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A methodology for integrating the chiral equation (pg.g~") ;+(pg2~") . = 0is developed,
when g is a matrix of the SL{N,R) group. In this work the ansitze g=g(A) where

A satisfy the Laplace equation and g=g(A,7) are made, where A and 7 are geodesic parameters
of an arbitrary Riemannian space. This reduces the chiral equation to an algebraic

problem and g can be obtained by integrating a homogeneous linear system of differential
equations. As an example of the first ansatz, all the matrices for N=3 and one

example for N=38, which corresponds to exact solutions of the d=35 and d=10 Kaluza—Klein
theory, respectively are given. For the second ansatz the chiral equations are integrated

for the subgroups SL(2,R), SO(2,1R), Sp(2,R), and the Abelian subgroups.

1. INTRODUCTION

Chiral fields appear in many problems in physics. The
most studied of them are perhaps the SU(/)-invariant
chiral fields.! Nevertheless, SL(N,R)-invariant chiral
fields are also present in unified theories, as, for example,
the Kaluza-Klein theory. Here we are restricted to show-
ing how SL(N,R), invariant chiral fields appear in n-
dimensional Kaluza-Klein theories. The goal of this
work is to give a method to obtain exact solutions of these
fields.

The n-dimensional Kaluza-Klein theory is one unif-
ing theory of weak—strong, electromagnetic and gravita-
tional interactions.? Originally, it was formulated by
Kaluza in 1921 and Klein in 1926 in a five-dimensional
Riemannian space, where the five-dimensional Ricci ten-
sor vanished. The five-dimensional Kaluza—-Klein theory
unified electromagnetism and gravitation. The generali-
zation to more than five dimensions has shown to be a
mechanism for unifying all the until now well-known in-
teractions in physics. The n-dimensional theory assumes
that the whole space ¥V, has a structure of principal fibre
bundle, with a four dimensional Riemannian base space
V., interpreted as the space-time, and typical fiber, a Lie
group G, called the inner space.® It is supposed that V,
can be endowed with a Riemannian metric §, which is
invariant under the right action of G on V,. In such a
way, the metric §, written in local coordinates, reads as

8=80p dX® AXP+ £,y (0™ + AT dx*) (6" -+ A} dxP)

a,f=1--+4; m,n=>5,...,n, n
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where g,5, & and AZAdepend only on x* in order to
have right invariance of g on G; {0™}m=35---n, is a basis
of right-invariant one-forms on G. In (1) the space-time
metric is g=g,g dx* dx?, the G connection is represented
by the one-form A™=A4J dx”, and the metric on the fibre
is &,,, dy™ dy". The field equations are accepted to be the
vanishing of the n-dimensional Ricci tensor. If we do so
we obtain the four-dimensional Einstein’s equations cou-
pled with the Yang-Mills fields and a scalar multiplet.

In this work we are interested in finding exact solu-
tions of these field equations, when the components of the
n-dimensional metric g depend only on two coordinates,
x! and x%. In such a case, and without a loss of generality,
we can rewrite (1) in the form

g=/(dp*+dE*) + vz dx°dx®, ab=3,...n, (2)

where the components of 2 f, and Ya» now depend on p
and . The field equations R 3=0 4,B=1,...,n for the
metric (2) reduce to*

(a) (npf),=iptr(gg™")

b

(b) (pgg~ ") s+ (pgg~") =0, (3)

detg=—p% Yup=(8)ar z=p-+il.

The main goal of this work is to give one method for
solving Eq. (3b). Equation (3a) [knowing a solution of
(3a)] is a linear differential equation of first order for the
function f. Therefore one solution of f always depends on
one solution of y. Now we want to explain the method we
are proposing.’
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Il. THE p-DIMENSIONAL SUBSPACES

We suppose now that the matrix g depends on a set of
parameters A, i=1,...,p, which depend on z and z, A’
=A'(z,2), i.e.,

g=g(A). 4)

In this case Eq. (3b) transforms to

[(gg™ )+ (g8 N pA As+88 [ (PA) 7+ (PA)) ]
=0, (5)

Let us now suppose that the parameters A’ are geo-
desics of an arbltrary Riemannian space ¥, with Christ-
offel symbols I‘ ie.,

(PAL) 74+ (PAS) ,+ 20T A A%=0, ijk=1,..p.  (6)

Defining the matrix

A(g)=A4=gg", (7)

and using Egs. (5) and (6), it is easy to see that the
matrices A4; fullfill the Killing equation

Ag+A;=0
and the relation
A;—Ay=14,4)], (8)

in the space ¥, where [ ] means matrix commutator. The
matrices A4, like the matrix g, are N XN (N=n—2) ma-
trices. The Killing equation then is fullfilled by each com-
ponent of the matrices 4;. Using the well-known relation
G nibia=Ribnb m» Where §,, are the components of a Killing
vector, we find that the covariant derivative of the Rie-
mannian tensor of the space ¥, vanishes. That means that
the space ¥, is symmetric.

Of course, the 4 matrix is right invariant under the
action of the group G, G, being the group of constant
matrices in G (i.e., the matrices 4G that do not depend
on A). It is easy to show that the relation 4%0r4 iff there
exist §o€G,, such that 4% = AoL, (L, is the left action of
G, on G) is an equivalence relation. Let us call TB a set
of representatives A’ of each class [4/], such that {[4]}
=A/~. TB is a set of elements of the J algebra of G,
because A4 is the Maurer—Cartan form of G. Each element
of TB can be mapped through the exponential map into
the G group. Let be B=exp TB={geG}|g
=exp 4,AeTB}CG. Then it is possible to show that
(G,B,11,Go.Lg)) is a principal fiber bundle with projection
(L (g08)) = 8L(g8) = Ly (g).° That means that if
we can know the basis set B of the bundle, we can con-
struct all the elements of G through the left action L, on

G. In this work we will give two examples for the sym-
metric matrices of G=SL(N,R). The properties of the
matrices 4; can be deduced from the fact that g is a
symmetric and real matrix. Furthermore, it is easy to see
that the transformation g— —p~%"~?g led Eq. (3b) in-
variant. That means that we can renormalize g in order to
have det g=(— l)N +1 1n this case we can summarize the
properties of g and A4, as

g=g (a) A=A,
detg=(—1)M1 = (b) T,4,=0, (9)
g=g7, (c) A;g=gAl.

