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México DF 09340, Mexico
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Abstract. An essential step towards the identification of a fermion mass generation mechanism
at the Planck scale is to analyse massive fermions in a given quantum gravity framework. In this
letter the two mass terms entering the Hamiltonian constraint for the Einstein–Majorana system
are studied in the loop representation of quantum gravity and fermions. One term resembles
a bare mass gap because it is not zero for states with zero (fermion) kinetic energy, unlike
the other term which is interpreted as ‘dressing’ the mass. The former contribution originates
from (at least) triple intersections of the loop states acted on whilst the latter is traced back
to every pair of coinciding end points, where fermions are located. Thus, fermion mass terms
get encoded in the combinatorics of loop states. Finally, the possibility is discussed of relating
fermion masses to the topology of space.

PACS numbers: 0460D, 0420C, 0462

Physics at the Planck length̀P :=
√
Gh̄/c3 = 1.6× 10−33 cm, where a quantum notion

of spacetime is called for, is acquiring deeper significance due to a number of new results.
Amongst the most striking we find: (i) a definition of a gravitational Hamiltonian [1]
and, more recently, a skein-relation interpretation of the Hamiltonian constraint [2]; (ii) a
determination of area and volume spectra [3]; and (iii) an insight into the origin of black
hole entropy [4]. All of these were obtained within a non-perturbative approach to quantum
gravity [5–7] and they present discrete and combinatorial features that seem to encode
fundamental quantum aspects of spacetime at`P . For instance, by coupling a clock scalar
field to gravity, a Hamiltonian was built up in [1] that evolves the gravitational field itself.
The action of this Hamiltonian on loop states is concentrated at intersection points of the
loops. More recently, the Hamiltonian constraint was interpreted as a skein relation when
acting on the space of knots [2]; showing that knot polynomials satisfying the skein relation
solve the full quantum Einstein equations. In [3] it was shown that area and volume
operators can be defined at the quantum level. Their spectra are discrete and related to the
way intersections occur between loops and the surface whose area should be determined or
among loops inside the region whose volume is under study. This former notion of area
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is further exploited in relation to the horizon of a black hole in [4]. Hence a value for
its entropy can be estimated that agrees with the standard proportionality between entropy
and horizon area. It should be stressed that each of these results was obtained after a
suitable regularization procedure to make them well defined; the resulting operators are
finite, diffeomorphism invariant and (regularization-) background independent.

Now it is natural to wonder how compatible are the continuous picture of space we are
used to and the above discreteness. It turns out that smooth space can be thought of as a
large length limit of certain loopy states or weaves [8]. Moreover, the notion of gravitons
also emerges here: they are associated to embroideries on weave states [9]. Appealing as
this idea is, it cannot describe nature as a whole; one must learn first what the notion of
matter is, if any, consistently with the above discrete picture. Indeed such a consistency
must be looked for in any given quantum gravity scenario.

It has been proposed in the past that wormholes at the Planck scale might behave
as charged particles [10] and that quantum gravity states could have half-integral angular
momentum, when the space 3-manifold has non-trivial topology [11]. Also, by following
the path integral approach to quantum gravity, it was realized that one might include
the contribution of non-orientable spacetimes (non-orientable foam) in the corresponding
amplitude. This, together with CP invariance, could produce an effective mass for the
otherwise massless fermionic fields living in such spacetimes [12]. The standard model of
electroweak interactions has been studied along similar lines by taking a random Planck
lattice as an effective theory coming from a Planck-scale foam spacetime [13].

In the loop representation of non-perturbative quantum gravity, some steps have been
made towards unravelling the notion of matter. Coupled electromagnetic field and gravity
were considered in [14] as a simple unified description of gravitational and electromagnetic
interactions. Physical states were found parametrized by two loops, each of which carries
information about both gravity and electromagnetism—the Chern–Simons functional and
Jones polynomial playing a role in the analysis. In [15] massless spin-1

2 fields and gravity
were studied. A (clock-) scalar field was coupled to gravity and a Hamiltonian evolving both
fermion and gravity fields was introduced. The fermionic contribution becomes concentrated
at the end points of the curves (where fermions are located) of the loop states acted upon.
More recently, in [16] a kinematical analysis was developed for the Einstein–Maxwell–Dirac
theory.

Crucial to the notion of matter is the understanding of the origin of fermion masses, given
an unsatisfactory status in this regard in the standard model of electroweak interactions [13].
To gain this understanding a compulsory step is to find the analogue of the termm9(x)9(x)

that reveals the fermion mass in the Lagrangian form of field theory. In this letter an analysis
is given of the mass of a spin-1

2 field of Majorana type coupled to gravity, using the loop
representation for canonical quantum fermions and gravity of [15]. Specifically, we study
the features inherited from the discreteness and combinatorial aspects appearing in such an
approach.

