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Magnetized Schwarzschild solution in five-dimensional gravity
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Two new exact solutions for the five-dimensional Kaluza-Klein field equations are generated.
The first one is a solution without a magnetic field but with a scalar potential. The second one is an
exact solution with a gravitational potential as the Schwarzschild solution and a magnetic field con-
taining a flux along the azimuthal direction and a scalar potential equal to one far away from a

black hole.

I. INTRODUCTION

In this work a new static solution with a magnetic field
for the Kaluza-Klein theories' without sources is deter-
mined. For these theories, electromagnetism is a conse-
quence of the projection of a single five-dimensional field
to space-time. There are different attempts to formulate
the field equations. We will discuss a variant in which
the vacuum fields are characterized by the vanishing of
the five-dimensional Ricci tensor, i.e.,

R,,=0, pv=1,...,5, (1)

and the five-dimensional metric v, is the projection ten-
sor

Vv =8y + X, X I 72, )

where X*# is a Killing vector, 12=X“X#, and 8uv is the
space-time metric. In the adapted coordinates system
where X#=585, the space-time metric g;;, and the elec-
tromagnetic four potential A, are related with the five-
dimensional metric according to

P=yss, Ay=I"%ys5,
, (3)
gik=7ik_1 AiAk’ i,k=1,...,4

(see Ref. 2). By introducing a second Killing vector field
Y*, one may define in a covariant manner, a set of five
potentials:

2 _ _ -1 2 .
IP=X*X,, f=—IY*Y,+I""(X*Y,?, ¢=I X”Y(‘;),
X i =2605,5, X YPXT2, € =265, X YPYTS

where I? corresponds to the scalar potential, f to the
gravitational potential, ¢ to the electrostatic potential, X
to the magnetostatic potential, and € to the rotational po-
tential. These potentials define a Riemannian space V¥
with metric

2 2y, 1
[df*+(de+vdX) 1+ 2f

ds?— 1

1 2,00, 1 1.0
—2f2 kdy +?dX

where k?=1I°.

This metric is endowed with an eight-parameter group
of motions (see Ref. 3). The Jordan theory* and the
Brans-Dicke theory® are contained in (5) after an ap-
propriate conformal transformation. The potentials (4)
are equivalent to the Ernst potentials of the Einstein-
Maxwell theory (see Ref. 6).

We assume that the five potentials WA=k, fr.X56),
depend only on two coordinates. Let these two coordi-
nates be p and z (the Weyl canonical coordinates) and let
E=p+iz. Then WA=WA(,E) where £ is the complex
conjugate of . Substituting the potentials (4) into (1),
one finds that the field equations can be written as

A
(P¥D) e+ (p¥ D) (+2p | o [YIVE=0, (6)

where the { 4} are the Christoffel symbols of the metric
(5) (see Ref. 7). In this report, our main goal is to find a
set of solutions to Eq. (6).

II. TRANSFORMATION OF THE FIELD EQUATIONS

Let us suppose that the potentials \I/A_depend only on
one parameter A which depend on § and ¢; i.e.,

VA=WANEE), A=1,...,5. 7

Under such an assumption, the field equation (6) be-
comes

A
2p |WAL+ BC Va5 Aehg

Now let the parameter A be a solution of the Laplace
equation

(pl,g)j-f‘(p)\,é—.)‘g:o N 9)
then the equations for the five potentials ¥ reduce to
4 A1 s gc
\l’,kk-’- BC \P,AW’A=O . (10)

All solutions of (10) have been found in Ref. 7.
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In this paper we investigate only two solutions of (10):
namely,

rA+ryA/2

(A) K2=3\/74—C-63r2}t/2, f=—2dce s
Y=e=X=0, (11a)
. 3/2 3,
(B) K2= C2 4e lk f— \/de } IA/Z
Vd | cA+b T eA+b ,(llb)
3
Y= 2V'2¢ . p=e=0,
cA+b

where b, ¢, d, r|, and r, are constants.
As a solution of (9), we consider the function
riA 2m
e 1 ___:eZM

=1-=2

r

(12)

written in Boyer-Lindquist coordinates
p=V'r*—2mr sinf, z=(r —m)cosf .

The expressions (11a), (11b), and A given in (12) fulfill
(6) in spherical coordinates. In what follows we shall in-
vestigate both solutions.