In this work we study only the cases when p=1,2 for
some interesting dimensions. The four-dimensional case
was studied in Refs. 4 and 5 and the five-dimensional one
in Ref. 7.

lll. ONE-DIMENSIONAL SUBSPACES

We start taking the ansatz g=g(A), where A is a
function of z and z, i.e.,, A=A(z,2). Equation (3b) then
reduces to

8.=A48, (10)

A being a constant matrix and A fullfiling the Laplace
equation

(pA ;) 5+ (pA ;) ,=0 (11)

[compare (10) and (11) with Eqgs. (6) and (8)]. The
N X N matrix 4 has the properties (9). Now observe that
the field equation (3b) is invariant under the transforma-
tion g—CgC7, the left action of G,OC on G, C being a
constant matrix of the group SL(,R). Under this trans-
formation the matrix 4 transforms to 4—CAC~'. This
last relation separates the set of matrices 4 in equivalent
classes, which lets us to work only with the representa-
tives of each class, because for each member of the class,
the corresponding solution will be related with the solu-
tion using the representative of the class by the transfor-
mation g—CgC”, C being the matrix that relates 4 with
CAC™!. The next step is to find a convenient representa-
tive for each class. The first that one has is the Jordan
normal form. But this normal form is diffiicult. In some
cases the components of this kind of representatives are
complex, although this is not a characteristic of the class.
There is a more convenient representatives called the nat-
ural normal form. In Appendix A it is shown that all
N X N matrices are similar to one and only one natural
normal form, i.e., the representative of each class has the
form®
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0 A,

where A, i=1--'s, is a square matrix called a cell, and is
of the form

4= , (12)

—G —a —o —ap_)
Q,..,a,_, being the coefficients of its characteristic poly-
nomial

pA)=A"+a, A" 1t faidda, (13)

[observe that we are using the same A for Egs. (11) and
(13)].

Next, we will propose an algorithm for finding all the
classes. In order to do so, we use criteria 1 and 2 of
Appendix A, and separate our algorithm in two steps.
First step: we make all the possible partitions of the ma-
trix 4 in n; cells, where n,+#n,+ - - +n,=N. Taking into
account Theorem 4 of Appendix B, we obtain a set of
possible representatives. But that is not enough. Second
step: We find all the invariant factors of each matrix,
comparing them with the corresponding one of the other
matrices. When all the invariant factors are different to
all the other matrices, we have found a new class, and
then a new representative. The result is shown in Table I.
In this table we designate an arbitrary polynomial of de-
gree 1 by (@ . When 1 is the corresponding invariant
factor, it represents a polynomial of degree zero. The
representatives, i.e., the set elements of T'B, are shown in
Table II.

IV. THE MATRIX g

Now we have to solve the matrix differential equation
g.1=Ag, in order to find the corresponding B set, 4 being
a representative of a class. Each class will give us a new
solution of the field equation (3b) in terms of A.

For solving this differential equation, we proceed in
the following form. First we solve the first column of the
equation g ; = Ag, which is independent of the others. The
first column is divided in blocks, each of them corre-
sponding to one cell 4,, i=1,...,5. Solving the blocks in
terms of the first component 8i of them, one observes
that the solution of it depends only on the roots of the
corresponding eigenvalue problem p,(1)=0, i=1,..,s
D Ai(/l) being the characteristic polynomial of 4; (see Ap-

TABLE 1. Degrees of the invariant factors of the matrix 4,—I.

Order n I N vV A R I A N T S

dy (A ] d2 (A) | dy (M) de (A)[ds (X) | dg(A) | dr(A) ] da (X)

2
1 @
1 t ]

3 AR
1 1 1

<1 11i]8 8
1 @
AEREEEEEEE YR
SRR ERERE I
1 1 1 1 1 1 @D
AR A
1 1 1 1 1 % 8 %
1 1 1 1 1
1 1 1 1 1 8
1 1 | 1 0) (O IO 2 )]
1 )

8 : E E ' 93 2188

1

1 1 i ! @ 8 8 8
888 8|8
1 1 1
1 f 1
18181818188
[ @ ol O 0] O 0| @

pendix B). The other components can be obtained by
derivation. Second, one solves all the columns in the same
way. The solution for each column will be the same, but
with other integration constants. Third, we relate the in-

TABLE II. Classification of matrices.

Order Cases Matrices Al Invariants
n
2
o1 1, A%-a
: [« 4]
[o 1 o
0o 0 1 3
3.1 la b o 1, 1, A Ab-a
3 f[e 0 o©
o 0o 1 1,A-q, (R+2Q){A-q)
[0 24 -q
o 1 0 O . 2
o 0 1 O I, 1, 1, A -cA"-~bA-a
4.1 ¢ 0 0 1
la b ¢ O
q O [+IEN) = 3 2,5
4 0o o P I, 1, q,7«+q;\ bA-a
4.2 0 0 o 1 con a = q(2q -~b)
10 2q%°-qb b -q
0o 1 e 0 2 ]
a 0 o o 1, 1, A%"-a, A%-a
4.3 o o o 1
o 0 a o
[-3a 0 0 O
4.4 ] a 0 0 1, A-a, A-a, (A-a)(A+3a)
0 0 a ©
L 0 0 0 a
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TABLE III. One-dimensional subspaces.

Matos, Rodriguez, and Becerril: Exact solutions of SL(N,R)-invariant chiral equations

. 2 Constant
A A g T4 Parameters
01 T Vd\ .. TV L
d 0) b(ﬁ g )e'/'ﬁ*+4—};(‘/& ‘_/d)e 1avix 2 d.b
mn 0 0 ae?* 0 0
afo m o g= o be”" 0 Rardara|tTiATi=0
0 0 r ce3r abe =1
010 -2 0 0 -3’-* 0 .
00 1 Bl 0 n 1 (bA+c) 5 6r2 ab* = -1
a b ¢ 0 0 r 0 ¢
010 d —\c ¢ Ad 3 b 00 N =550
aglo o1 ~Ac -3«c sinAd+ | Ad 3 BAd |cosar+ [0 0 0 23 el
030 e o Bc 3Ad e 60 0 b3 (7 + &) =1
01 0 ~2m 4rn2 1 m+in  (m+in)? a = —2m(m? + n?)
c) (0 0 l) 2m 4m?  —8m3 | e 4 b | main  (m+in)? (m4in) {elmInl 4o 23 3 =n?-3m?
a 30 am® -8m®  16m! (m+in)? (m+in)® (m+in)! 4ab$=_m§g_-,‘m
¢ 0 0 ~2r, 0 0 ae~3r 0 0 .
0 0o 1 )lezo[ 0 n 0 0 b oc|en g7 | eltd-c) =1
0 2¢° -¢ 0 0 n 0 c d n
00 0 a b 0 ,
¢=0{0 0 1 b cA+d ¢ 0 act = -1
000 0 ¢ 0 b.d
(PA) .+ (P ) e =0 [(Inpf): = d(lnp). + §(1.,) trA?

