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A methodology for integrating the chiral equation (pg,&-I),,-+ (pg,g-‘) ,= = 0 is developed, 
when g is a matrix of the SL(N,R) groug. In this work the ansatze g=g(A) where 
A satisfy the Laplace equation and g=g(&r) are made, where A and T are geodesic parameters 
of an arbitrary Riemannian space. This reduces the chiral equation to an algebraic 
problem and g can be obtained by integrating a homogeneous linear system of differential 
equations. As an example of the first ansatz, all the matrices for N=3 and one 
example for N= 8, which corresponds to exact solutions of the d= 5 and d= 10 Kaluza-Klein 
theory, respectively are given. For the second ansatz the chiral equations are integrated 
for the subgroups SL(2,R), S0(2,1R), Sp(2,R), and the Abelian subgroups. 

I. INTRODUCTION where gap9 L,, and A: depend only on x” in order to 

Chiral fields appear in many problems in physics. The 
most studied of them are perhaps the SU(N)-invariant 
chiral fields.’ Nevertheless, SL(N,%)-invariant chiral 
fields are also present in unified theories, as, for example, 
the Kaluza-Klein theory. Here we are restricted to show- 
ing how SL(N,%), invariant chiral fields appear in n- 
dimensional Kaluza-Klein theories. The goal of this 
work is to give a method to obtain exact solutions of these 
fields. 

have right invariance of ;on G, {P’)m = 5 * * an, is a basis 
of right-invariant one-forms on G. In ( 1) the space-time 
metric is g=g@ dx” dg, the G connection is represented 
by the one-form Am=AE dxa, and the metric on the fibre 
is &,,,, a’y” dy”. The field equations are accepted to be the 
vanishing of the n-dimensional Ricci tensor. If we do so 
we obtain the four-dimensional Einstein’s equations cou- 
pled with the Yang-Mills fields and a scalar multiplet. 

The n-dimensional Kaluza-Klein theory is one unif- 
ing theory of weak-strong, electromagnetic and gravita- 
tional interactions.2 Originally, it was formulated by 
Kaluza in 192 1 and Klein in 1926 in a five-dimensional 
Riemannian space, where the five-dimensional Ricci ten- 
sor vanished. The five-dimensional Kaluza-Klein theory 
unified electromagnetism and gravitation. The generali- 
zation to more than five dimensions has shown to be a 
mechanism for unifying all the until now well-known in- 
teractions in physics. The n-dimensional theory assumes 
that the whole space V,, has a structure of principal fibre 
bundle, with a four dimensional Riemannian base space 
V,, interpreted as the space-time, and typical fiber, a Lie 
group G, called the inner space.3 It is supposed that V, 
can be endowed with a Riemannian metric c, which is 
invariant under the right action of G on V,,. In such a 
way, the metric g^, written in local coordinates, reads as 

In this work we are interested in finding exact solu- 
tions of these field equations, when the components of the 
n-dimensional metric g^ depend only on two coordinates, 
x1 and x2. In such a case, and without a loss of generality, 
we can rewrite ( 1) in the form 

g^=f(dp2+dc2) +y& dx” dxb, a,b=3 ,..., n, (2) 

where the components of g^, f, and ‘yab now depend on p 
and c. The field equations RAB=O A,B=l,...,n for the 
metric (2) reduce to4 

a,p=1***4; m,n=5 ,..., n, (1) 

(a) (lnpf ),,=-$ tr(g,g-1)2, 

(b) (pg,g-‘),,-+ (pg,g-l),z=O, (3) 

det g= -p2, Yab= (dab, z=p+k? 

The main goal of this work is to give one method for 
solving Eq. (3b). Equation (3a) [knowing a solution of 
(3a)] is a linear differential equation of first order for the 
function f. Therefore one solution off always depends on 
one solution of y. Now we want to explain the method we 
are proposing.’ 
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II. THE p-DIMENSIONAL SUBSPACES 

We suppose now that the matrix g depends on a set of 
parameters ni, i= l,...,p, which depend on z and Z, il’ 
=il’(z,z3, i.e., 

g=g(;l’). 

In this case Eq. (3b) transforms to 

(4) 

[ (8,,8- ’ 1 j+ (g~-‘),ilp/2fi2;i;-+g,g-’ [ (pA~z),F+ (pilf),zl 

=o. (5) 

Let us now suppose that the parameters 1.’ are geo- 
desics of an arbitrary Riemannian space VP with Christ- 
offel symbols I$, i.e., 

(PA:),,-+ (p~~~),,+2pl$$J~=O, i&k= l,..., p. (6) 

Defining the matrix 

Aik) =Ai=g,g-‘, (7) 

and using Eqs. (5) and (6), it is easy to see that the 
matrices Ai fullfill the Killing equation 

and the relation 

Av-Ahi= [ AJj] 9 (8) 

in the space VP, where [ ] means matrix commutator. The 
matrices A, like the matrix g, are NXN (N=n-2) ma- 
trices. The Killing equation then is fullfilled by each com- 
ponent of the matrices Ai. Using the well-known relation 
~n;,.o=R~bbn(&, where 5, are the components of a Killing 
vector, we find that the covariant derivative of the Rie- 
mannian tensor of the space VP vanishes. That means that 
the space VP is symmetric. 

Of course, the A matrix is right invariant under the 
action of the group G0 G, being the group of constant 
matrices in G (i.e., the matrices A,EG that do not depend 
on 2’). It is easy to show that the relation A%A iff there 
exist geEG, such that AgO = AoL, (LB0 is the left action of 
G, on G) is an equivalence relation. Let us call TB a set 
of representatives Ai of each class [Ai, such that {[Ail> 
=A/-. TB is a set of elements of the 3 algebra of G, 
because A is the Maurer-Cartan form of G. Each element 
of TB can be mapped through the exponential map into 
the G group. Let be B=exp TB=&QIg 
=exp A,AczTB)CG. Then it is possible to show that 
(G,B,II,G&,J is a principal fiber bundle with projection 
lI(L(ge,g)) = g,L(gc,g) = L,(g).6 That means that if 
we can know the basis set B of the bundle, we can con- 
struct all the elements of G through the left action L, on 

G. In this work we will give two examples for the sym- 
metric matrices of G=SL(N,%). The properties of the 
matrices Ai can be deduced from the fact that g is a 
symmetric and real matrix. Furthermore, it is easy to see 
that the transformation g-+ -p-2’(n-2)g led Eq. (3b) in- 
variant. That means that we can renormalize g in order to 

N+ ’ havedetg=(-1) . In this case we can summarize the 
properties of g and Ai as 

g=E (a) Ai=Ai, 

detg=(-l)“+’ 3 (b) TrAi=Q (9) 

g=gT, (c) Aig=gAT. 

