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ABSTRACT. In this work we present an interpretation oC the topology of two limit cases of
important exact solutions of Einstein's equations. The primary idea of this work was proposed by
Plebaóski in 1975 [1] using a point of view ditrerent from that of W. Israel. It consists in looking
for manifolds in which the 2-forms describing the electromagnetic field of the solution in the limit
case are single valued. We found that the first manifold has two three-dimensional euclidean spaces
with only one temporal axis. The second manifold has two four.dimensional minkowskian spaces.
In both cases the two-spaces are joined by a wormhole.

RESUMEN.En este trabajo presentamos una interpretación topológica de dos casos límites de
soluciones exactas de las ecuaciones de Einstein. La idea primaria de este trabajo fue propuesta
por Plebaóski en 1975 desde un punto de vista diferente al de W. Israel. Este consiste en buscar
variedades en las cuales las 2-formas que describen el campo electromagnético de la solución en
el caso límite sean univaluadas. Nosotros encontramos que la primera variedad tiene dos espacios
euclídeos tridimensionales con sólo un eje temporal. La segunda variedad tiene dos espacios de
Minkowski. En ambos casos los dos espacios están unidos por un agujero de gusano.

PACS: 04.20.-q; 04.20.Cv

1. INTRODUCTION

'Ve present a construction of topologies of t\Vo limit Cases 01 exact solutions, different
Crom that oC W. Israel [2]' who proposed to consider the I<err singularity like the so urce
oC the field. Our point oC view is to consider the I<err singularity like a wormhole joining
two "copies" oC this sort of spaces, obtaining in this form a space without singularities
but in a certain sense similar to some Iliemanl1 surCace.

The objective oC this \Vork is to give to non-expert readers in general relativity the idea
oC how certain mathematical tools can be used to construct useCul geometries.

This work is organized in the Collowing way: in the first part \Ve present the origin
oC the physical problem, showing the limit cases oC the solutions which we wil! use and
the Cormalism oC the electromagnetic field in terms oC differential Corms. In the second
part we give the mathematical background necessary to build surfaces in \Vhich the diC-
Cerential Corms describing the electromagnetic field are well-defined. In the last part the
construction is given in detail and the possible interpretations are explained .
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2. PRELIMINARY

It is known that in general relativity the electromagnetic fields are often represented by
real of complex differential forms. Using complex forms one finds that they are not always
single valued. In this work we present a way of finding manifolds in which two different
fields are single valued and their possible physical cousequences. Also we find that the
structure of these manifolds is a type of wormhole.

The Einstein-Maxwell equations written in tensorial notation and units in which G =
e = 1, are

where

/
O¡W = O

;v , /~v - O.v - 1 (2.1)

(2.2)

(2.3)

and the duality operation is given by Jiw = 2A'~VpT /pr' The invariants of the electro-
magnetic field will be denoted by

F- 1/ /~v-:¡/lV 1 Go - '/ /o~v- '4 IJY 1 (2.5)

or using orthogonal tetrads we have

a' b'9 = det(g~v) = det(ga'b,e~ ev),

Va'b' i a'b'c'd'
/ = "2' /c'd"

It is known that Eqs. (2.1) are equivalent to the condition that the forms

/ - 1/ d /' d v _ l/° a' /\ b'- '2 IlV X /\ X - '2 a'b,e e,

.... 1 v v 1 v a' b'
/ = "2/¡wdx~ /\ dx = "2/a'b,e /\ e ,

(2.6)

(2.7)

are closed. Using the fact that / is real and J is pure imaginary we can introduce a
two-complex form

.•.. 1 v a' b'
W = / + / = "2 Ua'b' + /a'b,)e /\ e ,

which replaces Eqs. (2.1) by the complex condition

dw = o. (2.8)
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In 1975, Plebanski [11 found a 6-parametric solution of type D and looked for the
interpretation of the electromagnetic field. In the f1at space ¡¡mit, and using the transfor-
mations

z = pq,
a

(2.9)

a = _1_ In x + iy
2ia x - iy'

a x + iy
T=t+-

2
.ln--.-,
I x - IY

he found that the eiectromagnetic field is given by

Wk = -d { e +ig
[x2 + y2 + (z + ia)Zp/2

( . )2:F= _~ e+lg
2 x2+y2+(z+ia)2

[d .( . )xdy - YdX]}
t - I Z + la x2 + y2 '

