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Five-dimensional Schwarzschild-like spacetimes with an arbitrary magnetic field
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We find a new class of exact solutions of the five-dimensional Einstein equations whose corresponding
four-dimensional spacetime possesses a Schwarzschild-like behavior. The electromagnetic potential de-
pends on a harmonic function and can be chosen to be of a monopole, dipole, etc., field. The solutions
are asymptotically flat and for a vanishing magnetic field the four-metrics are of the Schwarzschild solu-
tion. The spacetime is singular in » =2m for higher multipole moments, but regular for monopoles or
vanishing magnetic fields in this point. The scalar field possesses a singular behavior.

PACS number(s): 04.50.+h, 04.20.Jb, 97.60.Lf

In recent years there has been great interest in the
study of exact solutions of actions of the type

S= [d*xV =g [—R+2V®)+e 29F?] (1)

because they reduce to the 4D low-energy Lagrangian for
string theory for a=1, to the Einstein-Maxwell-Scalar
theory for a=0, and they also reduce to 5D gravity for
a=V'3, after dimensional reduction. Some exact solu-
tions of the field equations for charged bodies of this ac-
tion are known [1]. It seems that the properties of elec-
trically charged solutions depend on the value of a, but
they are only different for the extreme case =0 [2]. In
this Brief Report we want to show that magnetic fields do
not alter the properties of the spacetime for static bodies,
for «=V'3. We present a set of exact static solutions of
this Lagrangian where the magnetic field depends on a
harmonic map, and can be chosen to be of a monopole,
dipole, quadrupole, etc.

Einstein theory is a good model for describing gravita-
tional interactions in the Universe. Nevertheless, there
are some phenomena in the cosmos where gravitation is
interacting with electromagnetism. Such is the case, for
example, in planets and stars possessing a magnetic field
such as Earth or the Sun. Our Galaxy also possesses a
magnetic field and there is not yet a convincing explana-
tion for it. One would expect that the Einstein-Maxwell
theory should give such an explanation by means of a

b+b=-—1

simple exact solution possessing a magnetic field such as
the celestial bodies. There is an exact solution of the
Einstein-Maxwell equations containing a magnetic dipole
moment satisfying the required stationary and static lim-
its [3]. But it is not simple at all. Five-dimensional (5D)
theory is an alternative model for understanding gravita-
tional and electromagnetical interactions together. In
this work we want to show that there exists a class of
very simple exact solutions of the 5D Einstein equations
possessing magnetic fields, the four-dimensional (4D)
metric of which behaves like the Schwarzschild solution.
In a past work [4] we developed a method for generating
exact solutions for the 5D Einstein equations with a G,
group of motion, putting the solutions in terms of two
harmonic maps A and 7. These solutions can also be in-
terpreted as solutions of Lagrangian (1) for the case
a=V'3. We separated the solutions in five tables (Tables
ITII-VII) for the one- and two-dimensional (Abelian and
non-Abelian) subgroups of SL (2,R), in the spacetime and
the potential space, and demonstrated that many of the
well-known solutions are contained in these tables. In
this Brief Report we want to present a set of new solu-
tions which belong to the class of solutions i, j, and k of
Table VI in Ref. [4], specializing the harmonic maps, be-
cause it represents a class of very well-behaved solutions,
if we choose the harmonic maps A and 7 conveniently. In
terms of the five potentials [5] the solutions are
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(here we have set a+8=0 in Table VI of Ref. [4]). The
gravitational potential and the scalar potential are the
same for all cases given by

_ oA . Toe "3/

V18 8»

0556-2821/94/49(8)/4296(3)/$06.00 49

Iy

r

where a, a,, q, b, ¢, I, and A are constants restricted by
bcq?=1,8+0, while the electrostatic and rotational po-
tentials vanish, i.e., y=€=0. Now it is easy to write the
spacetime metric. Let us write it in Boyer-Lindquist
coordinates:

p=V'r2+2mr sinf, z=(r—m)cosé .
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In these coordinates the five-metric reads