To begin with, we recall the outcome of the canonical analysis for the Einstein–Majorana
(EM) system using Ashtekar variables. There are three first-class constraints, namely the
Gauss, vector and Hamiltonian ones [17]

GAB := −Daσ̃ a AB − η(Aθ̃B),
Va := σ̃ b ABFab BA − θ̃ADaηA

H := − 1
2 σ̃

a
A
C σ̃ b C

B FabB
A − σ̃ a A Bθ̃BDaηA +m

(
(̃σ )2ηAη

A − 1
4 θ̃

Aθ̃A
)

≡ HEinstein+HWeyl+M1+M2 ,

(1)
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Aa
AB(x), ηA(x) being the configuration variables and̃σa AB(x), θ̃A(x) the corresponding

canonical momenta†. Here the Majorana spin-1
2 field contribution toH consists of the last

three terms in (1), of whichM1 andM2 are related to mass. To proceed to the quantum
theory, one has to solve the problem of constructing their (regularized) quantum operator
version. This is achieved by adopting loop variables, where the Gauss law is automatically
fulfilled, following [1, 15]. For spin-12 and gravity, loop variables were built up in [15] as

X[α] := ψA(αi)UA
B [α]ψB(αf ), Y [α] := π̃A(αi)UA B [α]ψB(αf ),

Y a[α](s) := π̃A(αi)UA B [α](0, s)̃σ aB
C(α(s))UC

D[α](s, 1)ψD(αf ) .
(2)

Among their properties it is worth mentioning the fermionic (Grassmann) identity: if (α, β, γ

are open curves)αi = βi = γi thenX[α]X[β]X[γ ] = 0. No three fermions can exist at
the same point simultaneously. The loop variableY a[α](s) was used to define the kinetic
fermion term of the Hamiltonian constraint of the Einstein–Weyl theory [15]. Next, the
first mass termM1 is translated into loop variables. Consider a closed loopγ with three
gravitational hands inserted in it and an open loopα with the fermion fieldη(x) placed at
its ends. That is to say

V abc[γ, α] := T abc[γ ](s, t, r)X[α], (3)

where T abc[γ ](s, t, r) := Tr
{
σ̃ a(γ (s))Uγ (s, t )̃σ

b(γ (t))Uγ (t, r)̃σ
c(γ (r))Uγ (r, s)

}
is the

loop variable used in the construction of the volume operator [3] andX[α] is as given
above. It is straightforward to show that when the two loops shrink down to acommon
point x, we have the local quantity

M1 =
(
m

3
√

2

)
lim
γ,α→x ηabcV

abc[γ, α] = m(σ)2ηAηA. (4)

The construction becomes more transparent if (3) is rewritten as follows, then use
is made of the fundamental spinor identityεABεCD + εACεDB = εADεCB inserted at the
intersection point of the two loops. The result is the difference of further loop variables

T abc[γ ](s, t, r)X[α] = Nabc[α · γ ](s∗, t∗, r∗)−Ncba[α · γ−1](1− s∗, 1− t∗, 1− r∗)
(5)

Nabc[α · γ ](s∗, t∗, r∗) := Tr
{
η(αi)U [α](0, p)U [γ ](0, s)̃σ a(γ (s))U [γ ](s, t )̃σ b(γ (t))

× U [γ ](t, r)̃σ c(γ (r))U [γ ](r, 1)U [α](p, 1)η(αf )
}
, (6)

with α(p) = γ (0) = γ (1) = x and s∗, t∗, r∗ being the values of the parameter
of α · γ , where the gravitational hands are inserted. Here Tr

{
ψO(1) · · ·O(n)ψ} :=

ψA1O(1)A2
A1
· · ·O(n)An+1

An
ψAn+1.

RegardingM2, this can be expressed as

M2 := −( 1
4m
)

lim
α→x Z[α] with Z[α] := θ̃A(αi) UA B [α] θ̃B(αf ), (7)

whenα shrinks down to the pointx.

† Notice that the two fermionic mass terms are non-vanishing because the2-spinor fieldηA(x) is Grassmann
valued (e.g.ηAηA = −2η0η1); as opposed to the incorrect remark in [16].
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Based on the loop transform of [15], the action of the (non-regularized) operators (3)
and (7) can be defined on loop states as

Ẑ[α]9 [β] = δ3(αf , βi) δ
3(αi, βf )9[α · β] + δ3(αf , βf ) δ

3(αi, βi)9[α · β−1], (8)

V̂ abc[γ, α]9[β] =
∑
µ=±1

8∑
j=1

6∑
i=1

(
1√
2

)3

× (1a[α · γ µ(s∗), β]1b[α · γ µ(t∗), β]1c[α · γ µ(r∗), β]
)
i

× (−1)rij cij (−1)(1−µ)/29[(α · γ µ · β)ij ] , (9)

1a[α · γ µ(s∗), β] = 1
2

∫ 1

0
du β̇a(u)δ3(α · γ µ(s∗), β(u)) .