(2.10)

The presence of the complex numbers [x2+ y2 + (z +ia)p/2 in the fieid structure, presents
an interesting problem. In order to make this root and hence the field uniquely defined over
the euclidean space described by variables (x, y, z), one can propose to understand (2.10)
as defined with the cut along the disc D: x2 +y2 :$ a2, z = O; then, if D is approached from
the side z > O to the side z < O, the electromagnetic field suffers a nontrivial jump !llf:,"
along D. This interpretation assumes: cOll1putingff:," one finds sorne ó-like currents along
D [21; if e is acoll1panied by a nontrivial g, we also find ó-like pseudocurrents along D. This
interpretation however, cannot be considered as entirely satisfactory; e.g. assuming the
cut along any surface D, topologically equivalent to D (i.e. a surface spanned on Kerr's
drcle) we will have as well nontrivial jUll1ps !lff:," on DI and sorne other distribution
of ó-like currents on DI. On the other hand, nothing in the analytic structure of (2.10)
indicates how lo select preferentially the cut surface.
There is sorne alterna tive bolder interpretation of the electromagnetic field. \Ve can

state that although ds2 is f1at, the assull1ption that this f1at space has open euclidean
topology is an independent assumption. Abandoning this assumption, we can seek the
topological structure of the flat space which corresponds adequately to the analytic
structure of the electromagnetic field. (A fair example of the similar manner of pro-
ceeding, forms the well.known Kruskalization process with the standard Schwarzschild
solution [4,5).)
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Considering Eq. (2.9), it is natural to give the definition of a manifold with the following
ranges of coordinates:

a ;::p ;:: -a

00 ;:: q ;:: -00
(2.11)

21r ;:: aa ;::O

00 ;:: T ;:: -00

(we identify points with aa = O and aa = 211').
The structure of M4 can be readily deduced from relations (2.9); the result is that M4

is the product of the infinite time axis: T = {oo ;:: t ;::-oo} times the three-dimensional
space 53, which consists of two copies of open three-dimensional eudidean spaces E]
and E2 with sorne subset of points being identified. Let (xI,Y],z¡) and (X2,Y2,Z2) be
cartesian coordinates in E] and E2, respectively; then we introduce the subset El") and
E~"), defined respectivcly by Z¡ ;:: O or Z¡ ~ +0 and Z2 ;:: +0 or Z2 ~ +0. \Ve identify
now the points from a disc D] defined hy

DI:
z¡ = +0

z =-0

xi + yi ~ a2

2+2/2
X2 Y2':::: a ,

j.e. on D¡ we have: (x], Y¡, z¡) = (X2, Y2, Z2). Similarly, we identify the points from a disc
D2 defined by

z] = -O

Z2 = +0

xi + Y~ ~ a2

x~ + Y~ ~ a2

j.e., on D2 we have (XI,Y],Z¡) = (.T2,Y2,Z2)' 1I0wever if xi + Y~ > a2 we identify the
points (X¡,y],Z] = +0) and (XI,Y¡,Z] = -O) and similarly, if X~ + Y~ ;:: a2, we identify
the points (X2, Y2, Z2 = -O) with (X2, Y2, Z2 = +0). The construction of 53 described aboye
is symbolically visualized in Fig. 1, where arrows indicate basic identifications.
After making a loop around the "err cirde in E¡, \\'e do not find no\\' any jump of

the electromagnetic field: the ne\\' value of the field arising from the ramification point of
[x2 + y2 + (z + ja)2jl/2 enters smoothly through the corresponding disk into E2.
It should be noticed that \\'ith 90 = O in the asymptotic points of El (xi + Y~ + z~ ~

00) the studied field represents the ficld of an e¡ectric monopole of charge = +e and a
magnctic mOIllC'nt+ca. At tIte samc time, frolll thc point of vicw of £2, the field represents
asymptotically (x~ + Y~ + z~ ~ 00) the ficld of an electrie monopole with charge -e and
magnetic dipole of magnetie moment -ea, The first objeeti\'e of this \\'ork is to give a
description of this constrnction using more detailed mathematieal terms and showing that
the field is really single valued in this manifold, The second objective of this \\'ork is the
generalization of this proeedure for one limit case of the PlebaIÍski-Demianski solution in
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FIGURE 1. The conslruclion of S3.