In this work we study only the cases when p = 1,2 for 
some interesting dimensions. The four-dimensional case 
was studied in Refs. 4 and 5 and the five-dimensional one 
in Ref. 7. 

Ill. ONE-DIMENSIONAL SUBSPACES 

We start taking the ansatz g=g(;l), where il is a 
function of z and Z, i.e., n=n(z,a. Equation (3b) then 
reduces to 

g,A =& (10) 

A being a constant matrix and A fullfiling the Laplace 
equation 

(pl,z) ,,-+ (PA,,-) ,r=O (11) 

[compare (10) and (11) with Eqs. (6) and (8)]. The 
NxN matrix A has the properties (9). Now observe that 
the field equation (3b) is invariant under the transforma- 
tion g-CgC’, the left action of G,1 C on G, C being a 
constant matrix of the group SL(N,%). Under this trans- 
formation the matrix A transforms to A-CAC-‘. This 
last relation separates the set of matrices A in equivalent 
classes, which lets us to work only with the representa- 
tives of each class, because for each member of the class, 
the corresponding solution will be related with the solu- 
tion using the representative of the class by the transfor- 
mation g-CgCT, C being the matrix that relates A with 
CAC-‘. The next step is to find a convenient representa- 
tive for each class. The first that one has is the Jordan 
normal form. But this normal form is diffiicult. In some 
cases the components of this kind of representatives are 
complex, although this is not a characteristic of the class. 
There is a more convenient representatives called the nat- 
ural normal form. In Appendix A it is shown that all 
NX N matrices are similar to one and only one natural 
normal form, i.e., the representative of each class has the 
form8 
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A, 
-42 0 

TABLE I. Degrees of the invariant factors of the matrix &--I. 

I N VA R I A N T S ; Order n 

2 

3 

4 

8 

13 (A 

Q 

..!c 
I 

1 
I 
1 
I 
1 
1 

I 
I 
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1 

I 
1 
I 
I 
I 

I 

1 

8 

@-I 

Is (h) s(X) 

I 
I 
I 
1 

i 

8 

a 

0” 

8 

8 

8 

0 

171x1 - ‘4 (A) dl (Al dz (A) A= 
I 0 

)A- 
I 

& 
1 I 
1 
1 

1 
1 
1 
1 
1 

1 
I 
I 

I 

I 

1 

1 
I 

0 

0 4 

where Ai, i= 1 * * as, is a square matrix called a cell, and is 
of the form 

0 1 0 -+* 0 

0 0 1 *-- 0 
Ai= , (12) . . . 

-a0 -al -a2 *** ---an-l- 

a,,,...,a,- 1 being the coefficients of its characteristic poly- 
nomial 

p(il)=~“+a,_l~2”-‘+...+a,~+ao (13) 

[observe that we are using the same 1 for Eqs. ( 11) and 
(1311. 

Next, we will propose an algorithm for finding all the 
classes. In order to do so, we use criteria 1 and 2 of 
Appendix A, and separate our algorithm in two steps. 
First step: we make all the possible partitions of the ma- 
trix A in ni cells, where n 1 + n2 + * * * + n,=N. Taking into 
account Theorem 4 of Appendix B, we obtain a set of 
possible representatives. But that is not enough. Second 
step: We find all the invariant factors of each matrix, 
comparing them with the corresponding one of the other 
matrices. When all the invariant factors are different to 
all the other matrices, we have found a new class, and 
then a new representative. The result is shown in Table I. 
In this table we designate an arbitrary polynomial of de- 
gree n by 0. When 1 is the corresponding invariant 
factor, it represents a polynomial of degree zero. The 
representatives, i.e., the set elements of TB, are shown in 
Table II. 

IV. THE MATRIX g 
Now we have to solve the matrix differential equation 

g,A = Ag, in order to find the corresponding B set, A being 
a representative of a class. Each class will give us a new 
solution of the field equation (3b) in terms of A. 

For solving this differential equation, we proceed in 
the following form. First we solve the first column of the 
equation g,A=Ag, which is independent of the others. The 
first column is divided in blocks, each of them corre- 
sponding to one cell A, i= l,...,s. Solving the blocks in 
terms of the first component gjl of them, one observes 
that the solution of it depends only on the roots of the 
corresponding eigenvalue problem p,(A) =0, i= l,...,s 
pAi being the characteristic polynomial Of Ai (see Ap- 

1 1 
1 
1 
1 
I 

1 
1 
1 

1 

I 
1 
1 
I 
I 

0 

8 

0 

t 
I 
I 1 
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I 

1 
1 
I 
1 
I 

1 
1 
I 
1 
1 

I 
1 
I 

1 
1 

I 

I 
1 

i 
1 

I 
1 
1 

f 

0 

8 

zi 

8 

8 

aI 

pendix B). The other components can be obtained by 
derivation. Second, one solves all the columns in the same 
way. The solution for each column will be the same, but 
with other integration constants. Third, we relate the in- 

TABLE II. Classification of matrices. 

Order Cares bi*tricas A, Invariants 
n 

3.1 I, I, Aa- Ab-a 

3 1 q 0 0 0 0 1 1 l,A-q. (X+2q)lX-q) 

0 2q” -q 

I, 1, 1. A’-cX’-bX-. 

4 0 0 
4.2 

[ 9 0 0 
1 0 1, 1 *h-q, A=*qh’-bX-• 

0 0 0 

0 1 
1 con a - qUq*-b) 

0 2q3-qb b -q 

4.4 
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TABLE III. One-dimensional subspaces. 

T,.4? 

26 

constant 
Parameters 

d. 6 

0 02 = -1 

b.d 

(PA 5): + (PL I.:= 0 (IIlP/).. =  f(lnp); + f(A,.)‘trAZ 

tegration constants, making use of the symmetry relation 
g=g’, and therefore g,n=Ag=gT,n. When Ai is a natural 
normal cell, we obtain that all the I-antidiagonal, i.e., the 
components gii with i+j=Z, are equal to each other. Fi- 
nally, one obtains a solution of the field equation (3b) in 
terms of A. In order to obtain it in terms of z and Z, we 
have to write ;1 in terms of these variables. It can be done 
solving the Laplace equation ( 11). For each solution of 
the Laplace equation we will have a new solution of the 
field equation (3b) in terms of z and .?. 