tegration constants, making use of the symmetry relation
g=g”, and therefore g ; =Ag=g” ;. When 4, is a natural
normal cell, we obtain that all the l-antidiagonal, i.e., the
components g; with i+j=1, are equal to each other. Fi-
nally, one obtains a solution of the field equation (3b) in
terms of A. In order to obtain it in terms of z and z, we
have to write A in terms of these variables. It can be done
solving the Laplace equation (11). For each solution of
the Laplace equation we will have a new solution of the
field equation (3b) in terms of z and z.

In the first step of this algorithm, the g;; component
of g is determined by a linear differential equation of the
order of the corresponding cell A; with constant coeffi-
cients, whose characteristic polynomial is just the char-
acteristic polynomial of 4. Therefore the solution of g
(and of all components of g) will depend on the multi-
plicity of the roots of the polynomial, i.e., of the roots of
the equation p,(A)=II;_ p,(A) =0, where p,(1) is the
characteristical polynomial associated with the cell 4,
Therefore it is necessary to do a classification of the ei-
genvalues of 4 in order to have an explicit solution of g in
terms of A (see, for example, Ref. 7 for the five-
dimensional case).

Example 1: We give now some examples in order to
show the method. We take the N=3 dimensional case,
which corresponds to the five-dimensional Kaluza-Klein
theory. As is shown in Table II, this dimension has two
representatives. For the first one, the characteristic poly-
nomial is

A3 —bA—a=0, (14)
and it is, at the same time, the characteristic polynomial
of the differential equation g ;=Ag. We have to classify
the roots of Eq. (14). There are three possibilities: (a)
All the roots are real and different; (b) all of them are
real but two are the same; and (c) two are complex and

one is real. For case (a) we can diagonalize the matrix 4
in order to obtain an easier form of the matrix. For case
(b) it is better to use the corresponding Jordan form (in
both these cases the matrix 4 remains real). This is a
spacial case when (14) has one null eigenvalue. It is
shown as case (b) in Table III.

The second representative has the characteristical
polynomial

(A—¢)*(A+2¢)=0. (15)
The roots are well determined, but the explicit solution
depends on whether ¢g5=0 or ¢==0. If g0 the diagonal
form is more convenient. All the corresponding solutions
are shown in Table III.

If we want to solve Eq. (3a), we have to take into
account the transformation g——p~?Ng. Under this
transformation, Eq. (3a) transforms into

(Inp'=Nf) ,=3p tr(g.g~ )%

The matrix g Jg can now be cast into its A form
g Ag“/l =AA 5, and observing that tr A?=2b for the first
representatlve of Table III and tr 4”>=64’ for the second
representative (¥ =3 in Table III), one arrives at

(n(p' = f))=bp(A )2 (16)
The integrability conditions of Eq. (16) are guaranteed
because A is a solution of the Laplace equation (11).
Note that the integration of Eq. (16) only depends on the
value of tr 4%, which is always a constant; furthermore, it
is an invariant number of the class. The N=2-
dimensional case was studied in Ref. 4 and we only give
the results in Table III.
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Example 2: A very worked dimension is d=10,
which corresponds to superstrings theory. If we are stud-
ing superstrings theory in a curved space-time under-
ground and accept that this underground satisfies the
field equations R%,,=0, R?,, being the Ricci tensor in d
dimensions, the field equations reduce to (3). In Ref. 4
the cylindrically symmetric solutions from the case N=2
in Table III were found, with A:

(17)

A=(n/Ja)inp, neR.

In order to give one example in ten-dimensional relativ-
ity, we take the matrix

3525

[0 1 000 0 0 o
a 0000000
00010000
00a 00000
&=lo 000010 0f~%®
0000a 00O
000000O0O 1
0 00000 a 0]

which has the set of invariant factors,
di(A)=d(A)=d3(A)=d, (1) =1,
ds(A) =dg(A) =d;(A) =ds(A) =A’—a.

If we use the methodology given in this paper, we arrive
at

g=Ce”‘7+De““/E,
with aeR,

€4 \/;-

cqa

06\/‘_1

Ced

6‘10\/‘—z
€108

09\/‘;

Co@ |

J. Math. Phys., Vol. 33, No. 10, October 1992

[ ¢, cfa o oy s csya  c
oz ca czfa 6@ esfa csa cqa
s a o ofa o cea  ce
cifa a efa ca  ca  ca cgya
¢= Cs  Cs \/C—I €4 G4 \/; Cg Cg \/; €10
Cs \/5 Cs@ G4 \/; a ¢y \/; Cg@  Cyo \/;
cGa ¢ \/2 € Cg \/E €10 €1 \/; Cy
€7 \/‘; c1a  Cg \/; €@ Cpo \/‘—1 Ciod Gy \/E
and
[ 4, —dya 4 —dyya  ds
—diYa da —dyJa da  —ds\a
dy  —dyfa dy —dyfa  d,
—ds \/; dya —dz\/; dya —dM/Z
D=1 a,  _afa d  —difa  ds
—dS\/; dsa —d4\/; da —d8\/‘;
d;  —difa ds  —dgfa  dy
|—dyJa  dia —dg\a da  —dpa

—dsya  dy  —dya]
dsa —d \/;z- dqa

—d4\a ds —dga
dsa —d, \[E dga

~dga  dy  —dpya|’
dsa —dyp \/; dya

—dyja  dy  —dgya
dypa —dy \/; dsa

Downloaded 29 Aug 2005 to 128.189.203.144. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3526 Matos, Rodriguez, and Becerril: Exact solutions of SL(N,R)-invariant chiral equations

Using the A given in (17), one arrives at
g=Cp"+Dp~",

and the integration from Eq. (16) of the superpotential f°
is

2
f=p2n 7/8’

which integrates the whole ten-dimensional metric.