V̂ abc[γ, α] produces 16 multiloop states† (indicesµ andj ) for each exclusive configuration
labelled byi. In other words,(1a[α · γ µ(s), β]1a[α · γ µ(t), β]1a[α · γ µ(r), β])i represent
the six different ways in which the open loopβ is attached to the open loopα · γ µ.
9[(α · γ µ · β)ij ] denote the multiloop states resulting from reroutingα · γ µ and β. rij
is the number of orientation-reversed segments of anyα · γ µ or β-loop segments between
intersections required to get a consistent overall orientation, while the parametercij is such
that cij = −1 if the multiloop9[(α · γ µ · β)ij ] has an open component starting atαi and
ending atβf ; otherwisecij = +1.

Regularizing the mass termsM1 andM2 amounts to regularizing (8) and (9). To this
aim, use is made of an auxiliary background flat metric and a preferred set of coordinates
in which this metric is Euclidean. We take the partition of the three-dimensional fictitious
space in cubes of sidesL. The regularized quantum versions of the mass operators are
readily found by introducing [1, 15]

M̂ := lim
L,ξ→0

∑
I

L3
√
−M̂L

1I − M̂L,ξ

2I . (10)

We describeM̂L
1I (M̂L,ξ

2I will be analysed below)

M̂L
1I :=

√
2m

8(3!)L6

∫
∂I

dσ 2
∫
∂I

dτ 2
∫
∂I

dρ2 (−1)ra+rb+rcηabcna(σ )nb(τ )nc(ρ)V̂ abc[γ, α],

=
√

2m

8(3!)L6

∫
∂I

dσ 2
∫
∂I

dτ 2
∫
∂I

dρ2 (−1)ra+rb+rcηabcna(σ )nb(τ )nc(ρ)
{
N̂abc − N̂cba

}
,

(11)

where one particular box has been considered (in the fictitious metric).∂I indicates its
boundary, namely the union of the six faces of the cube oriented outwards andγ andα are,
respectively, closed and open with a common point of intersection. The closed loopγ has
three gravitational hands inserted, lying on the boundary of the box at the pointsσ, τ, and
ρ. The loopγ is the triangle formed by the three segments that connect the three points
σ, τ andρ andγ (s) = σ, γ (t) = τ, γ (r) = ρ. The open loop has two fermions at its ends,

† Of these 16 contributions, eight come from attaching the open loopβ to the loopα · γ and the other eight by
attaching the open loopβ to α · γ−1.
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η(αi) andη(αf ), respectively. These fermions are in the box;na is the normal 1-form to
the box boundary. No summation convention is applied tora andηabc; ra = 0 at the front
andra = 1 at the back of the boundary.

The action ofM̂L
1I on the loop states is as follows. The three surface integrals on the

boundary of the boxI and the three line integrals along the loopβ that parametrize the loop
state, combine to give three numbers related to the intersections of the open loop with the
boundary of the cube. The non-vanishing contribution can be traced back to the intersection
of the open loopβ simultaneously with three different faces of the cube. That is to say
when the open loopβ hasat least a triple point of intersection with the cube. The cube
shrinks down to that point in the limitL→ 0. Thereby the gravitational hands are smeared
on the boundary of the cube, for each permutation of them there are 8× 16 terms which
correspond to all the possible ways in which the hands can lie on the faces of the cube.
Each one of these terms has, in general, a different weight for two reasons: the first is due
to the orientation of the open loopβ when it intersects one of the three faces of the cube.
The second comes from the factor+1 or −1, depending on whether the hands lie at the
front or back faces. Note that of these 8× 16 terms only one particular permutation of the
hands enters once: 16 of them contribute for a specific loopβ, since each hand intersects
the open loop once. By taking into account the six permutations of the hands there are, for
a specific loop, 16× 3! terms and for a general situation 8× 16× 3! terms.

It is important to mention that the prescription given above depends in a way on
the open loopβ labelling the loop state. More precisely, one needs to know some
topological information (intersections and end points) aboutβ in order to calculate its
specific contribution. Observe that the prefactor in (11) is finite in theL→ 0 limit because
the surface integrals produce a factorL6 that cancels out the one in the denominator. Hence
one gets a finite action for the operator. This is analogous to the case of the volume operator
[3].

Due to the fact that̂ML
1I has only gravitational hands, it can even ‘see’ loop states

without fermionic excitations, namely loop states parametrized by closed loops with at least
a triple point of intersection. This is precisely the difference from the kinetic fermion term
[15] (i.e. HWeyl above) which is ‘blind’ to this type of loop state (it yields zero on such
states). Hence, the interpretation proposed here forM̂1 is that it forms thegap fermion
mass. This is the major result presented here.