4297

Observe that the function A; is integrable because 7
satisfies the Laplace equation (p7 ) z+(p7 ) ,=0. In

ds?=1 1ok |y_2m m?sin’@ dr? 472402 Ref. [6] a set of solutions of the Laplace equation and
Iif r r? _2m their corresponding magnetic potential 4, is listed. Two
r examples are
1 2m | 2 2p 0 2 2 = _2m = —cosf
+7 1—=— [r?sin’0d p*— fdt (a) 7=7gln |1 , A3=2tym(1—cosb)
+1X A, dp+dx’) . and
The expression in curly brackets is interpreted as the 4D (b) 7= Tom? cosf

metric in the 5D theory and corresponds to the spacetime
metric of Lagrangian (1). The functions k and A4; are
completely determined by the potentials f, x, and k*=1I":
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written in Boyer-Lindquist coordinates. The magnetic
potentials (a) and (b) represent a magnetic dipole, respec-

=P |4 AXA §)2+q2(‘r, g)l , tively. In general the harmonic function 7 determines the
2|3 magnetic field in the solution and can be chosen to obtain
monopole, dipole, quadrupole, etc., fields. The harmonic
Ay = ——&2)( LT TPTe function A determines the gravitational potential f. Let
fx us choose A=Ayn(1—2m/r). The five-metric trans-
Ay :=pTy L=pTtiz. forms to
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where k, . =1q 270 7',;)2, 827, and A are determined only by the harmonic function 7. If we choose 7 to vanish for

some limit » >>m [the two examples (a) and (b) satisfy this condition], then the metric (2) is asymptotically flat. If 7 and
m vanish, metric (2) is flat.

If we put A=—2,A,=—1 in (2) we can interpret m as the mass parameter and V'1,g,, as the contribution of the
magnetic field to the metric. In this case, metric (2) reads
1 — 2k dr? —_— . 1 2m
dSZ=7 \/Iogne 2 1—_m+r2d02 +\/Iog22r2s1n29d¢2——m 1— —7— dt2 +12( A3d¢+dx5)2 ’

Io(1—2m /r)~%/3
822 )

I’=

This metric can be interpreted as a magnetized
Schwarzschild solution in 5D gravity. The difference to a
previous one [7] is that in metric (3) the magnetic poten-
tial can be chosen in many ways. If the magnetic field 4,
in (3) vanishes, the expression in curly brackets is just the
Schwarzchild metric. Therefore we can interpret r =2m

(3)

T
as the horizon of the four-metric. Observe that the pres-
ence of the magnetic field does not alter the horizon of
the metric, conserving the main feature of its topology.
Nevertheless the scalar field does. We can see that the
scalar potential tends very rapidly to I, for r >>2m and is
singular for r =2m. If we interpret the expression in cur-
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ly brackets as the spacetime metric, we find that its
Riemannian invariant R “**“R, , and its Ricci invariant
R°R,, are singular for » =2m (but not its scalar curva-
ture R), when 7 depends on 6. This is so for the case
when A, represents the magnetic field of a dipole, but
when A4, represents a monopole, all invariants remain
regular on r =2m. So, one expects that r=2m is a
coordinate’s singularity when A, is a monopole field, but
the spacetime is really singular for higher multipole mo-
ments at this point, and is not a black hole. However, for
geodesical trajectories around the surface r>2m, the
effective potential is regular for » =2m even for magnetic
dipole fields, but the scalar field increases without bound

for all these cases when r approaches 2m. The scalar field
I is topologically the radius of the fifth dimension, which
is a circle. This circle has a constant radius for r >>2m,
but tends to a line when r approaches 2m. That means
that the scalar potential is really important only near the
horizon, but disappears very rapidly far away from it.
One would suspect that the properties of the geometry
change near the horizon with respect to Schwarzschild’s
geometry due to the interaction of the scalar field. That
means that the relevant modifications of Schwarzschild’s
geometry is not due to the magnetic field, but due to the
scalar interaction. The geodesic motion in this spacetime
will be published elsewhere [8].
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