V. TWO-DIMENSIONAL SUBSPACES

Here we present another method following the me-
chanics showed in the Introduction. Now we make the
ansatz

g=g(ﬂ"1—)9 /1=A'(Z’E)a T=T(Z:E)) (18)

where g is a symmetric N XN matrix of the group
SL(N,R). We shall suppose that A and 7 are “geodesic”
of a certain Riemannian space V5,

(PA) s+ (PAT5) 4+ 2pT AT A% :=0, ijk=12, (19)

where (AL,A%)=(A,7). The ansatz (18) and (19) was
made first by Neugebauer and Kramer® in the case that g
is a matrix of the group SU(2,1).

Let us define the two matrices in the corresponding
Lie algebra of the group SL(N,R),

A)(g)=A=g,87", 4, (g)=A=g g (20)

Using the chain rule in (3), we substitute (18) and

(19), and obtain that the matrix vector 4=(A,4,) sat-
isfies the Killing equation in ¥,

A1;2+A2;1=0, A.,T=1,2. (21)

This means that each conponent of A4 satisfies the Killing
equation in ¥,. From the definition (20), it is easy to see
that the meaning of the covariant derivative in matrix
notation becomes the commutator between the matrices
A, and 4,, i.e.,

Ai;i=%[Aj’Ai]' (22)

Observe that 4, and A4, are traceless and real, because
they belong to the Lie algebra si(/V,R). The V, space
must be symmetric (which means that the curvature of
the ¥, space must be constant). Because all space ¥, is
conformally flat, we can write the two metric as

dA dr

2 __
A8 = Kin’

(23)

K being the constant curvature of ¥,. The metric (23)
has three independent Killing vectors. Let be ¢, &, &,
these three Killing vectors. Then the matrix vector 4 can
be written as

A=01p+0,E+04L. (24)

Hence the matrices 4, and A4, belong to the three-
dimensional subalgebras of sl(N,R). Equation (22) is
just the connection between the Lie subalgebras and the
V, spaces. We choose three independent Killing vectors
of V,:

1 X )
¢ 2V2'( 1’ ; 1)’ g VZ ( 1-1/{)9
(25)

1

and, using Eq. (22), it is easy to see that the commuta-
tion relations of the sl(V,R) subalgebras for the matrices
gy, 0y, 03 are

[010,]1=—4Koy, [0y03]=4Koy, [o30]1=—40;.

(26)
Vi. CHANGE OF BASE
If we change the base of the Lie algebra oy, 03, 03, for
example, as follows:
0'1=GX1+bX2+CX3, 0'2=dX1+€X2+fX3,
(27)
o3 =gX+hX,+iX;,
where X, X,, and X, satisfy the commutator relation

(26), then the base of the solutions of the Killing equa-
tions changes to

¢'=ap+dE+g5, §'=bp+ef+hE, §'=C¢+f§+i§-(28)

There exists a one-to-one correspondence between the
group GL(3,R) and the set of transformations

J. Math. Phys., Vol. 33, No. 10, October 1992
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a b cy\x, oy
MX: d e f X2 =| O3 =0, (29)
g h i X3 a3

which we can use in order to obtain a new representation
of the matrix 4. This new representation does not satisfy
the same commutation relations (26), in general. But
there is a subset of GL(3, R), that makes the representa-
tion (26) invariant. The elements of this subset have the
inverses

) a —d/K —g
-1 —Kb Kh
M =a k=2 ‘ - 09
—c f/K i

The equation MM ~'=1 gives five independent algebraic
equations for the nine components of M. Thus we can
change the Killing vectors base (28), making the com-
mutation relation (26) invariant using the transforma-
tion (30). If K=0, the components of M satisfy af=cd
and di=fg, e=0, b and & remain free, but one of them
must be different from zero in order to conserve the di-
mensionality.

Vil. THE SL(N R) INVARIANCE

Equation (3) is invariant under transformations of
the group SL(N,R). But if we also note that g is a sym-
metric matrix of this group, we have to take the invari-
ance transformation (i.e., the left action L. on G)

§—CgCT=L(g), (31)

in order to conserve symmetry (g7 denotes the matrix
transposition of g). In the Lie algebra s1(NV R) this trans-
formation is translated as the equivalence relation

A —~CAC™Y, A, CA,CL. (32)

We have already used this last relation for finding classes
of solutions in the one-dimensional case. Relation (32)
makes clear, again, that it is enough to work with the
representatives of the classes. We will use the classifica-
tion of Table II now. Let us solve Eq. (3). In order to do
so, we have to give a base of the Killing vector space in
V,. Using Eq. (22), one finds the corresponding commu-
tation relations for the three-dimensional base of the sub-
algebra of sl(#N, R). Having the explicit form of the Lie
algebra one uses the exponential map for finding the
group elements, or, equivalently, one integrates the first-
order differential equations system (20).

There are not too much subalgebras of dimension
three of the Lie algebra sl(N,R). Among the classical
groups there are well-known isomorphisms of dimension

three. Here we shall study the group isomorphisms SO(2,
LR)=Sp(2, R)=SL(2,R) (see, for example, Ref. 9).

VIil. THE FLAT SUBSPACE k=0

A very interesting case is if K=0 in (26). Then the
space V, is flat and the A and 7 parameters fulfill the
Laplace equation separately. To this case belongs the al-
gebras of dimension one and two, with o,==03=0 and
0,=0, respectively. We start by supposing K=0 and o,
=0, in order to study the two-dimensional subalgebras.
They are Abelian algebras with

[UI’U3] =07 GI,USGSI(N,R)- (33)

For N=2 there is no representation. For N=3 we
first classify the matrices o, because they are traceless
and real matrices, and therefore they must be of one of
the forms shown in Table II. It is convenient to change
the base vectors in the killing space. We choose

(remember that we need only two vectors, because o,
=0). Hence the base of the Abelian Lie algebra is trans-
formed in such a form that 4,=0, and 4,=03:

0'—>0'1+0'3=A1, 0'3—#——-0'1-*-0'3:142. (35)

For N=3 we have only two normal forms for the matrix
A 1 :

010 g 0 0
0 0 1 and 0O 0o 0 . (36)
a B O 0 2¢* —gq

For the first matrix of (36), one can show that the
matrix commutating with it is