III. SOLUTION (A)

The solution (11a) contains only scalar and gravitation-
al fields. For 8,=1r,, (4c)!/°=1, and d (c)*’®*= —4 from
(4), one obtains

2
[ 2m |® 2
r d
2 r 2502
ds’= > (89+52) om 7 d6
2m . 26 —_——
1= _T_
, rz sSin r
80
r=n1-2m
r
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Squ
I=Ipe™, gu=—e®,

(13)

2
_p° —2(1+8y)u _
833 Ize » 834=0
0

with vanishing electromagnetic potential. [We have tak-
en as usual (x’,xz,x3,x4)=(r,9,¢,t).] To determine the
components g;, and g,,, one integrates the differential
equation

(Inp) ¢ Tr(p A)>
(Inp) ¢ 4pp ¢

where the 3 X3 matrix A4 =g,§g_1 with the 3 X3 matrix
g defined in terms of the components of the metric tensor
@)j=g; for i,j=3,...,5 (see Ref. 8 or 9). The
differential equations (14) and its complex conjugate yield
a system of differential equations for the function
F =g, =g,,. Integrating the quoted equations one ar-
rives at

(InF) ;= (14)

8
1_2m
_ r
Fdgdi= om 2 (8,+83)
1——+——2—sin26
r r
2
X d’Zm +r2de? (15)
1__.__
r
Thus, the full metric is
Lo srisin0dg?— [1- 27 |c2ai?,
2m
I2i1—=
(16)

where 8, and I are arbitrary constants and m is the mass parameter. It is easily seen that when the §, parameter van-
ishes, one gets the Schwarzschild solution in (16) (with I;=1). For m =0 the metric (16) becomes flat.

IV. SOLUTION (B)

The solution (11b) possesses scalar, gravitational, and magnetic potentials. We take again A as in (12) and
d=b=2V2, ry=1/7. If we do so and take into account the definitions (4) we find

gu=—e”, gy=ple “(1—nu), g3,=0, I’= :

—u

1—nqu’

Ay=—mm cosf , (17)

while 4,, Ay, and A, vanish. The function F for this metric can be now found. Substituting the quantities (17) into

(14), one arrives at
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%in28 1/4 om |7 o |V i
ds?= |1 —27 3o 1— =% l1—gln |1-22 —& e
2m r r 1 2m
r?1—== -
r r
2 172 2 172 )
+ 1—7’" 1—nln 1—-r'ﬁ risin20 d¢? — [1—-rﬂ cdt?,
(18)
1
A, =Ay=A,=0, Ay=—nmcosh, I’= 73 172
2m 2m
1—— l1—nln |1——
r r

The metric (18) is an exact solution of the field equa-
tions (1) with scalar field 72 and magnetic field 4 ¢ Itis
asymptotically flat and the scalar potential reduces to one
as r approaches infinity. Nevertheless, close to a black
hole, I? must be taken into account, the coefficients of
d6?* and d¢? go very slowly to zero and the coefficient of
dt? goes even faster to zero. Near to the black hole the
scalar potential very slowly gets bigger, but it is singular
for r =2m as is the factor of dr? too.

V. THE LIMIT 2m /r << 1

For r >> 1, the metric (18) becomes flat, and I goes to
one. Nevertheless, the third component of the elec-
tromagnetic four potential 4, remains finite. We can es-
tablish the behavior of the magnetic field at first order, if
we take the metric flat. We suppose that the metric (18)
describes a magnet. Then the magnetic induction B is
given by

_ cos26 .

B=curlA="1% ——€, +cos6e,
r sin@

The hypothetical flux J’ which cause this magnetic in-
duction can be now obtained:

curlB= — —r’%cose( 2+csc?0)8,= i:;J' ,
r

which is a flux along the azimuthal direction. The mag-
netization M is given by

1 , 1
2o TXY'= E;cose(2+csc20)€6 .

Thus the magnetic field vector H is

M=

1 cosf

H=B_4rM=_ 1M | 0520, 2%,
2 sin’6

r sind "

f

It can be seen that curIM=0. That means that
curlH=curlB=(47/¢c)J=(4m/c)Y’. J is a real flux along
the e, axis. It reminds us of the Van Allen rings around
the planets when they have a magnetic field. J is in this
theory a consequence of the existence of the magnetic
field, it is not a source. The magnetic field H is a conse-
quence of the projection in four dimensions of a single
five-dimensional field. It is easily seen that the field lines
of H are in the surface

02
rzaZelsm 000829 ,

where a? is a constant. They are not the field lines of a

magnetic dipole, but they seem like wings of a butterfly.
They might be seen as a first approximation of the field
lines of the magnetic field, because we have supposed that
the metric is flat.

VI. CONCLUSIONS

We have generated two classes of solutions, one of
them without magnetic field, which for a choice of one
parameter, reduces to the Schwarzschild solution and the
scalar potential becomes equal to 1. The other one has a
magnetic field, as a consequence of the projection of the
five-dimensional field. In this case, one real flux along the
azimuthal direction is necessarily produced as a conse-
quence of the existence of a magnetic field. Both solu-
tions are asymptotically flat. In the second case, the sca-
lar potential is rather big near a black hole, and equal to
one far away from it.
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