In the first step of this algorithm, the gi, component 
of g is determined by a linear differential equation of the 
order of the corresponding cell Ai with constant coeffi- 
cients, whose characteristic polynomial is just the char- 
acteristic polynomial of A. Therefore the solution of gii 
(and of all components of g) will depend on the multi- 
plicity of the roots of the polynomial, i.e., of the roots of 
the equation PA(I) =IIT=pi(A) =0, where pi(n) is the 
characteristical polynomial associated with the cell A, 
Therefore it is necessary to do a classification of the ei- 
genvalues of A in order to have an explicit solution of g in 
terms of il (see, for example, Ref. 7 for the five- 
dimensional case). 

Example I: We give now some examples in order to 
show the method. We take the N=3 dimensional case, 
which corresponds to the five-dimensional Kaluza-Klein 
theory. As is shown in Table II, this dimension has two 
representatives. For the first one, the characteristic poly- 
nomial is 

one is real. For case (a) we can diagonalize the matrix A 
in order to obtain an easier form of the matrix. For case 
(b) it is better to use the corresponding Jordan form (in 
both these cases the matrix A remains real). This is a 
spatial case when (14) has one null eigenvalue. It is 
shown as case (b) in Table III. 

The second representative has the characteristical 
polynomial 

(Lq)W+2q) =o. (15) 

The roots are well determined, but the explicit solution 
depends on whether q#O or q=O. If q#O the diagonal 
form is more convenient. All the corresponding solutions 
are shown in Table III. 

If we want to solve Rq. (3a), we have to take into 
account the transformation g---p-2”vg. Under this 
transformation, Eq. (3a) transforms into 

(lnpl-“Nf ),,=$ Mg,g-1)2- 

The matrix gs-’ can now be cast into its ,l form 
g,&-l;l,z=Ajl,, and observing that tr A2=2b for the first 
representative of Table III and tr A2=6q2 for the second 
representative (N=3 in Table III), one arrives at 

(16) 

A3-bil-a=0, (14) 

and it is, at the same time, the characteristic polynomial 
of the differential equation g,,=Ag. We have to classify 
the roots of Eq. ( 14). There are three possibilities: (a) 
All the roots are real and different; (b) all of them are 
real but two are the same; and (c) two are complex and 

The integrability conditions of Eq. ( 16) are guaranteed 
because A is a solution of the Laplace equation ( 11). 
Note that the integration of Eq. ( 16) only depends on the 
value of tr A2, which is always a constant; furthermore, it 
is an invariant number of the class. The N=2- 
dimensional case was studied in Ref. 4 and we only give 
the results in Table III. 
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Example 2: A very worked dimension is d= 10, 
which corresponds to superstrings theory. If we are stud- 
ing superstrings theory in a curved space-time under- 
ground and accept that this underground satisfies the 
field equations R* ob=O, Rdab being the Ricci tensor in d 
dimensions, the field equations reduce to (3). In Ref. 4 
the cylindrically symmetric solutions from the case N=2 
in Table III were found, with A: 

A=(n/J;;)lnp, ES. (17) 

In order to give one example in ten-dimensional relativ- 
ity, we take the matrix 

c= 

and 

D= 

CI CI a d- 
cl a qa $ 

c3 c3& 

~3 a $ c3a 

~5 a $ 

csci c5a 

w Cl& 

-cl J;; w 

c3 ~3 a d- C5 
~3 a $ c3a ~5 a $ 

c2 c2J;; c4 

~2 a $ c2a c4J;; 

c4 ~4 a d- C8 

~4 a $ c4a ~8 a $ 

c6 c6& Cl0 

c6& c6a c*o& 

4 -4 J;; 4 -4J;; 4 

-46 ha -4J;; &a -4& 

4 -4J;E 4 --d& 4 

-4J;; ha -4J;; 0 -4J;; 

4 --d& 4 --da& 4 

-66 &a -4& 4a -4d 

4 -4J;; d6 -de& 40 

e-4 J;; &a -d& dt+= --d,oJ;; 

v 

c4a 

w 

ClO& 

Cl@ 

c4 

CI a $ 

c6 

c6 a d- 

Cl0 

Cl0 & 

c9 

c9J;; 

g,i= 

01000000 

a0000000 

00010000 

OOaOOOOO 

00000100 

OOOOaOOO 

00000001 

OOOOOOaO 

g=& 

which has the set of invariant factors, 

d,(A)=d,(A)=d3(A)=d4(;1)= 1, 

d~(n)=d&)=d7(A)=ds(A)=L2-a. 

If we use the methodology given in this paper, we arrive 
at 

g=Cf?G+De-‘J”, 

with a~%, 

c4Jc; 

w 

c6 a d- 

c6a 

Cl0 J;; 

Cl@ 

c9J;; 

c9a 

-d& 

&a 

-4J;; 

ha 

--d& 

&a 

-4o & 

hoa 

4 
-d& 

‘& 
-d& 

d 

--d:,0\1;; 

4 

-4-b 

-46 

ha 

-hi& 

dd= 

-4oJ;; ’ 

hoa 

--d9& 

dga a 
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Using the /z given in ( 17)) one arrives at 

g=Cp”+Dp-“, 

K being the constant curvature of V,. The metric (23) 
has three independent Killing vectors. Let be 4, c, 5; 
these three Killing vectors. Then the matrix vector A can 
be written as 

and the integration from Eq. ( 16) of the superpotential f 
is 

fzp2n2-l/8, 
A=Ulf#+@+“d* (24) 

which integrates the whole ten-dimensional metric. 

V. TWO-DIMENSIONAL SUBSPACES 

Hence the matrices Al and A2 belong to the three- 
dimensional subalgebras of sl(N,R). Equation (22) is 
just the connection between the Lie subalgebras and the 
V2 spaces. We choose three independent Killing vectors 
of v,: 

Here we present another method following the me- 
chanics showed in the Introduction. Now we make the 
ansatz c$=& (Kg+ 1,KA2+ l), p=$ (-r&2), 

g=g(A,7), A=A(z,z), 7=7(2,,$, (18) 

where g is a symmetric NxN matrix of the group 
SL(N,R). We shall suppose that A and T are “geodesic” 
of a certain Riemannian space V,, 

(25) 

c=$ (Kg- 1,l -KA2), V= (1 +K~%T), 

(pAi,,),,-+ (p~j),=+2pr~~i,~Zk,,-=0, ij,k= 1,2, (19) 

where (A1,A2)=(A,~>. The ansatz (18) and (19) was 
made first by Neugebauer and Kramer’ in the case that g 
is a matrix of the group SU ( 2,1) . 