For the case ofM̂2, and henceẐ[α], consider (αx,y)(s), a straight line (in the
background metric) that starts atx and points in they direction

(αx,y)(s) = x+ sy, (αx,y)(0) = x, (αx,y)(1) = x+ y . (12)

Then define the following

M̂L,ξ

2 I := 1

L3

∫
I

d3x M̂ξ

2(x), (13)

M̂ξ

2(x) := −
1
4mD

4
3πξ

3

∫
d3y θ(ξ − |y|) Ẑ[αx,y], (14)

whereξ < L andθ is the step function.
Now, if the end points of the open loopβ, βi andβf , coincide with the end points of
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the open loopα inside the ball centred atx and with radiusξ , one has

lim
L,ξ→0

∑
I

L3
√
−M̂L,ξ

2I 9 [β] = lim
L→0,ξ→0

√√√√ 1
4m

4
3πξ

3
L3 (F̂βi + F̂βf )1/29 [β], (15)

F̂e 9 [β] =
{
9 [αx,βi−x · β] if e = βf
9 [αx,βf−x · β−1] if e = βi .

(16)

The regularization parameters can be chosen as† L(ε) = bε andξ(ε) = b sinε, whereb is
an arbitrary length. Remarkably, the prefactor in (15) is finite and is given by

lim
ε→0

C(L(ε), ξ(ε)) =
√√√√ 1

4m

4
3πξ

3
L3 =

√
3m

8π
. (17)

In this way, in contrast toM̂1, only loops with pairs of coinciding point-like fermion
excitations contribute tôM2, which is quadratic in the fermion momentum variables. In
this respect, it is rather similar to the kinetic energy fermion contribution to the Hamiltonian
constraintHWeyl. However, since it modifies the fermion mass, a ‘dressing’ interpretation
seems more appropriate.

In summary, the Majorana-type mass for fermions has been studied in the loop
representation of non-perturbative quantum gravity and fermions. There are two
contributions, one of which resembles a mass gap, whereas the other seems to dress
the corresponding mass. The former is non-zero, even for loop states lacking fermion
excitations, which contain at least triple intersections. The latter requires the presence of
coinciding pairs of end points characterizing the loop states. Setting the Einstein and kinetic
fermion terms to zero, the Majorana mass operator turns out to be

M̂Majorana=
∑
i,e

√
M̂(i)

1 + M̂(e)
2 (18)

where the sum runs over (at least triple) intersections i of the loop states (with and without
fermionic excitations) and end points e for open loops with pairs of coinciding point-
like fermionic excitations. The limit in which the regularization parameters go to zero is
understood on the r.h.s. of (18). Some further comments are in order.

Topology of space. Recently Smolin put forward evidence for the equivalence between
minimalist quantum wormholes (i.e. the identification of pairs of space points) without
matter and quantum Einstein–Weyl theory expressed in loop variables [23]. In this picture,
the fermionic character of the Weyl field is associated with the antisymmetrization of the
mouths of the wormholes. In this way the fermionic matter gets encoded in the topological
properties of the space. Also, non-minimalist wormholes (that is smooth manifolds) can
be considered as having the results of the minimalist ones as their low-energy limit [23].
This in turn suggests a scenario where a Weyl field living on a space foam, like the one
considered by Friedmanet al [12], yields an effective theory in which the fermion field
becomes massive! Nevertheless, the analysis of [12] relies on a perturbative approach,
which it is better to avoid in the loop representation. A way out consists in following
Smolin’s strategy of studying the equivalence of the Einstein–Majorana theory, as given in
the present work, to non-minimalist quantum wormholes. Further work is needed to settle

† This choice corrects the one in [15].
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the issue of generating fermion masses from the topology of the space in the context of
non-perturbative quantum gravity.

A mechanism of mass generation would, of course, allow one to calculate the values
of the masses, but realistic values, i.e. related to nature, might well only come from the
incorporation of the other non-gravitational fundamental interactions. This possibility was
left open and some steps are in progress [24] along the lines presented here combined with
those of [13]. Also, a massive Dirac field is currently under study.

Reality conditions and spin networks.Relying on the Ashtekar approach for gravity and
spin-1

2 fields involves two complex local degrees of freedom for the gravitational field
unless reality conditions are supplemented [20]. Of course, the question remains open as
to whether such reality conditions will single out the correct inner product at the quantum
level. Nevertheless, the present analysis is expected to be robust enough to encompass real
variables along the lines of [21]. This will be possible after extending the spin-network
framework to include spin-12 fields, as in [22].

Partial support from CONACyT Grants 3141P-E9607 and E120-2639 (joint with CONICyT-
Chile) is acknowledged. MMV has been supported by CONACyT Reg. No 91825. It is a
pleasure to thank C Rovelli for his encouragement in the preparation of this work.
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