—2B/3 O 1
oy= a B/3 0 |, (37)
0 a B/3

We now have to solve the system of differential equations
of first order

g:=018 and g.=03g, (38)

the characteristic polynomial of oy is 7 —Br—a=0 and
of o 3

28 B\

—(?—I-T) (3—7‘) +a“=0. (39)
Because of the symmetry of g, g; and g, must be also
symmetric matrices. For the first equation in (38), it is

enough to take g,,=g13, §23=08;+Bg12 and g3 =08y,
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TABLE IV. Two-dimensional subspaces.
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= Constant
N=3 i o3 8 Parameters
) ti2d9s = 0
w 000 th 00 ae AT g 0 123
( 0 12 0 (0 s 0) ( 0 perarttar 0 fl t+ l_zj‘:s = g
0 0 3 0 0 13 0 - 0 ce““"" rlazc =ri i #
-2 0 O -23 0 0 ae~ 3N x-387 0 0 N .
0 0 0 3 a 0 (A+ar)ctb c |enrtar g AR
0 0 = 0 0 3 0 c 0 ect =%
0 1 0 0 1 0 2373 0 1 T <2m  am’ -
0 0 1 001 o 33 0 llaf-2m am? _gmd | emmrtlmi¥)ry
o 30 a 3 0 i a  3/3 4m?  —gm®  16m?
1 m+in  (m+in)? ( -
ma4in  (m4in)? (m4in)d | e(mEimEUmbn) -3 +c.c. a.b.m.n
(m+in)? (m+ m)3 (m + in)*
de- S XS FITY abc.‘.’ = =1
-2 0 0 —{a+3) 0 O vy r r 2t T =42 =3)
r ( 0 1 0) ( (00 ) a 0) 0 (bem” + CC" ) ( bet + _L"ce: ) €A ql-_‘h E;é ?
0 01 0 + 3 932 = ga3 [(F}—T) bett” + ('_:__5) cc"'] q a‘?.c
ge-3ria=doitl, 4 7n.2€R
—a T §#0#b
0 (67 +¢) [L‘—br+3~ (b— ) ] PrE T2V +ad(— ;:,0—2(1(; af—(i 2
- &
[(,,%2) br = Jo— %5 b] i=1.2 G=q=(a+3)/2
N a,b.c
¢ 0 1 eI 0 UL {2abb/6%)%
0 0 (be?” +bef") (L;-e-be" + 1325ef7) | 02 (478 + (a = B)?) = 1
0 27 —¢ g3 (172)7 bet” 4 (422)7 et abg=m+in
3 0 o T2 0 - ae-—zuv —J(u[30)(e‘"+¢_"") . [i] a= _(_,/B)z/s
00t 3 a 0 g1 = gn —~A—L’—r)a+b]+e 2oty (-3%)- —gae‘" a#0#4
0 00 0 0 o _aleor 0 5.8
afr + b 7 a= — (/83
/3a7+b Lar +b-r+c g, 7;&0(’(/);0
1] b.c. 3
+Bg,5. For the second one we get just the same relations, —2y;, 0 0 a 00
thus the set of matrices 0,=4,, 03=4,, which we can 0 » O 0 e f (42)
. . . . . gy = Or=
use, is restricted to (36). The solution of the differential 1 1 » O3
equations (4) depends on the kind of roots, which are 0 0 n 0 i

obtained from the respective characteristic polynomial. It
is easy to see that this condition depends on whether
D=27a®—32 is greater than, less than, or equal to zero
for both matrices, o, and o;. Hence both matrices have
the same kind of eigenvalues. Let be D> 0. We look for
solutions of the form

gj= Gjer,1+t‘r’ (40)
where g; is the jth column of g. We solve the equation
column by column. The substitution of (40) in (38)
shows that the two linear algebraic systems,

(4,—r1)G;=0, (4,—tI)G,=0, (41)

must be consistent. This condition is satisfied if we take
t=r"—2B/3 or r=—a(B/3—t). From the eigenvalue
equation of o follows the eigenvalue equation for ;. The
other two cases D <0 and D=0 do not cause any diffi-
culty if we take the corresponding Jordan form for o;.

The second matrix in (36) can be divided into two
cases, g0 and ¢=0. If g0, we can transform the ma-
trix to

o, being the matrix with which o; commutates. The first
equation (38) for (41) is easy to solve. The second one
gives some restrictions to g. The results are shown in
Table IV.

The generalization for arbitrary N can be done as
follows. One starts from the normal form of o, and de-
termines the most general matrix that commutates with it
calling this matrix o3. One calculates the characteristic
polynomial of both matrices, and with each eigenvalue
one looks for solutions of the form (40), g, being the jth
column of g. One arrives at an algebraic equation of type
(41) and looks for the conditions with which they are
compatible. If the compatibility does exist, one finds the
solutions for the matrix column G, fulfilling both alge-
braic equations (41). If the eigenvalues of o, are real, it is
sometimes convenient to transform the natural normal
form to the Jordan form. An alternative algorithm for
passing over from the Lie algebra to the corresponding
Lie group is via the exponential map. The problem of this
alternative method is that sometimes one obtains an infi-
nite series of coefficients and matrices that are not appro-
piate for analytic calculations.
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For the three-dimensional subalgebras with K=0 we
did not have success in ¥N=3. We find two algebras:

0 0O 0 00
o= 0 0 1 , Op= 5 O Pi,
0 00 0 00
—p P _62/8
oy=4 d 0 f |, 850
6 0 p
and
000 0 0 B
o= 0 0 1 y Op= 6 0 P,
0 00 0 0O
p —B ¢
oy=4|p"* —p f|, B0,
o} 0 O

but both are not compatible with the symmetry of g,
g=g". Hence we did not find any solution. Perhaps it is
possible to find such a solution after some transformation
of type (1).

IX. THE CLASSICAL GROUPS

We deal now with the case K540 in (25). We have to
look for Lie algebras of dimension three, which are, at the
same time, subalgebras of sl(V, R). The first idea is the
algebra sl(2,R). This algebra has an irreducible represen-
tation in the set of traceless real 2X2 matrices (a very
good study of these algebras is given in Ref. 10):

]

1 (C(I—,/—KA)(I—\/—KT)

8 T+ Kar eJ—K(r—A)

where A and 7 satisfy the “‘geodesic” equations (19), I‘}k
being the Christofel symbols of the metric (23).