the case in which the parameter b is considered. In 1976 PlebaIÍski and Demianski 131 got
a seven-parametric solution, and studied the ¡imil case to !lal space. They found thal the
eleclromagnetic field and its invariant are given by

with

and

WP_D=d{ (e+ig) (GHdX+iG(+)d<P)},
(F(+)FH)1/2

:F 1 ( ')2 [ 2(a + ib) ] 4= - e+19 ----~
2 (F(+)F(-»)1/2

F(") = [(x2 + y2)1/2:1: (a + ib)]2 + z2 _ t2,

G(") = (a + ib)2 :1: (x2 + y2 + z2 - e)

(2.12)

(2.13)

dd>= x dy - Y dx
x2 + y2

d _ z dt - t dz
X - z2 _ t2 . (2.14)

When a and b are finite ami positive , the e1cctromagnetic field has singularities only
when F(-) = 0, i.e., in lhe set of points that fulfill the conditions

and (2.15)

then the singular region consists of t\\'o drdes:

xi + yi = a2
x~ + vi = a2

and

ami

Zl = +(t2 + b2)1/2;

Z2 = _(t2 + b2)1/2.
(2.16)
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These results give the motivation to look for a manifold in which the electromagnetic field
is single valued with the same spirit used aboye.
At this point we want to mention something about the limit transition b ~ 00 (accel-

eration A = O). In order to realize the transition b ~ 00, we first have to translate the
origin of the z coordinate:

z = z' + b. (2.17)

Note that this transformation does not change the form of the l\linkowski metric. Takinl(
the limit in Eqs. (2.12) we have

and

lim w = -d { e + ig
b-oo [x2 + y2 + (z' + ia)2j1/2 (

.,. x dy - Y dX) }
dt - ,(z + za) x2 + y2)

[

. ] 2lim :F = _~ e + 'g
b-oo 2 [x2 + y2 + (z' + iaF '

which are just Eqs. (2.10).

3. TOPOLOGICAL CONSTRUCTIONS

Spaces of identification

Definition: Let A and B be sets, their disjoint union being given by

A IlB = A x {l} U B x {2}.

The numbers I and 2 appearing in this definition are used only to distinguish between
the points associated with A and the points associated with B, for example, if x E A U B
then (x, 1), (x, 2) E A Un, i.e., x is represented two times. The distinctive characteristics
of the disjoint union can be seen in a stronger way when A = B.

A IlA = A x {1} U A x {2}.

This construction rncans: "Let .\ be the unian oC two copies oC A" 1 i.e. Let "...\ = A IIA".
A partition of a set X is a collection of disjoint subsets of X whose union is X.

Definition: The space of identification, also called quotient space of a partition (or of an
equivalence class) is the set of equivalence classes. When the equivalence class is denoted
by ~, the space of identification is denoted by X/~.
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The topology of the identification space is given in the following way: let [xl E X/~,
if V is a neighborhood of x, then a neighborhood of [xl is the collection of all classes [yl
such that y E V. In other words, V e X/~ is open if and only if the set

{x E X I [x) E U}

is open in X. Qne of the more common ways of giving an equivalence relation is by means
of an identification function. Let A and B be sets, and Aa e A, consider a bijection
<p: Aa --+ Bo of Aa over a subset Bo e B. This situation which appears very often,
determines an equivalence relation over X = A U B in the following way:

{

i) x = y; or
x ~ y if and only if ii) x E Aa, Y E Bo and y = <p(x); or

iii) y E Aa, x E Bo and x = <p(y).

The space of identification X / ~ will be denoted in this case by A U" B and will be called
"A union B modulo the points identified by <p". If A and B are not disjoint and we want
to identify one part of A with one part of B (not necessarily in AnB), the resulting space
will be denoted by

All B,
where <p is the function that gives the identification, i. e., A U" B, means (A x {1}) u,¡,
(B x {2}), where 1/I(x, 1) = (<p(x),2) and where the definition domain of 1/1 is Aa x {1},
moreover 1/1: Aa x {1} --+ Bo x {2} is a bijection between subsets ofAx {1} and B x {2}.
The charts Cl = (UI,1/I¡) and C2 = (U2, 1/12) are compatible beca use the intersection

of the sets UI and U2 is empty, so the structures considered are differentiable manifolds.
Moreover, these structures are two R4 spaces glued in an adequate way.
Finally consider the case in which we want to identify sorne points of A U B with

themselves in disjoint union, specifically the points of a given subset Aa e A n B then we
have

(3.1 )

with <p:Aa --+ Bo = Aa, <p(x) = x. This kind of space is called "A and B made disjoints
unless by Aa". It should be noted that A U B/Ao is not used in the sense of quotient set
A/Ao with Aa e A.

