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The invariance transformations of the axisvmmetric five-dimensional vacuum Einstein cquations are writien in 4 representa-
tion of the group SL{3, R} in the potential space {analogous to the Ernst potential space ). Using this formulation, an exact class
of stationary axisymmetric solutions is generated, which contains among others Belinskyv-Ruffini, Kramer and the Kerr-NUT

solutions, as particular cases,

1. Introduction

In this paper we give a matrix representation for invariance transformations in Kaluza-Klein theories [1].
As an example how to use this, we generate a new axisymmetric solution, which contains, for instance, the
solutions due to Belinsky and Ruffini [2], Kramer [3], Neugebauer [4] and the Kerr-NUT selution [3] as
particular cases. It is well-known that the axisymmetric Ernst equations [6] contain an isometry group SU( 1,1}
in vacuum and an isometry group SU{2,1) for the Einstein-Maxwell theory [7.8]. A study of these trans-
formations and their consequences is given in refs. [5,8].

Since the group SU(1,1) is isomorphic to the group SL{ 2, R), it is possible to write the Ernst equations also
in this last representation. This will be done in this paper. Furthermore, we give a representation of the isometry
group SL(3, R) of the five-dimensional Einstein equations when the five-dimensional metric contains three
Killing vectors.

The five-dimensional Einstein equations with a compact fifth dimension are known as the Kaluza-Klein
theory [1]. It is a unified field theory of gravitation and electromagnetism. There are only a few known exact
solutions of this theory. Kithnel and Schmutzer [4] published a static solution for a charged particle. Neu-
gebauer [7] defined in a covariant form five potentials &, f; w, ¥ and ¢ when the five-dimensional metric con-
tains two Killing vectors X* and ¥* in the following form:

K== XEX,, f=—IYRY, +17(X*Y,)?, w=I"2X"Y,,
xlﬂ=2E“3:,€i#XuYﬁX?"5, E..F='2Ew_ﬂ}'\c5.u X“Y"‘?}’T‘ﬁ

{ €x e, 15 the five-dimensional Levi-Civita pseudotensor ).
These five potentials are the local coordinates of a potential space V% with the metric
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The potentials y'= (&, f w, ¥. €), A=1, ..., 5 respectively, are the scalar, gravitational, electrostatic, mag-
netostatic, and rotational potential [7]. Kramer [3] gave a method to find stationary axisymmetric solutions
without electromagnetism (but in the presence of the scalar potential) and Neugebauer [9] found a method,
consisting of a coordinate transformation in the five-dimensional Riemann space to generate charged solutions
from vacuum solutions. A stationary axisymmetric soliton solution was reported Belinsky and Ruffini [2]. A
systematic construction of spherically symmetric solutions has been developed by Dobiasch and Maison [ 10].
Lessner [11] used the Neugebauer [4] and Kramer [3] methods together to generate new stationary AXISVIT-
metric solutions. Clement [12] showed that a static solution of the (M+ 1)-dimensional Einstein equations
corresponds to each stationary solution of the M-dimensional Einstein equations and gave a relation between
the components of the M- and (M + 1 )-dimensional metrics for the axisymmetric case. A linear problem equiv-
alent to the five-dimensional field equations in the potential space has been constructed [13] and the cor-
responding N-soliton solution has been derived [14]. In a forth-coming paper we will analyse all the subspaces
of the potential space of dimension one and two [15], and generate a set of new solutions.

2. The chiral form of the field equations

The explicit form of the five-dimensional Einstein field equations in the potential space VY are given in ref.
[7], and in ref. [13] for the axisymmetric case. The equations for this last case can be rewritten in the form

(pg-8~ ")+ (pgeg~") =0, (2)

where Weyl's canonical coordinates p and ¢ are related with z=p+i{ and its complex conjugate Z. The matrix
gin {2) is a symmetric matrix which is an element of the group SL{3, R), i.e.

g=g', g=§ detg=1 (3)
{T denotes matrix transposition}. A suitable parametrization of g in terms of the potentials w is given by

=2(f 4= fiey?) 2e 212 (gx+ficly)
2¢ —3 —p=irp |, (4)
P Mgaficty) 2y -

The SL{3, R) symmetry transformations can be written in the form
g=CgC", (5)

where the constant matrix C is also an element of SL(3, R). The field equations (2) and the conditions (3)
are preserved under (5). A straightforward calculation shows that Tr{dgdg —')=4dS" If we substitute y=x=0,
k=11in (4}, we obtain the axisymmetric Ernst equations in (2 ), £=/+ie being the Ernst potential. An equiv-
alent approach was developed by Neugebauer and Kramer [16] for the Einstein-Maxwell theory.

i
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3. The new solution

It 15 not difficult to calculate the inverse matrix of g. We get

! Ki.-’! 1 f_xw Q\,EW
g = 7\ fji-{f—xwz—.fif"x‘i 2212 +w(e—)] | (6)
220 22+ yle—w) ] —8(fic~2—y?)