Let us define the two matrices in the corresponding 
Lie algebra of the group SL(N,R), 

and, using Eq. (22), it is easy to see that the commuta- 
tion relations of the sl (iV,R) subalgebras for the matrices 
~1, 02, 03 are 

[0102] = -4Ka,, [ 02a3 I= 4Ka1 , [a3q] = -402. 
(26) 

A,(g) =A,=g,d, 4(g) =h=g,,c’. (20) 

Using the chain rule in ( 3)) we substitute ( 18) and 
(19), and obtain that the matrix vector A= (A,,A,) sat- 
isfies the Killing equation in V,, 

VI. CHANGE OF BASE 

If we change the base of the Lie algebra CT,, a,, 03, for 
example, as follows: 

A1;2+A2;, =0, 12,~= 1,2. (21) 

This means that each conponent of A satisfies the Killing 
equation in V2. From the definition (20)) it is easy to see 
that the meaning of the covariant derivative in matrix 
notation becomes the commutator between the matrices 
A, and A,, i.e., 

Ai~=f[A~i]. (22) 

Observe that A, and A, are traceless and real, because 
they belong to the Lie algebra sl(N,W) . The V2 space 
must be symmetric (which means that the curvature of 
the V2 space must be constant). Because all space V2 is 
conformally flat, we can write the two metric as 

03 =gx, + hX2 + x3 , 

where A’,, X2, and X3 satisfy the commutator relation 
(26), then the base of the solutions of the Killing equa- 
tions changes to 

4t=a#+dc+gg, ~‘=b++e~+& !?=c++fc+i5“ 
(28) 

(23) 
There exists a one-to-one correspondence between the 
group GL (3,W) and the set of transformations 

J. Math. Phys., Vol. 33, No. 10, October 1992 

Downloaded 29 Aug 2005 to 128.189.203.144. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



MX=(; ; ;)(E;)=(i;)=u, (29) 

which we can use in order to obtain a new representation 
of the matrix A. This new representation does not satisfy 
the same commutation relations (26), in general. But 
there is a subset of GL(3, HP), that makes the representa- 
tion (26) invariant. The elements of this subset have the 
inverses 

( 

a 
M-l= l 

-d/K -g 

a2-Kb2-cZ 
-Kb e Kh . 

1 

(30) 
-c f/K i 

The equation MM- ’ =I gives five independent algebraic 
equations for the nine components of M. Thus we can 
change the Killing vectors base (28), making the com- 
mutation relation (26) invariant using the transforma- 
tion (30). If K=O, the components of M satisfy af =cd 
and di=fg, e=O, b and h remain free, but one of them 
must be different from zero in order to conserve the di- 
mensionality. 

VII. THE SL(N R) INVARIANCE 

Equation (3) is invariant under transformations of 
the group SL(N,IR). But if we also note that g is a sym- 
metric matrix of this group, we have to take the invari- 
ance transformation (i.e., the left action L, on G) 

g-+Gc=L,W, (31) 

in order to conserve symmetry (gT denotes the matrix 
transposition of g). In the Lie algebra sl(N Ha) this trans- 
formation is translated as the equivalence relation 

A1-+CAIC-‘, A2+CA2C-‘. (32) 

We have already used this last relation for finding classes 
of solutions in the one-dimensional case. Relation (32) 
makes clear, again, that it is enough to work with the 
representatives of the classes. We will use the classifica- 
tion of Table II now. Let us solve Eq. (3). In order to do 
so, we have to give a base of the Killing vector space in 
V2. Using Eq. (22), one finds the corresponding commu- 
tation relations for the three-dimensional base of the sub- 
algebra of sl(N, W). Having the explicit form of the Lie 
algebra one uses the exponential map for finding the 
group elements, or, equivalently, one integrates the first- 
order differential equations system (20). 

There are not too much subalgebras of dimension 
three of the Lie algebra sl(N,W). Among the classical 
groups there are well-known isomorphisms of dimension 

three. Here we shall study the group isomorphisms SO( 2, 
l$) =Sp(2, R) =SL(2,W) (see, for example, Ref. 9). 

VIII. THE FLAT SUBSPACE k=O 

A very interesting case is if K=O in (26). Then the 
space V2 is flat and the il and 7 parameters fulfill the 
Laplace equation separately. To this case belongs the al- 
gebras of dimension one and two, with a,=a,=O and 
a2 =0, respectively. We start by supposing K=O and a2 
=0, in order to study the two-dimensional subalgebras. 
They are Abelian algebras with 

[(TIP31 =o, qP3~swJu. (33) 

For N=2 there is no representation. For N=3 we 
first classify the matrices ol, because they are traceless 
and real matrices, and therefore they must be of one of 
the forms shown in Table II. It is convenient to change 
the base vectors in the killing space. We choose 

b-4-5= (LO), s-b+S= (Ql) (34) 

(remember that we need only two vectors, because 0, 
=O). Hence the base of the Abelian Lie algebra is trans- 
formed in such a form that A, =(T~ and A2=~3: 

o+(~,+o~=A,, C73-+--O~+CT3=A2. (35) 

For N=3 we have only two normal forms for the matrix 

A” [i % 8) and (% i2 $). (36) 

For the first matrix of (36), one can show that the 
matrix commutating with it is 

03=( -7 f3 f). (37) 

We now have to solve the system of differential equations 
of first order 

g,A=w and g,,=w, (38) 

the characteristic polynomial of o1 is ?-fir-cr =0 and 
of u3: 

- (y+T) (gT)2+a2=o. (39) 

Because of the symmetry of g, g,n and g,7 must be also 
symmetric matrices. For the first equation in (38), it is 
enough to take g22=g13, g23=agl~+Pg,2, and g33=wl2 
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TABLE IV. Two-dimensional subspaces. 