A n important example

\Ve want to build a manifold in which w = z 1/2 can be realized as a single valued function.
To do so, consider the following subset of C:

P" = {z E CI :!:Imz > O},

R" = {x E RI :!: x> O},

p" = P" U R U {oo},

R" = {a} UR'" U {oo},
(3.2)
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FIGURE2. Joining of the positive semi-axes.

and consider X = (P+ UP-)/R-, i.e. we join the closed semiplanes along the negative
axis, now the only difference between X and e (Riemann's sphere) heing that X has two
positive semi-axis R+ x {1} and R+ x {2}.

Now we define S = X U", X where X is given above and <p is defined by

<p: (R+ x {1}) U (R+ x {2}) -+ (R+ x {1}) U (R+ x {2}),

joining the positive semi-axes in the following way:

<p(x, 1) = (x,2), <p(x,2) = (x, 1).

This situation is illustrated in Fig. 2. A point of S like ((z, 1), 1), ((z, 1),2) is a three-fold
point and so on. (Actually they are equivalence classes of such threefold points). The last
two coordinates of point are not so interesting as the va!ues of z, hut it is convenient to
use them in order to know in which part of S we are workiug.

The first coordinate z, which represents the locus in the Riemann sphere, will be defined
as the projection of the points

11'(8) = r.((z,j, k)) = z.
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(p., 11)) , {I)

• ((z,1I,1I

(P.,111),{21
((z, I ),2)

. ((z,21,2)

(P- , )21) , {lJ

FIGURE 3. Decomposition oí S.

((z,21,2)' __
(P ,[2)), [21

To remember the position of each point we decompose S into its original elements (Fig. 3).
Now we can see the way in which ZI/2 can be realized as function in S, beginning with

the branch of zl/2 defined on e - R + by

with z = re;9, r > O, o < ()< 2'lr. Remember that /(-1) = /(e;~) = e'f = i approaches
o -

the value +1 = e', when z approaches +1 = eO on P+, while / approaches the value
-1 = e ';' when z approaches +1 = ehi on P-. For this reason / admits a continuous
extension on X and the existence of two positive semiaxes is used to solve the ambiguity
/(1) = :1:1; such extension can be written explicitly:

For each x > O,

/(x, 1) = xl/2, /(x,2) = _x1/2

with xl/2 > O. Moreover /(0) = O, /(00) = 00, the image of R+ x {1} is R+ and the
image of R+ x {2} is R-.

\Ve need a function of S but we have one of X, so we consider the function we have,
as the function on X x {1}, i.e.,

1 i9
p(s) = p((z,j), 1) = r'e' on X x {l},

with z = rei9, O :'S () :'S 27r and j = 1 or j = 2 depending on whether z E P+ or z E P-.
Consider the point s = ((1,2),1), a neighborhood oí s on S is partially contained on

X x {2} (due to [s] = [((1,2),1)) = [((1,1,),2)]). The first part of that neighborhood will
be projected by rr on P- and the second on P-. Then we have to define p on X x {2} in
such a way that the point z = +1 viewed from p+ in the copy 2 will be sent to w = -1.
For this reason we define

1 i8
p((z,j),2) = r'e' on X x (2),



1014 JERZY PLERANSKI ET AL.

with z = rei9, 211" ::; () ::; 411" and j = 1 or j = 2. lf we want to arrive at the conclusion that
p: S ~ e is well-defined we only need to check that the values of pon R+ x {l} x {l}
(()= O) are in accordance with the values on R+ x {2} x {2}, (() = 411"), but this follows
from

1 i(9+h) 1 i8 2' 1/2 i8
Tie 2 = TieTe 1rt = r eT ,

and the relation between p and the square root is

p(8) = /(11"(8)).