The last Lie algebra we want to deal with, is
so(2, 1,R). This is the set of matrices of the form

0 b a
—-b 0 c|. (46)
a ¢ O

We can calculate the generators of this Lie algebra di-
rectly from the matrix (46), and arrive at

eJ—K(t—A)

d(l+w/—K/1)(1+\/——K1')

a b
(c —a)’
Since SL(2,R) and Sp(2,R) are isomorphic, the corre-
sponding Lie algebra sp(2,R) must have a representation
with the commutation relations (26) as well. If we want

to use the base of the killing vector space (25), the cor-
responding representation s1(2,R) =sp(2,R) is

0

1 0 b
0'1=2V—K(0 ——l), 02=:’:2\)_K(a O)’

43
0 —b (43)
0‘3=2(0Z 0 ), ab=1,

being K < 0. We now want to come back to the Lie group.
We have to solve the differential equation system (32),
where

1
—-1__ —
88 == Kin)

(\/—K(k'rz—{-l) b(,/—Kr-l)Z)
X )

—a(y=Kr+1)? —J—K(kr?*+1)

) (44)
.._1__ —
88 == K

J=K(kA2+1)  —b({—KA—1)?
e "KL+ ——EEA2 1))
For the integration of (44) it is helpful to take into

account the symmetry of the matrix g. If we do so, we
obtain

d<0, f=—cd a=-, b=—, (45)
ca<y, e =-—cd, a——c, —'_d!
I
0 1 0 00 1
x,=| -1 0 0|, x,={0 0 o],
0 0 0 100
(47)
000
X3—001.
010

Again, if we use the base of the Killing space of ¥, (25),
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we can see that one set of generators, which are compat-
ible with (25), is

o1=4JKX,, 0,=4KX,, o3=4KX;. (48)

In other words, the three matrices (48) satisfy the com-
mutator relations (26). With these matrices and Killing
vectors, Egs. (20) obtain the form

R 0 K?+1 —2/Kr
g = | —KP=1 0 KP—1],
oAl 2JKr KT—1 0
pa— rr —
(49)
® 0 KA*+1 —2(KA
g—l_i_z —KA’~1 0 1-KA?
T T2(14-KA7)
—2JKA  1—-KA? 0

Unfortunately, we were not able to integrate Eqs. (49).
In order to obtain a solution from the algebra so(2,1,R),
we propose a transformation of the form (29) with the
property (30). Let be M such a transformation:

o=MX (50)
after that, we transform (48) into the following manner:

1 1 O

N

o;—»coc”!, with ¢=[0 O
1 -1 0

For this last transformation let the commutation relations
invariant. We obtain the representation

—1 0 0 0 0 d
oi=4J—K| 0 1 0], o,=/=K|0 0 ¢
0 0O b a O
0 0 -—d (51)
o3=|0 0 ¢ |, db=ac=;.
b —a 0

Using (51) and (25), the differential equations system
(20) gets the form

1 —4TK(KP+1) 0 d({—Kr—1)?
g,£_1=m 0 4J—K(KP+1) —c(J—Kr+1)?|,
—b(J—=Kr+1)?  a(—Kr—1)2 0
(52)
| —4[—K(KA*+1) 0 —d({—KA—1)
—1_ . 2 _ . 2
8™ =30 K 0 4/—K(kA2+1) c(J—KA+1)?].

—b(y—KA+1)?

—a(|—KA1—1)? 0

In order to solve it, we first take into account the symmetry relations of g, and g, and find some algebraic equations.
These equations help us to solve column by column the system of differential equations. We arrive at

| a'(/l—2)2(1-—2)2 b'(A—7) ' (A=2)(—=2)(A—171)
=G b'(A—7) d'(142)*(A1+2)? eA+2)(r+2)(A—7) |,
C(A=2)(1—2)(A—7) & (A+2)(r+2)(A—7) f'[(4—AT)2—8(7—A)?]
ad a a 1
a’=E, b'=8(1d, C'=—47, d'=1, e'=4a, f'=—;, K=—Z. (53)

The matrix g is an exact solution of the chiral equations
(3) if A and 7 are solutions of the “geodesic” equations
(19) with the metric (23).

It is clear that solution (53) cannot be used for two-

dimensional chiral fields. But either solution (45) or so-
lution (53), or a combination of both, can be used for
chiral fields of dimension N > 3. For example, for N=35,
one can take
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-2 000 O
0 200 O
o=2y—k| 0 0 0 0 0|
0 001 0
0 00 0 —1
00d 0 O
00c 0 O
oy=\—klb a 0 0 O
000 0 &
0004 O
0 0 —-d 0 O
0 O c 0 O
g3=b—a000,
0 0 0 0 =¥
0 0 0 a O
db=ac=3, a'b’'=4. (54)

The set of matrices (54) satisfies the commutation rela-
tions (26). Thus the final solution will be a symmetric
5% 5 matrix with the solution (53) in the upper diagonal
and the solution (44) in the lower diagonal. Higher di-
mensionality will give us more possibilities to combine
matrices and so more possibilities to obtain chiral fields.

X. CONCLUSIONS

We have developed a method for finding exact solu-
tions of the chiral equations (2) if the matrix g is a matrix
of the group SL(N,R). It consists of reducing the chiral
equations to a Killing equation of certain Riemannian
space V¥ for each component of the corresponding Lie
algebra matrices. After that, one looks for representations
of the p-dimensional subalgebras of sl(¥,R), and for a
base of the p-dimensional Killing vector space of Ve, Of
course, this method can be applied to any Lie group G.
Having the explicit Lie algebra general matrix in terms of
the Killing vectors, one comes back to the Lie group,
either with the exponential map or by integration. We
also gave an algorithm for integrating the matrix g, using
the one-dimensional subalgebras, and other algorithm for
integrating the two- and three-dimensional subalgebras in
order to get an analytic expression of the elements of the
Lie group.
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APPENDIX A

In this appendix, we present the definitions and the-
orems that we use in the present work, known in the
mathematical literature. Some of them can be found in
the text of linear algebra, although the theorem T is pre-
sented with its proof, because it is less popular. The the-
orem T can be read in Ref. 8. The matrices used in this
appendix are of order n and its entries belong to a com-
mutative field K. Here, we are interested in two equiva-
lence relations: equivalence and similarity.