N=3 

PO 1 
( 1 
00 I 
0 2q* -q 

P, ( -2 0 0 

0 IO 0 01 1 

( 0 0 0 0 0 0 0 0 I ) ( -20 3 0 00 0 0 0 -, 1 

COtlSt.Wlt 
b Parameters 

( nc”A+‘,’ 0 0 bcV”+‘O’ 0 0 ced+t,’ 0 0 1 j,+;z+-,3 f1+1?+13 -A,-=7;‘1 = = # 0 0 0 

I -.--3-t,*-wr n n\ UC 
0 (A+a:)c+b ; e’lA++ 
n n I 

;,.a-L?#O 
ac2 = -1.6 I \ ” L v, 

1 -2m 4m’ 
(I -2m 41n? -8mJ ,-2mA+(4m~y)l+ 

4m? -8d 16m* 
I m+ m (m+ in)’ 

b m + I” (m + in)? (m + in)s ~(m+in)~+((m+lnl’-y)r + c c a. b. m. n 
,.jr; i!)? (In+ in)3 (m+ in)' 

I' 0 0 \ abc;‘T = 1 
0 (be”’ + CC”~) (&“‘I’ + &w) p* 

0 gz = SW (&)‘beqx’ + (&+” 

ac-3”Ai-~;~+:) 

0 cm 

ac--‘*-f@tY’7 

9: - (3 + ~)91 
+a&6-( =o 

,= 1.2 

~’ ,9,-P>’ 91.9 91-92fO 
a.6.c 

91.92 E 

-----I 
s#O#b, 

a = -(t)- 

q, = qz = (0 +JP 

gl? = 921 

0 
a o5r + b 0 

$,r+b $a+‘.bT+c $I 

0 @a 0 

0 = - (;/py 

of0Z-l 
6.5 

b.c.3 

+@gi3. For the second one we get just the same relations, 
thus the set of matrices ul=Al, a3=A2, which we can 
use, is restricted to (36). The solution of the differential 
equations (4) depends on the kind of roots, which are 
obtained from the respective characteristic polynomial. It 
is easy to see that this condition depends on whether 
D=27a3-32 is greater than, less than, or equal to zero 
for both matrices, o1 and 03. Hence both matrices have 
the same kind of eigenvalues. Let be D > 0. We look for 
solutions of the form 

gj= G#‘A+“, (4.0) 

where gj is the jth column of g. We solve the equation 
column by column. The substitution of (40) in (38) 
shows that the two linear algebraic systems, 

(Al-rl)Gj=O, (AZ--tl)Gj=O, (41) 

must be consistent. This condition is satisfied if we take 
t=r’-2fl/3 or r=-a(P/3--r). From the eigenvalue 
equation of ol follows the eigenvalue equation for u3. The 
other two cases D ~0 and D=O do not cause any diffi- 
culty if we take the corresponding Jordan form for ut. 

The second matrix in (36) can be divided into two 
cases, q# and q=O. If q#O, we can transform the ma- 
trix to 

u,=( -h’ ; I), u3=(% ; ;), (42) 

a3 being the matrix with which u1 commutates. The first 
equation (38) for (41) is easy to solve. The second one 
gives some restrictions to g. The results are shown in 
Table IV. 

The generalization for arbitrary N can be done as 
follows. One starts from the normal form of ul and de- 
termines the most general matrix that commutates with it 
calling this matrix u3. One calculates the characteristic 
polynomial of both matrices, and with each eigenvalue 
one looks for solutions of the form (40), gj being the jth 
column of g. One arrives at an algebraic equation of type 
(41) and looks for the conditions with which they are 
compatible. If the compatibility does exist, one finds the 
solutions for the matrix column Gj, fulfilling both alge- 
braic equations (41) . If the eigenvalues of u1 are real, it is 
sometimes convenient to transform the natural normal 
form to the Jordan form. An alternative algorithm for 
passing over from the Lie algebra to the corresponding 
Lie group is via the exponential map. The problem of this 
alternative method is that sometimes one obtains an infi- 
nite series of coefficients and matrices that are not appro- 
piate for analytic calculations. 
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For the three-dimensional subalgebras with K=O we 
did not have success in N=3. We find two algebras: 

and 

--p p 432/a 

do f 

so P 

0 0 0 
(TIE ( 0 0 1 1 , U2” 

0 0 0 
‘p -P c 

0.3=4 P 2/P -P f , P#Q 
6 0 0 1 

but both are not compatible with the symmetry of g, 
g=g’. Hence we did not tind any solution. Perhaps it is 
possible to find such a solution after some transformation 
of type (1). 

0 0 P 
SOP, 
0 0 0 1 

1X. THE CLASSICAL GROUPS 

We deal now with the case K#O in (25). We have to 
look for Lie algebras of dimension three, which are, at the 
same time, subalgebras of sl (N, R) . The first idea is the 
algebra sl(2,R). This algebra has an irreducible represen- 
tation in the set of traceless real 2~ 2 matrices (a very 
good study of these algebras is given in Ref. 10): 

a b ( ) C -a ’ 

Since SL(2,R) and Sp(2,R) are isomorphic, the corre- 
sponding Lie algebra sp (2,R) must have a representation 
with the commutation relations (26) as well. If we want 
to use the base of the killing vector space (25)) the cor- 
responding representation sl ( 2,R) = sp ( 2,R) is 

a,=2J=x a2= f2pz 

(43) 

being K < 0. We now want to come back to the Lie group. 
We have to solve the differential equation system (32)) 
where 

1 
0.g -I=Ar=(l+K/1+ 

J---K(ki?+l) b(J--K7-lj2 

-a(@r+1)2 -&X(@+l) 

x J--K(kA2+ 1) 

( 

-b( ma-l)’ 

-a(&ZA+1)2 - J-K(K/P+ 1) . 

For the integration of (44) it is helpful to take into 
account the symmetry of the matrix g. If we do so, we 
obtain 

- - - 
1 c(l----K;1)(1------KT) e\l--K(T-n> e 

g= 1 +K/2T e.pz(T-a> d(l+J--K;1)(1+&%) 
cd<O, e2= -cd, a=-, bz-;, (45) 

C 

where ;1 and r satisfy the “geodesic” equations ( 19), I$ 
being the Christofel symbols of the metric (23). 