4. MANIFOLDS TIIAT BECOME WK AND WPD IN SINGLE VALUED FIELDS

a) For WK the origin of the multivaluation is the root

so that where this radical is single valued, so will also Wk be. Using the symmetry between
x and y one defines p2 = x2 + y2, so

/ = [p2 + (z + ia)2] 1/2 = [(p + iz _ a)(p _ iz + a)] 1/2.

Let

in this way

[ - ]1/2 (i(al + (2))/ = (Z - a)(Z + a) = y'i'iT2 exp 2 .

Note that / is not an analytic function of Z due to the appearance of Z. \Vhen one
completes a cycle around e (Fig. 4) oue has

0'2 -+ 0'2 + 271",

0'1 -+ 0'1,

and then

[
i(al + ao) .]

/ --+ y'i'iT2 cxp 2 - + 111" = - /.
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FIGURE 4. Circles around C.

FIGURE 5. Joinieg poiels of ramificalioe.

p

Seeing that -a is a certain kind of branching point,' one can show lhe same when
one gives a loop on the contour e'. The lasl paragraph suggests a construction of the
following kind ~Fig. 5): if one moves with Ipl < a and across the axis z = O, one changes
space, but if one crosses the axis with Ipl > a, one does not have any change of space. It
is clear that this surface is not the surface that we are looking for beca use this surface is
two-dimensional and we need a three-dimensional surface, but this surface illustrates the
physical situation and gives a mot.ivation for lhe adequate surface.

'The coecepl of branching poinI is defined for analylical funclions only.
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I
1 I
I

1I
1 1
1 1

X ~J.._ 1...- X~ Q /@
S:

FIGURE6. The function '" on S.

Using a similar notation, we take

A = B = R3,

pI = {v E R31:!:z > O},

and

Ao = {v E R31l < a2,z = O},

pO = {v E R31z = O}

pI = pI U pO U {oo}.

Let

and S = X DI'X with

",:Ao x {1} UAo x {2} ....•Ao x {1} UAo x {2};

identifying the disc in the following way:

",(v, 1) = (v,2),

",(v, 2) = (v, 1),

this situatian is represented by Fig. 6. Naw define the functian , an S as

,((v,i),1) = yfriT2ei/2(o,+o,) an X x {1},

with

v=(x,y,z), l=X2+y2, Z=p+iz,

and i = 1 ar i = 2 far v E p+ ar v E P-, respectively, and O :'Ó "], "2 :'Ó 27f.
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FIGURE 7. Transverse seetion of S.

x,{n

(O,"')

(2"',0)

X, !21

Any neighborhood of the point s = ((v, 1),1) with v on the dise is partially eontained
in X x {I} and partially in X x {2}, so we have to define -y on X x {2} in sueh a way
that the points viewed from P- on eopy 2 will be sent to the same values whieh are sent
by -y on copy 1. So consider

-y((v,j),2) = JTiT2 ei/2(01+o,) on X x {2},

with the same notation used before, but now 27r ::; a2 ::; 471" and 471" ::; al ::; 671". Figure 7
shows a transverse seetion with the values of al and a2.
To convince ourselves that -y is well.defined one only needs to note that when one

"passes" from one copy to the other through the discs, the sum al + a2 is su eh that
e~(Ol +0') has always the same value.

b) Working with the same idea but now for Wp-D, we have that the origin of the
multivaluation comes from the root

with

Note that

F(oJo) = [p:l: ("+ib)]2 + z2 _ t2 = [p:l: (,,+ib) + i(z2 _ t2)1/2]

x [p:l: (" + ib) - i(,2 _ t2)1/2].'

'\Ve have used this in the region where \Veare \Vorking, ,2 > t2; see Ec¡. (4.13) in ReL [31.



1018 JERZY PLEBAÑSKI ET AL.

p

0,'111

FIGURE 8. Transverse section of X.

Defining Z = p+ i(z2 - t2)1/2, Z = P - i(z2 - t2)1/2, we find p(oJo) = [Z:l: (o + ib)][Z:l:
(o + ib)]. Let us take Z - 0- ib = 11ei<>1 and Z - 0- ib = Ilei<>,; for p(-) one has

Analogously, Z + o + ib = 13e;<>3 alld Z + o + ib = 14ei<>', so p(+) = 1314ei(03+o,) and
f = (p(+)p(-»)1/2 = -/11121314 ei(<>I+<>'+<>3+<>,)/2. Let A = {v E R4 Ilzl > -/b2 + t2};
Aa = {v E R4 Ilzl < -/b2 + t2}; H = {v E R41 z2 - t2 = b2} and R = {v E H I p2 < 02};
with v = (x, y, z, t) we build X = A U Ao/(H - R). We try to illustrate this construction
giving a transverse section in Fig. 8.

