In this way, we observed that the
branches of the ADM mass and the Noether charge as a function of the frequency parameter
ω are modified in terms of the kinetic mixing parameter δ2. In particular, we observed that
the usual bound condition for Proca stars is now modified and replaced by (6.6), so the M
vs. ω curves possess a shift in the ω axis depending on the value of δ2. We also found that
the maximal ADM mass of each branch varies depending on the value of δ2; in particular,
we found that the larger the δ2, the smaller the maximal ADM mass of the branch.

Finally, we used the numerical results to calculate the electric field and volumetric energy
density associated with the SM electromagnetic field for the case of Proca stars formed by
dark photons when the mixing between both photons is not negligible. This is an important
result that can help investigate physical observables for these types of stars, in addition to
the gravitational effects that are already known.

Additionally, although in the solutions presented in this work we only consider the case
where the Proca field associated with the dark photon does not have self-interactions, we
include an appendix where we examine the case with self-interactions. We study possible
hyperbolicity problems in our model, finding that our model definitely inherits the hyperbol-
icity issues associated with the self-interacting Proca model, and we address the viability of
using methods such as those proposed in [31, 32] to overcome these problems.
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A Hyperbolicity issues

Motivated by the hyperbolicity issues present in the self-interacting Proca model, in this
appendix we study the possible hyperbolicity issues that may be present in our model (2.2).
The hyperbolicity issues of Proca model with self-interaction come from the fact that the
system can be described by an effective metric that depends on the Proca field itself. The
consequence of this is that the hyperbolicity associated with the principal part of the differ-
ential operator of Proca’s equation may be lost [31, 32]. To study these possible difficulties
in our model, we look at the case of the equations for complex electromagnetism and the
Proca-type equations that come from the Lagrangian (5.1), which is found after propposing
the SSB and approximating to zero the Higgs mode associated with the SFDM. So we start
considering a Lagrangian of the form

LDP = −1
4FµνF

∗µν − 1
4BµνB

∗µν − U
(
B2
)
− δ2

2 Re {FµνB
µν} , (A.1)
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where, in the most general case, we consider a potential with quartic self-interaction terms
for the Proca field Bµ associated with the dark photon, so

U
(
B2
)

= 1
2µ

2BµB
∗µ + µ2α

4 (BµB∗µ)2 . (A.2)

In this case, the equations of motion for Aµ and Bµ are the same as those presented in (5.3)
and (5.4), given by

∇µ
(
Fµν + δ2B∗µν

)
= 0, (A.3)

∇µ
(
Bµν + δ2F ∗µν

)
= 2ÛBν , (A.4)

where now Û = dU
dB2 = µ2

2 (1 + αBµB
∗µ). We can combine these equations to find a modified

Proca equation for Bµ of the form

∇µBµν = 2Û
(1− δ4)B

ν . (A.5)

From here, we follow the steps presented in [28, 31, 32] to construct the effective metric
associated with the principal part of the differential operator in (A.5). We can define z ≡ 2Û

µ2

and ε ≡ (1 − δ4), and consider the case of a real vector field, then B2 = BµB
µ. So,

rewriting (A.5), we have

0 = ∇µBµν − µ2z

ε
Bν

0 = ∇µ∇µBν −∇µ∇νBµ −
µ2z

ε
Bν

0 = ∇µ∇µBν −∇ν∇µBµ −RµνBµ − µ2z

ε
Bν ,

(A.6)

where we have used the definitions of the Riemann curvature tensor (∇µ∇ν −∇ν∇µ)Bµ =
RµνB

µ and Bµν = ∇µBν − ∇νBµ. In addition, from equation (A.5), we have the modified
Lorentz condition of the form

∇ν

(
µ2z

ε
Bν

)
= 0⇒ ∇νBν = −1

z
Bν∇νz, (A.7)

putting this in (A.6) we have

0 = ∇µ∇µBν −RµνBµ + 1
z
Bµ∇µ∇νz −

µ2z

ε
Bν + . . .

0 = ∇µ∇µBν −RµνBµ + 2z′
z
BµBρ∇µ∇νBρ −

µ2z

ε
Bν + . . .

0 = ∇µ∇µBν −RµνBµ + 2z′
z
BµBρ∇µ∇ρBν + 2z′

z
Bµ∇µBνρBρ − µ2z

ε
Bν + . . .

0 = ∇µ∇ρBν
{
zgµρ + 2z′BµBρ

}
+ 2z′BµBρ∇µBνρ − zRµνBµ − µ2z2

ε
Bν + . . . ,

(A.8)
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where we have followed only the terms with second derivatives and without derivatives.
Following exactly the same steps as in [28], in the first line we use ∇µ∇νz = ∇ν∇µz, in the
second line we use ∇ν (BρBρ) = 2Bρ∇νBρ, and in the third line we use the definition of
Bµν = ∇µBν − ∇νBµ. Finally, in the last line we multiply by z. In this last equation, by
grouping the terms that involve second derivatives, we can introduce the effective metric of
the form

ĝµρ = zgµρ + 2z′BµBρ. (A.9)
We can see that, as in the Proca model with self-interactions, our effective metric also depends
on Bµ; therefore, we can deduce that the hyperbolicity problems persist in our model (5.1).
On the other hand, looking at the terms without derivatives in the last equation, we see that
the effective mass matrix in this case is given by

Mµ
ν = µ2z2

ε
δµν + zRµν , (A.10)

which also follows a very similar form to that of the Proca case with self-interactions, except
for the term ε =

(
1− δ4) that contains the kinetic mixing parameter δ2. This form of Mµ

ν

then also indicates the possible presence of tachyonic instabilities, as mentioned in [28]. One
way to try to avoid these problems is to follow the ideas in [31, 32] and try to get a theory
of partial UV completion for the Proca model with self-interactions from our model, so that
the effective metric in the complete model is the same as the metric of the system and then
the hyperbolicity issues disappear (but not necessarily the tachyonic ones). To proceed in
this way in our model, it would be necessary to consider the Lagrangian (3.8) obtained from
the SSB, and propose that the mass of the Higgs mode is much greater than that of the
dark photon. The reason for not proceeding in this way in our model is due to the physical
constraints that we consider for the SFDM mentioned in section 3, from these constraints the
mass of the Higgs mode would be expected to be much smaller than that of the Proca field
associated with the dark photon. Therefore, although the physical constraints for the SFDM
in this model may not be compatible with a UV completion theory for the self-interacting
Proca model, it is not out of the question to try to apply these ideas to a model like the one
proposed in (2.2) within a broader context beyond the one presented in this work.
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