The last Lie algebra we want to deal with, is 
so( 2, l,R). This is the set of matrices of the form 

We can calculate the generators of this Lie algebra di- 
rectly from the matrix (46), and arrive at Again, if we use the base of the Killing space of V2 (25 ), 
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we can see that one set of generators, which are compat- 
ible with (25), is 

q=4@xlr 02=4KX2, 0,=4$x3. (48) 

In other words, the three matrices (48) satisfy the com- 
mutator relations (26). With these matrices and Killing 
vectors, Eqs. (20) obtain the form 

0 
-2& Kg-1 0 

of 
g,T-l--2( 1 +f,,& 

--2&I l--Kit2 0 

Unfortunately, we were not able to integrate Eqs. (49). 
In order to obtain a solution from the algebra so( 2,1,W), 
we propose a transformation of the form (29) with the 
property (30). Let be M such a transformation: 

-;i% ; $, M-‘=$( -;b ; 7); 

a=MX (50) 

after that, we transform (48) into the following manner: 

For this last transformation let the commutation relations 
invariant. We obtain the representation 

, db=ac=f. 
(51) 

Using (5 1) and (25)) the differential equations system 
(20) gets the form 

1 
/ --4p(K?+ 1) d( -T-l)” 

I 
gng-1=2(1+KA~)z 1 

0 4J-K(K?+ 1) -c( J--K7+ 1)2 

i 

, 

-b( pr+1)2 a( -r-l)” 0 

-4J-iu(KA2+ 1) 0 

-1- 
1 

g,g 
-2( l+KA+ 

0 4J---K(ki12+ 1) . 

-b(&?,A+1)2 -a(p,l-1)2 

(52) 

In order to solve it, we first take into account the symmetry relations of g,n and g,7 and find some algebraic equations. 
These equations help us to solve column by column the system of differential equations. We arrive at 

1 
a’(A-2)2(7-2)2 b’(A--7) c’(n-2)(7-2)(A-T) 

g= (4-A# 
b’(A--7) d’(T+2)2(A+2)2 e’V+2>(7+2)@--7) 

c’(A-2)(7--2)(A---7) e’(A+2)(7+2)(/2--7) ~‘[(~-AT)~-~(T-A)~] 

ad 
a’=z, b’=8ad, c’=-4:, d’=l, e’=4q f’=-s, K-i. (53) 

I 

The matrix g is an exact solution of the chiral equations 
(3) if A and r are solutions of the “geodesic” equations 
(19) with the metric (23). 

It is clear that solution (53) cannot be used for two- 

dimensional chiral fields. But either solution (45) or so- 
lution (53), or a combination of both, can be used for 
chiral fields of dimension N> 3. For example, for N=5, 
one can take 
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q=2p 

q=Jx 

OOdO 0 

ooco 0 

baO0 

0 0 0 0 

0 0 0 a’ 

0 0 0 0 -b’ 

0 0 0 a’ 0 

db=ac=f , a’b’=4. (54) 

The set of matrices (54) satisfies the commutation rela- 
tions (26). Thus the final solution will be a symmetric 
5 X 5 matrix with the solution (53) in the upper diagonal 
and the solution (44) in the lower diagonal. Higher di- 
mensionality will give us more possibilities to combine 
matrices and so more possibilities to obtain chiral fields. 

X. CONCLUSIONS 

We have developed a method for finding exact solu- 
tions of the chiral equations (2) if the matrix g is a matrix 
of the group SL(N,R). It consists of reducing the chiral 
equations to a Killing equation of certain Riemannian 
space vd for each component of the corresponding Lie 
algebra matrices. After that, one looks for representations 
of the p-dimensional subalgebras of sl(N,R), and for a 
base of the p-dimensional Killing vector space of vd. Of 
course, this method can be applied to any Lie group G. 
Having the explicit Lie algebra general matrix in terms of 
the Killing vectors, one comes back to the Lie group, 
either with the exponential map or by integration. We 
also gave an algorithm for integrating the matrix g, using 
the one-dimensional subalgebras, and other algorithm for 
integrating the two- and three-dimensional subalgebras in 
order to get an analytic expression of the elements of the 
Lie group. 
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APPENDIX A 

In this appendix, we present the definitions and the- 
orems that we use in the present work, known in the 
mathematical literature. Some of them can be found in 
the text of linear algebra, although the theorem T is pre- 
sented with its proof, because it is less popular. The the- 
orem T can be read in Ref. 8. The matrices used in this 
appendix are of order n and its entries belong to a com- 
mutative field K. Here, we are interested in two equiva- 
lence relations: equivalence and similarity. 

Dejnition 1: A matrix B is said to be equivalent to a 
matrix A if there exist nonsingular matrices P and Q such 
that B= PAQ. 

Definition 2: Two square matrices A and B are said to 
be similar if there exists a nonsingular matrix P of the 
same order, such that B = P- ‘AP. 

We denote AEB for equivalence and AgB for similar- 
ity. 

Let A be a matrix with constant entries; we denote as 
pA(jl) the characteristic polynomial of A. The matrix A1 
-A is a polynomial matrix in the variable A. In the def- 
inition that follows, we present the invariant factors of 
U-A that correspond to equivalence relation E. 

Dejinition 3: Let P be a polynomial matrix of order n: 

r Al(n) P12G.) *-* P,,(n)] 

p= P21@2) P22(A) *-* P,,(n) 
: , 

and D,(n) the greatest common divisor of all minors of 
order k, in P (k= l,..., n). 

The invariant factors of P are defined as the follow- 
ing: 

d,(A) =D,(l), 

D2U) 
4(a) =m 7 

1 

. 

d,(A) = 
D,(a) 

D,-,(a) ’ 

dr+,(a)=Q 

d,(A) =O. 

If all minors of order k are equal to zero, then D,(I) 
=o. 
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Notice that D,(A) is the greatest common divisor of 
the elements of matrix P and D,(n) is the determinant of 
P. 

with coefficients in the field K in the last row, is called a 
natural normal cell. 

Below, we present two criteria that join the relations 
of definitions 1 and 2. 

Definition 5.2: A matrix with natural normal cells in 
its diagonal is called the natural normal matrix, if 

Criterion 1: Let PI and P2 be polynomial matrices of 
order n; they are said to be equivalent if and only if their 
respective factors, d,(A), d2(;1) ,..., d,,(A), are the same. 

The di(n) are known as the invariant factors. 
Criterion 2: Two matrices A and B on a field K are 

similar if and only if their characteristic matrices U-A 
and /zI - B are equivalent. 

Al 0 

AF= 
A2 

-. , 
. 

0 AS. 

In other words, the invariant factors d@) (j 
= l,...,n) characterize to a polynomial matrix and to all 
equivalent matrices to it. 