Definition 1: A matrix B is said to be equivalent to a
matrix A if there exist nonsingular matrices P and Q such
that B=PAQ.

Definition 2: Two square matrices 4 and B are said to
be similar if there exists a nonsingular matrix P of the
same order, such that B=P~'AP.

We denote AzB for equivalence and A5B for similar-
ity.

Let A be a matrix with constant entries; we denote as
p4(A) the characteristic polynomial of 4. The matrix AJ
—A is a polynomial matrix in the variable A. In the def-
inition that follows, we present the invariant factors of
AI—A that correspond to equivalence relation E.

Definition 3: Let P be a polynomial matrix of order n:

u(A)  pi(d) P1a(A)
P Pa(A)  pp(d) Pan(A)
nl(l) Pnz(/l) pnn(/l)

and D;(A) the greatest common divisor of all minors of
order k, in P (k=1,...,n).

The invariant factors of P are defined as the follow-
ing:

di(A)=Dy(4),

D,(A)
dy(A) =D,A)’
D,(A)
OB LW
dr+l('{) =0,
d (A) =O0.

If all minors of order k are equal to zero, then Dy (1)
=0.
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3532 Matos, Rodriguez, and Becerril: Exact solutions of SL{N,R)-invariant chiral equations

Notice that D;(1) is the greatest common divisor of
the elements of matrix P and D,(A) is the determinant of
P.

Below, we present two criteria that join the relations
of definitions 1 and 2.

Criterion 1: Let P; and P, be polynomial matrices of
order n; they are said to be equivalent if and only if their
respective factors, d(4), d;(1),...,d,(A), are the same.

The d;j(4) are known as the invariant factors.

Criterion 2: Two matrices 4 and B on a field K are
similar if and only if their characteristic matrices A7 —A
and AJ — B are equivalent.

In other words, the invariant factors dj(/l) ]
=1,...,n) characterize to a polynomial matrix and to all
equivalent matrices to it.

Now, we want to construct a convenient procedure
for finding an appropriate representative element of every
class of equivalence. Given a matrix 4, we need to be-
come 4 in a simpler form similar to 4. These forms are
called normal. A classic example is the Jordan normal
form. In the complex field, all matrices can be repre-
sented in its Jordan normal form; but in the field K, the
reduction on K cannot be possible. If the entries of matrix
A belong to a commutative field, 4 can be reduced to a
normal form, known as natural. This is studied in the
following rows.

Definition 4: Let

f(/l) =ﬂ."+a,,_1/1"_l+ cec +alll+ao ,

be a polynomial with principal coefficient 1 and agKk,
J=0,1,...,n—1. The associate matrix 4 to the polynomial
f(A), is defined as the following:

0 1 0 0 0
0 0 1 0 0
Ap=
0 0 o - 0 1
L— G —a —a —G8p_y —ap_1]

(A1)

Lemma 1I: Let f(A) be a polynomial with principal
coefficient 1 and n>1. If 4 is its associated matrix, then
the invariant factors of the matrix A/—A are equal to
1w LF(A).

The proof of this lemma can be established easily
using the following ideas: Dy (A)=1, for k=1,..,n—1.
Then d\(A) =d,(A) ="+ =d,_(A)=1, and we can cal-
culate the determinant of A7 — A, by the row n for getting

D, (A)=ag+a A+ +a,_ A" '+ A"=d,(1).

Definition 5.1: A matrix in the form (A1), with I’s in
the diagonal to the right of the principal diagonal, and

with coefficients in the field X in the last row, is called a
natural normal cell.

Definition 5.2: A matrix with natural normal cells in
its diagonal is called the natural normal matrix, if

where A4; is an associated matrix to a polynomial fiA),
J=1..s If for every j=1,.,s, f;(1) is a divisor of
Sfi+1(4), it is said that A is a canonical natural matrix.
For the matrix Ay, we have the following lemma.
Lemma 2: Let gr f(A) be the degree of the f(A).
The invariant factors of the matrix 4 are equal to 1,
L., 1, £1(A), f2(A),....fs(A), where the number of the 1’s

is given by

21 gr f(A) —s.
j=

To establish Lemma 2, we can use the following
ideas: to every cell 4 ; (j=1,2,...,5) corresponds its char-
acteristic polynomial f;(1). Due to the fact that polyno-
mials f(1) are factors oprF(/l)(Aj = 1,...,5), we can
interchange the rows for getting the invariant factors, as
in the enunciated lemma.

It is important to observe that f(A) coincide with the
characteristic polynomial of the cell 4, and 4/ is the
associated matrix to f(A).

Then, if the characteristic polynomial of a mairix has
not a factorization on K, the associated matrix of such a
polynomial is a natural cell. If there is a factorization of
the polynomial, then its associated matrix is constituted
by as many cells as factors have the characteristic poly-
nomial, and they are in order, such as enunciated in Def-
inition 5.

Last, we enunciate the most important theorem of
this appendix; to do it we give a formal proof, because
this theorem is a basis for the choosing of the natural
normal form for the classification of representatives of
equivalence classes on similarity.

Theorem: Every matrix 4 with elements on X can be
reduced on this field to one natural normal form, and
only one.

Proof: Let AT — A be the polynomial matrix and its set
of invariant factors: I={1,...,1,f;(4),....,f:{1)}, without
loss of generality, we can suppose that the invariant fac-
tors are ordered, such that f,(1) is divided by f;_ (1) for
i=2,3,...,t. If n is the order of the matrix 4, we have that
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21 grl fdA)1=n,

and the number of the I’s is n—s.

For every f;(1) we can build its associated natural
normal cell N, after we build the matrix N in the follow-
ing way:

Ny

N is a matrix in its natural normal form because every
polynomial f;(4) is divided by the previous. Hence, the
invariant factors of the matrix AI—-N are
L1,...,1,f1(A),...f,(A), and they coincide with the invari-
ant factors of A7—A. Then the matrices 4 and N are
similar.

We presented a method for reducing the matrix 4 to
its natural normal form. The unity of N follows from the
fact that their invariant factors are built in only one way
from the matrix A, if we employ the method suggested by
Definition 3. However, the matrix N is built in only one
way by the invariant factors.

APPENDIX B

1. FIRST PART

Consider the linear system of differential equations:

g.=A4g, (B1)

as defined in (3).