On the other hand, let S = X U", X, where the identification function is given by

<p: (R x {1}) U (R x {2}) --+ (R x {1}) U (R x {2}),

<p(v, 1) = (v, 2),'

<p(v,2) = (v, 1).

Define a(s) with s E S as

a(s) = a((v,i),j) = f(v) = -/11/21314 ei(<>I+<>'+<>3+0,)/2,

with

o :s ni :s 27r ir j = 1 (copy 1)

and

27r :s ni :s 4rr if j = 2 (copy 2) .

•Here the subindices 1 ar 2 correspond tú A or Aa, rcspcctivcly.
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To convince ourselves that this is a function, we only have to check that <7 takes the
same values on the points of identification. \Ve will show this for points of the type s =
[[((v, 1), 1)]] = [[((v, 2), 2)]]; the prooffor points of the type s = [[((v, 2), 1)]] = [[((v, 1), 2)]1
is exactly the same.
\Ve know that the multivalllation of <7 comes from the exponential function, so we should

study it for a point v E R; we havc 01 = arg(Z - a - ib) = arg(p - a + i(z2 - t2) - ib),
but v E R =? z2 - t2 = b2, P < a, so 01 = arg(p - a) = mI' (n = 1 on copy 1 and n = 3 on
copy 2):

02 = arg(Z - a - ib) = arg(p - a - 2ib),

03 = arg(Z + a + ib) = arg(p + a + 2ib),

04 = arg(Z +a+ib) = arg(p+a) = m7l'

(m = Oon copy 1 and m = 2 on copy 2). Denoting with a prime the argument on copy 2
and without a prime on copy 1, we have

o~= 01 + 271',

then

<7(((v, 1), 1)) = <7(((v,2),2)),

and <7 is a function, being S = X U X (with <7 and X defined as aboye) the manifold
where Wp-D is single valued. If in th: case of WK one defines

,pj: X x {j} x T - {[((v, 1),.i)1 I v E Ao} x T -> R4
,

([(v, i),j)], t) -> (v, t)

and

,p¡J: R4
-> X X {j} x T - {[((v, l),j)] I v E Ao} x T
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{

([«V, l),j)l, t)
(V,t)-+

([«V, 2),j)], t)

if z > O

if z ::; O

with V = (X, y, Z), one finds that the manifold constructed is differentiable and that each
one of its two charts are homeomorphic to R <; physically we have the requirement for
the single valuedness of the 2-form WK in the existence of two spaces R3 and only one
tem poral axis T.

In the case of WP-D one defines

l/Jj: X x {j} - {[«v, 1,j)11 V E R} -+ R',

[[«v, i),j)11 -+ v

and

1/1;': R' -+ X x {j} - {[[«v, 1),j)1I1 v E R},

v -+ { [[«v,l),j)11

[[«v,2),j)11

if Izl > Jb2 + t2

then, this manifold is differentiable and each one of its charts is homeomorphic to R"
bul. in contrast to the earlier case, we need two temporal axes for the single valuedness of
WP-D.

The charts CI = (UI, 1/1¡) and C2 = (U2, 1/12) are compatible beca use the intersection
of the sets UI and U2 is empty, so the structures considered are differentiable manifolds.
Moreover, these structures are two R' spaces glued in an adequate way.

5. LIMIT TRANSITION

Now we consider the limit case of acceleration equal to zero [Eq. (2.30)], i.e., after the
translation z = z' + b we will take b -+ oo. By defillition we had

A = {v E R' Ilzl > Jb2 + t2}, Aa = {v E R' Ilzl < Jb2 + t2 },

alld

H = {v E R'I z2 - t2 = b2},

R = {v E }{ 1 p2 < a2}.
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FIGURE9. Singularity for the WK space.

After the transition these sets are transformed into the sets

..1---+ Aoo = {v E R4 I Z > O},

Aa ---+ Aooo = {v E R4 I Z < O},

H ---+ Hoo = {v E R4 I Z = O},

R ---+ Roo = {v E Hoo I p2 < a2}.