Now, we want to construct a convenient procedure 
for finding an appropriate representative element of every 
class of equivalence. Given a matrix A, we need to be- 
come A in a simpler form similar to A. These forms are 
called normal. A classic example is the Jordan normal 
form. In the complex field, all matrices can be repre- 
sented in its Jordan normal form; but in the field K, the 
reduction on K cannot be possible. If the entries of matrix 
A belong to a commutative field, A can be reduced to a 
normal form, known as natural. This is studied in the 
following rows. 

Definition 4: Let 

where Aj is an associated matrix to a polynomial f,(a), 
j=l ,...,s. If for every j=l ,...,s, f,(a) is a divisor of 
fj+r(/l), it is said that AF is a canonical natural matrix. 

For the matrix AP we have the following lemma. 
Lemma 2: Let grf(il) be the degree of the f(a). 
The invariant factors of the matrix A, are equal to 1, 

l,..., 1, f,(a), f2(a) ,..., f,(a), where the number of the l’s 
is given by 

i gr.tp) --s. 
j=l 

be a polynomial with principal coefficient 1 and a,&, 
j=O,l,..., n - 1. The associate matrix Af to the polynomial 
f(n), is defined as the following: 

To establish Lemma 2, we can use the following 
ideas: to every cell Aj (j= 1,2,...,s) corresponds its char- 
acteristic polynomial f,(n). Due to the fact that polyno- 
mials fj(;l) are factors ofp,,(/2)(Aj = l,...,S), we can 
interchange the rows for getting the invariant factors, as 
in the enunciated lemma. 

0 1 0 ... 0 0 

0 0 1 *** 0 0 

Af= -*- ..* . . . 

0 0 0 *** 0 1 

_--a0 -=1 -a2 **- --a,-2 --%-I_ 
(AlI 

It is important to observe that f (il) coincide with the 
characteristic polynomial of the cell A/, and Af is the 
associated matrix to f(a). 

J. Math. Phys., Vol. 33, No. 10, October 1992 

Then, if the characteristic polynomial of a matrix has 
not a factorization on K, the associated matrix of such a 
polynomial is a natural cell. If there is a factorization of 
the polynomial, then its associated matrix is constituted 
by as many cells as factors have the characteristic poly- 
nomial, and they are in order, such as enunciated in Def- 
inition 5. 

Lemma I: Let f(1) be a polynomial with principal 
coefficient 1 and n) 1. If Af is its associated matrix, then 
the invariant factors of the matrix ;Il-Af are equal to 
L...,Lf(~). 

The proof of this lemma can be established easily 
using the following ideas: D,(il)=l, for k= l,...,n-1. 
Then d,(n) =d,(,I) = ***=d,-l(I)=l, and we can cal- 
culate the determinant of ;II-Af by the row n for getting 

Last, we enunciate the most important theorem of 
this appendix; to do it we give a formal proof, because 
this theorem is a basis for the choosing of the natural 
normal form for the classification of representatives of 
equivalence classes on similarity. 

Theorem: Every matrix A with elements on K can be 
reduced on this field to one natural normal form, and 
only one. 

Definition 5. I: A matrix in the form (Al ), with l’s in 
the diagonal to the right of the principal diagonal, and 

ProoJ Let U-A be the polynomial matrix and its set 
of invariant factors: I= { 1 ,..., ifi ,..., f,(a)), without 
loss of generality, we can suppose that the invariant fac- 
tors are ordered, such that f,(a) is divided by fi- 1 (,I) for 
i= 2,3,..., t. If n is the order of the matrix A, we have that 
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f 
C gr[fAa) 1 =n, 
i=l 

and the number of the l’s is n--s. 
For every fi(;l) we can build its associated natural 

normal cell Nj, after we build the matrix N in the follow- 
ing way: 

NI 
N2 0 

N= 
0 . -I 

NJ 
N is a matrix in its natural normal form because every 
polynomial fi(A) is divided by the previous. Hence, the 
invariant factors of the matrix 21-N are 
l,l,...,lf,(a),...f(a), and they coincide with the invari- 
ant factors of U-A. Then the matrices A and N are 
similar. 

We presented a method for reducing the matrix A to 
its natural normal form. The unity of N follows from the 
fact that their invariant factors are built in only one way 
from the matrix A, if we employ the method suggested by 
Definition 3. However, the matrix N is built in only one 
way by the invariant factors. 

APPENDlX B 

1. FIRST PART 

Consider the linear system of differential equations: 

g,,i =& 

as defined in (3). 

(Bl) 

Remember that pA(a) is the characteristic polyno- 
mial of the matrix A and p,(a) is the characteristic poly- 
nomial associated to (Bl ) . 

Theorem 1: If A is a natural normal cell itself, then 
pm =p,w. 

ProoJ Since A consists of a single natural normal cell, 
then 

0 1 0 *** 0 

0 0 1 *** 0 

A= * * * se. * . 
0 0 0 *** 1 
b, b2 b3 *** b, 

We know, by Appendix A, that the entries of the last 
row of A are the coefficients of the characteristic polyno- 
mial of A. Thus, 

Let g be a real and symmetric matrix of order n. If we 
represent g,A as kb], then Eq. (Bl) can be written as 
follows: 

gil gi2 “* 6, 

g;* 852 * - - & 
. . . . . . 

&?I, 62 * -* &z* 

= 

g12 g22 *-* gn2 

g13 g23 * ** gn3 
. . . 

8ln 82n ** * 8nn 

Sf= lbg,i Xy= lbgzi * * * Zy= ,bg, ri- 

U33) 

For each column j (j= l,..., n), we get, from (B3), 

&=gi+ lj, i= l,...,n- 1, 034) 

gAj= i bgii. 
i=l 

(B5) 

Developing the last equation using Eqs. (B4), we obtain 
the following differential equation, in terms of glj: 

The characteristic polynomial associated to (B6) is 

From (B2) and (B7) it follows that pA(jl) =p&l). 
Notice that when we use a natural normal matrix 

such that its trace vanishes, then pA(a) does not present 
the term that corresponds to the derivative of order n - 1, 
I.e., 

Definition 1: For a square matrix A = [au] of order n, 
an antidiagonal is the set of entries ak={aiil i+j=k}; 
k=2,3 ,..., 2n. 

For example, the matrix A= [uJ of order 4, have 
seven antidiagonals; they are a,,; a,2a21; a13a22a31; 
al4a23a32a41; a24a33a42; a34a43; a44. 

Theorem 2: Let A be a natural cell. The elements of 
the matrix Ag, on each (rk, are the same. 