We can now write down the potentials ' in terms of the components of the matrices gand g/,
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4gin' g R {ry g
eMI ; fz__ . > 23 W= 13 , €=— £1 (7
£n g0 g2 = \j_ EJ—E'] &z .

where g;; are the components of the matrix g and g7 ' the components of the matrix g~ |, We assume that w=x=10
for the matrix g, in (5), then the matrix g in (5) can be evaluated. We use the relations (7) to get

D
k= —pdl3 iz f” W= —}EE [ (e +g) (weg +1) +fo(wufy —szi57) ],

41 DWW’ 2y
= %”dﬁn—f}(“u“h}"'ﬁ{d‘ﬁ kjicd) ] €=—LW[{afa—b}(a’fa—e}+fu{as£ﬂ:—fjx%}],
D= (ueg+q) +fo(ufo—sk5?), W=(deo—e) +fo(dfo—J%7) , (3)

for the matrix

a b ¢ TR R
e=ld e il=lun v w| . (9)
ik 5 ¥y z _

(In order to obtain a better notation, we substituted &, by 27*%k.)

After the transformation (8), the new solution is endowed eight free parameters. Nevertheless if we start
from a seed solution, in which €, vanishes and f; and k, reduce to one for a certain limit, we must choose the
matrix C such that

gt+wu—sz=0, be+ad—ci=0, eh+di—kj=0, g+u’-s'=1, +d*—j’=1, (107

in order to obtain a new solution with the same properties, and in which w and y vanish for this limit. So, the
new solution will be endowed with only three new free parameters. Using the transformations (8), we can
obtain a solution for the potentials * from an arbitrary seed solution without electromagnetism. A particular
case are the transformations [11] for

c 0" —(e*=1)'"?
C= 0 1 0 :
—(3=1)'7 0 ¢

Let us consider an example. We take the Kerr—-NUT solution together with a x; potential as a seed solution.
In this case we have

_I-2mr-2I8 2{mB=Ir) (r—m+|::r)rj i ot
fo= T . = T R e & f=cosv+!, E=r +0°,

where r and v are the Boyer-Lindquist coordinates; the constants a, m and / are respectively the rotation, mass
and NUT parameters. We obtain the following solution,
2734

x4}3__1_(r-m+cr)_ D Fiz [E—2mr—2!ﬂ}1zz(r—~m+::r)w
T A\r-m-g W’ - DWW r=tt—a)

id
lﬁﬂ[("'mﬂ) [2u(m—Ir)+qZ] [2w(mb—Ir) +1Z]

r—m+ao

24
+wi(Z—2mr— 25&}221( ) —sz(E—2mr- 2;&}2} ,
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f Pt}
s -EJWLZ { [2d(mO—Ir) —eE] [2i(mO—Ir) —hE] + {E—Emr—zfﬂj[dﬁz—lmr—ﬂﬂ} —kj[(%:) }} ]

24
i #{ [2a(mB—Ir) —bZ) [2d(mB—Ir) —eZ) + (Z— zmr-zm}[ad{z-zmr—zrﬂ}—cjz(::—;:i—g) ]} :

& F 2
p{(w) [2u{m3—fr}+q§]] +|:u{2—2mr—2fﬁ"}(r;miq):| —s3(Z=2mr-2I6)X,

r—m—a F—m—a
+ 248
W= [2d(mb—Ir) —FE]"-+d2{£'—2mr—238}1-j3(£::—;—§) I(Z-2mr-216) . (11)

This solution contains important special cases. For'instance, the Belinsky-Ruffini solution [2] can be ob-
tained by setting

g 0 =z
=] 01 0|, d=1.
-5 0 g

The Kerr—NUT selution is derived from (11} by the substitution C=diag(1,1.1), §=0, or the Kerr solution
with [=0. The Kramer solutions [3] can be get by C=diag{1,1,1) and {=0.

The solution (11} is a stationary axisymmetric solution for the five potentials p* in five-dimensional gravity.
The parameters (9) must be chosen to get a physical solution of (2). The invariance transformations (5) can
be used as a method to obtain new solutions in five-dimensional gravity,
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