These new sets can be written in the form

..1000 = p- X T, T = {t E R I -00 < t < OO},

Aoo = p+ X T, H00 = pO X T, Roo = Aa X T,

where Reto, pO and Aa are the sets defined for the case Wk; moreover the expressions above
are actually M4 (Eq. 2.11) but wrilten in another way. The reader shouid remember that
!v[4 = 53 X T and 53 is composed of two cartesian spaces. In the last expressions we only
have one cartesian space xT, but this is due to the fact that we are considering these sets
on one copy only; when we take into accollnt the two copies we get the two spaces of 53.
Moreover under these conditions it is easy to show that wp-D ---+ WK.

The earlier problem can be seen from another point of view: consider the case IVK in a
three-dimensional form on the space x-y-t. The singularity is represented by a cylinder
on each copy and from this point of view the earlier process is the identification of discs
having the same t as is illustrated in Fig. 9.
Considering the same idea for the case Wp-D, the singlllarity is homeomorphic to a

two-dimensional manifold, which can be represented by Fig. 10. Note that the effect of
the limit transition is to "straighten" one of the surfaces and "send" the other one to
infinity. From this point of view the identification is illustrate<l in Fig. 1l.
Finally we want to mention something about the geodesics for the limit case, of the

Plebanski an<l Demianski metric studied. Consider x an<l y constant such that x2+y2 < a2;
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z

FIGURE ID. Singularity Cor the Wp_D space.

FIGURE 11. Identification oC spaces WP_D.

in this case on the plane t-z we have fonr regions determined 'by the asymptotes of the
hyperbola z2 - t2 = b2 (Fig. 12); as we have considered x and y constant, the metric is
now ds2 = dt2 and for light rays we have

dz = :l::dt.

Then if in the last diagram the geodesic with increasing t is inserted, one finds the
diagram shown in Fig. 13, where aH rays leaving the regio n 1 arrive at regio n II or at
region IlI, and rays leaving the regíons II and III arrive at regio n IV. The last observation
snggests the ínterpretation that regíons like a white-black hole, from the point of view of
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z

FIGURE 12. The Wp_D in the limit case.

z

FIGURE 13. Geodesics in the limit case.

1023

z z'

/

FIGURE 14. Geodesic / arrives at z = O lo emerge on the other diagram, as the wavy geodesic
does.
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Z z'

FIGURE 15. Geodesic /' arrives at z2 = b2 + t2 to emerge on the other diagram, as the wavy
geodesic does.

Z>o
/' Z<O~

// '\

1\( (( ) ) )11

~\ /
, .... 1.'79 ~

2'<0

FIGURE 16. A possible whoJe space time.

an observer in universe 1 are regions having the behavior of a black hoJe, but from the
point of view of an observer in regio n IV they have the behaviour of white hoJes.

5. DISCUSSION

In Fig. 14 it is schematically shown how the two spaces R3 are joined to buiJeI the needed
space in order to have a single valued 2-form WI{. One sees that when an observer travelling
in the upper part of the left space approaches the circJe p2 = a2, he sueldenly goes off
through the other dimension into the lower part of the right space. The same phenomenon
occurs with an observer travelling in the lower part of the left space approaching the
regio n p2 < a2; he appears in the upper part of the right space. Ir ;ve drop the x and
y coordinates makihg them constant but such that x2 + y2 < a2, the light rays arriving
at the z = O axis will suddenly disappear, to emerge in other z-t diagram as shown in
Figs. 15 and 16. The solntion of Eg. (1) gives n8 a local behavior of the topology of the
whole space. "evertheless one cou!d think about many possibilities of the whole space
with the same local behavior. Of course one can imagine a whole space with two R3 and
only one time (01' two times in the second case) connected by a "worm" but without any
other communication between them, so that it i8 possible to think in a torus-like topology
where the two spaces conlel be joined as it is shown in Fig. 16. The worm is a way of
cornmunicating bctwecn the n3 - n3 spaccs corrcsponding lo an extra dimellsioll. Thc
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external surfaces of the torus correspond to the z > O, z' < O surfaces, and the internal
sur faces to the z < O, z' > O ones. This whole space was more in agreement with a
universe without big bang. For the second case one had an analogous analysis but with
the singularity in z2 = b2 + t2•
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