ProoJ g is a symmetric matrix, and from this it fol- 
lows that g,n is also symmetric, and hence Ag must be 
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symmetric as well. Let Ag be like the right member of 
equality (B3), and let Sk be the number of elements ak 
corresponding to Ag, k=3,4,...,2n and n order of Ag. 
Here Sk can be odd or even. 

If Sk is odd: for some k, we assign ti to the element 
g+ 1),2,Ck- 1J,2+1 of the antidiagonal ak and numerate 
the other elements of ab as is shown in the following 
diagram: 

gmi-*+lj 

yfj= I 1 i , 

&Ii+ lj 

each block ofgb where mi=nt+***+ni, i=l,...,s. 
Now we can write Ag as follows: 

Ag= 
A2~21 A2~22 I** A2~2n 

w3) . . . 
Sk-t 
tk c-- . . . - I A~Y,I A,ys2 *** As~sn ] 

In this way, Ag consists of n Xs block, each of which 
defines a linear system of differential equations, namely, 

If Sk is even for some k, we asign ff, to the element &&k/2 
of the ak and numerate the elements of ak as follows: 

Ykj,A =A kYkj 7 039) 

with k= l,..., s and j= l,..., n. 

Sk 
tk .-~ . . . 

I 
Sk-1 

lk 

Notice that these systems are independent. If we rep- 
resent by $(A) the characteristic polynomial associated 
to the matrix Ai, then we can enunciate the following 
theorem. 

Theorem 3: Let A be a matrix in its natural normal 
form with s cells. Then g,A=Ag can be decomposed in a 
system of s x n independent homogeneous linear differen- 
tial equations. Moreover, 

If we say that tiy&+t”=& because of some matrix 
symmetry y, then, since a is the symmetry of matrix Ag 
and @ is the symmetry of matrix g, the theorem follows. It 
is interesting to observe that, for k=n+2,...,2n; @-’ 
(odd case) or e (even case), such $ corresponds to one 
sum, then this element $’ only is relationed with the sym- 
metry a. But we have the equality of all elements of ak 
following a spiral of symmetries. 

Let A be a matrix in its natural normal form, with s 
cells, 

PA(A) = i, PAp), @lOI 

where pA(A) is the characteristic polynomial of the ma- 
trix A andPAi(A) are the characteristic polynomials of the 
cells of A. 

Pro& The first part has been proved already. Expres- 
sion (B 10) is known for matrices descomposed in diago- 
nal cells. 

Al 

A= 
A2 0 

0 --. 
, 

A, 

let nj be the order of the cell Aj, j= l,..., s. 
We represent by gj the jth column of the matrix g, 

To solve equation g,n =Ag, we have to solve each 
system in (B9 ) . This amounts to solving only s equations 
since for each k, all system in (B9) with different j having 
the same form. 

2. SECOND PART 

To generate the numbers into the little squares of 
Table I, we use the following definition. 

Definition 2: For some n&R, consider all the possible 
sets of natural numbers, such that, if we add the numbers 
in each set, we get the number n. 

Suppose that there are t such sets: 

Si=Cnil,nB,...,nikS; i= l,..., t. 

gj’ [gg], i= l,..., PZ. 

We make a partition of each column gi, of g accord- 
ing to the cells of A. Let us denote by We call the arrangement 

J. Math. Phys., Vol. 33, No. 10, October 1992 

Downloaded 29 Aug 2005 to 128.189.203.144. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Mates, Rodriguez, and Becerril: Exact solutions of SL(N,R)-invariant chiral equations 3535 

41 n12 **. ?hk, 

n21 n22 “- “2kz 

: 
, 

. 

nfl nfl - ntk f 

an ordered table of sums, if it satisfies the following con- 
ditions: 

(1) ng<nik, for j<k and i= l,...,t; 

(2) k,<kz.*+<k,. 

In Definition 3 of Appendix A, the concept of invari- 
ant elements of a polynomial matrix was presented to 
identify a class of matrices. If the invariant elements are 
ordered, as explained in Appendix A, we have the follow- 
ing result. 

Theorem 4: Let A be a non-null matrix of order n in 
its natural normal form, such that trace A =O. The first 
invariant element of the matrix H-A is 1, i.e., 

dt(/l)=l. 

Pro& A is a real matrix; then D,(n) = 1 or D1 (il) is 
a polynomial of first degree. If D, (1) = 1, then d, (12) = 1, 
as the theorem asserts. In the other case, we can suppose 

D1(L)=dl(A)=il-a. If d,(n) =A-a, A should have 
one a in each place of the principal diagonal and zeros in 
the other places. If this happens, we have that d,(n) 
=4(A) = ***=d,(il)=il-a and then p(A) = (2-a)” 
and trace A =na, but trace A =0 by hypothesis. Hence 
a = 0, but this is a contradiction to the condition that A is 
a non-null matrix. 

ACKNOWLEDGMENT 

Work partially supported by CONACYT-Mexico. 

‘See, for example, L. L. Chau, preprint UCD-87-38 (1987). 
2For one review of this theory see, for instance, D. Bailin and A. Love, 

Rep. Prog. Phys. 50, 1087 (1987). 
‘Y. Choquet-Bruhat and C. Dewitt-Morette, Analysis, Manifolds and 
Physics (North-Holland, Amsterdam, 1989), Part II, Chap. ~13. 

4See, for example, T. Matos, Rev. Mex. Fis. 35, 208 ( 1989). 
‘This method was first proposed by G. Neugebauer and D. Kramer for 
the four-dimensional case. The Backlund transforms of Eq. (3) are 
given in D. Kramer, G. Neugebauer, and T. Matos, J. Math. Phys. 32, 
2727 (1991); and in A. Mendoza and A. Retuccia, ibid. 32, 480 
(1991). 

‘T. Matos and R. Becerril, Rev. Mex. Fis. 38, 69 ( 1992). 
‘T. Matos, Ann. D. Phys. (Leipzig) 46,462 ( 1989). Also see T. Matos 
and G. Rodriguez, Nuovo Cimento (in press). 

*A. I. Maltsev, Fundamentos de Algebra Lineal (Mir, Moscow, 1972). 
9 R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications 

(Wiley-InterScience, New York, 1974), p. 52. 
‘OS. Lang, .SI,R (Addison-Wesley, Reading, MA, 1975). 

J. Math. Phys., Vol. 33, No. 10, October 1992 
Downloaded 29 Aug 2005 to 128.189.203.144. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