Remember that p,(A) is the characteristic polyno-
mial of the matrix 4 and p.(A) is the characteristic poly-
nomial associated to (B1).

Theorem 1: If 4 is a natural normal cell itself, then
Pa(A) =py(A).

Proof: Since A consists of a single natural normal cell,
then

0 0] 0
0 0 1 0
A= .
0O 0 0 - 1
_bl b, by ‘- bn_

We know, by Appendix A, that the entries of the last
row of A are the coefficients of the characteristic polyno-
mial of 4. Thus,

PR =A"—b A" —b, A2 — - —byA—by.
(B2)

Let g be a real and symmetric matrix of order n. If we
represent g; as [g{], then Eq. (Bl) can be written as
follows:

g1 812 " 8l
81 82 7 8&m
8 8n T 8&m
[ 812 822 En2 ]
&13 823 8n3
— . . « o . . (B3)
81a 82n 8&nn
_E?=1bgli 3 1bgy Ef;,b,gm-_

For each column j (j=1,...,n), we get, from (B3),

g=8ir1p i=Llen—1, (B4)
8n= . lb,g,,-. (B5)
=

Developing the last equation using Eqs. (B4), we obtain
the following differential equation, in terms of g,

(n}

(n—1)
8ij

_bnglj »

— - —bygy—b181;=0.
(B6)

—bn-181)

The characteristic polynomial associated to (B6) is

PelA)=A"—b A" —by A2 — by’ —byd—b, .
(B7)

From (B2) and (B7) it follows that p,(1) =p.(1).

Notice that when we use a natural normal matrix
such that its trace vanishes, then p,(A) does not present
the term that corresponds to the derivative of order n—1,
ie.,

PAA)=A"—by A"E— —byA—by.

Definition 1: For a square matrix 4=[a;] of order n,
an antidiagonal is the set of entries a,={a;|i+j=k};
k=2,3,...,.2n.

For example, the matrix 4=[a;] of order 4, have
seven antidiagonals; they are a;;; a,ay); @1305203;;
14323038415 243338425 @34943; dag-

Theorem 2: Let 4 be a natural cell. The elements of
the matrix Ag, on each «ay, are the same.

Proof: g is a symmetric matrix, and from this it fol-
lows that g, is also symmetric, and hence 4g must be
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symmetric as well. Let Ag be like the right member of
equality (B3), and let S be the number of elements a,
corresponding to Ag, k=3,4,....2n and n order of Ag.
Here S can be odd or even.

If S is odd: for some k, we assign #3 to the element
&k—1y/2,k—1)/24+1 Of the antidiagonal «; and numerate
the other elements of «y, as is shown in the following
diagram:

«
| g—— |
Si-1 s« T 573 s S¢-2
t te tx tx tx tx
]
B

If S is even for some k, we asign 7}, to the element g/ 4/,
of the a; and numerate the elements of ¢; as follows:

6 1 3
bttt te bt t

L=—="],

If we say that iyt =#, because of some matrix
symmetry ¥, then, since « is the symmetry of matrix Ag
and B is the symmetry of matrix g, the theorem follows. It
is interesting to observe that, for k=n+2,...,2n; t“:"_l
(odd case) or t‘:" (even case), such #{ corresponds to one
sum, then this element #7’ only is relationed with the sym-
metry . But we have the equality of all elements of a;
following a spiral of symmetries.

Let A be a matrix in its natural normal form, with s
cells,

let n ; be the order of the cell 4j, j=1,...,s.
We represent by g; the jth column of the matrix g,

g=Igyl, i=l,..n.

We make a partition of each column g, of g accord-
ing to the cells of 4. Let us denote by

g’"i— 141,/
Y= : ’
8m+14

each block of g;, where m;=n;+ - +n;, i=1,..5.
Now we can write Ag as follows:

AYin
A272n

Ayyn Ao

A A
Ag— 2721 z?’zz (B8)

A4 sVs1 ASYSZ T As’}’m

In this way, Ag consists of 7Xs block, each of which
defines a linear system of differential equations, namely,

Yija=AkYx» (B9)

with k=1,...,s and j=1,...,n.

Notice that these systems are independent. If we rep-
resent by p{”? (1) the characteristic polynomial associated
to the matrix 4, then we can enunciate the following
theorem.

Theorem 3: Let 4 be a matrix in its natural normal
form with s cells. Then g ;=Ag can be decomposed in a
system of s X n independent homogeneous linear differen-
tial equations. Moreover,

s
pad)= Il po ), (B10)
=
where p,(A4) is the characteristic polynomial of the ma-
trix4andp A'_(ﬂ.) are the characteristic polynomials of the
cells of 4.

Proof: The first part has been proved already. Expres-
sion (B10) is known for matrices descomposed in diago-
nal cells.

To solve equation g,=Ag, we have to solve each
system in (B9). This amounts to solving only s equations
since for each £, all system in (B9) with different j having
the same form.

2. SECOND PART

To generate the numbers into the little squares of
Table I, we use the following definition.

Definition 2: For some neft, consider all the possible
sets of natural numbers, such that, if we add the numbers
in each set, we get the number 7.

Suppose that there are ¢ such sets:

S,~={n,-1,n,2,...,n,-k,}; i= 1,...,t.

We call the arrangement
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an ordered table of sums, if it satisfies the following con-
ditions:

(1) ny<ny, for j<k and i=l,..5

(2) Kki<ky --<k,.

In Definition 3 of Appendix A, the concept of invari-
ant elements of a polynomial matrix was presented to
identify a class of matrices. If the invariant elements are
ordered, as explained in Appendix A, we have the follow-
ing result.

Theorem 4: Let A be a non-null matrix of order » in
its natural normal form, such that trace 4=0. The first
invariant element of the matrix AJ—4 is 1, i.e.,

di(A)=1.

Proof: A is a real matrix; then D;(A)=1 or D (A1) is
a polynomial of first degree. If D,(4) =1, then d,(1) =1,
as the theorem asserts. In the other case, we can suppose

D(A)y=d(A)=A—-a. If d|(A)=A—a, 4 should have
one a in each place of the principal diagonal and zeros in
the other places. If this happens, we have that d;(4)
=d,(A)="--=d,(A)=A—a and then p(A)=A—a)”
and trace A=na, but trace 4=0 by hypothesis. Hence
a=0, but this is a contradiction to the condition that A4 is
a non-null matrix.
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