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ABSTRACT

In this paper, we consider the hypothesis in which a species of ultra light bosonic dark matter (ULBDM)
with mass mp ~ 1072 eV could be the dominant dark matter (DM) in the universe. As a first approach
we work in the context of kinetic theory, where ULBDM is described by the phase space distribution
function whose dynamics is dictated by the Boltzmann—FEinstein equations. We investigate the effects that
this kind of DM imprints in the acoustic peaks of the cosmic microwave background. We find that the
effect of the Bose—FEinstein statistics is small, albeit perceptible, and is equivalent to an increase of non-
relativistic matter. It is stressed that in this approach, the mass-to-temperature ratio necessary for ULBDM to
be a plausible DM candidate is about five orders of magnitude. We show that reionization is also necessary
and we address a range of consistent values for this model. We find that the temperature of ULBDM is
below the critical value implying that Bose—Einstein condensation is inherent to the ULBDM paradigm.
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1. INTRODUCTION

One of the most precise cosmological observations is the
measurement of the anisotropies in the cosmic microwave back-
ground (CMB). The experimental data are useful for probing
the dynamics and properties of many theoretical cosmological
models. Nowadays, the most successful model describing the
observed profiles of CMB anisotropies is the so-called cold dark
matter with a cosmological constant (ACDM). Nevertheless, the
cold dark matter (CDM) model has some inconsistencies with
observations on galactic and sub-galactic scales. For instance,
CDM predicts cusp central density profiles of dark halos in low
surface brightness (LSB) and dwarf galaxies; meanwhile, the
measurements indicate a smooth distribution of matter. Also,
CDM has some discrepancies between the number of predicted
satellite galaxies in high-resolution N-body simulations and ob-
servations. In this sense, the possibility of alternative hypotheses
on the nature of dark matter (DM) is open.

In recent years, it has been argued that a real scalar field @,
minimally coupled to gravity, could be a plausible candidate
for DM. This alternative proposal (or similar ideas) is called
scalar field dark matter (SFDM; Ji & Sin 1994; Sin 1994; Lee &
Koh 1996; Hu et al. 2000; Matos & Guzman 2000; Matos et al.
2000; Sahni & Wang 2000; Matos & Urefia 2001; Lee 2009;
Garcia & Matos 2009). Several previous works have shown that
a scalar field is able to reproduce the cosmological evolution of
the universe. To this end, the scalar field is endowed with a scalar
potential V (®) of the form cosh(®) or ®* and obeys an equation
of state wp = po/pe that varies in time (—1 < we < 1; see,
for example, Matos & Urefia 2001; Matos et al. 2009). Matos &
Ureiia (2001) found that the SFDM model predicts a suppression
on the mass power spectrum for small scales. Thus, SFDM could
help to explain the excess of satellite galaxies.

The SFDM paradigm has also been tested on galactic scales,
showing interesting results. For instance, Bernal et al. (2008)
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showed that the density profiles for SFDM halos are non-cuspy
profiles, in accordance with the observations of LSB galaxies
(see also Bohmer & Harko 2007; Matos et al. 2009). More-
over, it is noticeable that in the relativistic regime scalar fields
can form gravitationally-bound structures. These are called
boson stars for complex scalar fields (Ruffini & Bonazzola
1969; Lee & Koh 1996; Guzman 2006), and oscillations for
real scalar fields (Seidel & Suen 1991; Urena-Lopez 2002;
Alcubierre et al. 2003). There are also scalar field stable gravita-
tional structures described by the Schrodinger—Poisson system
(Guzman & Urefia-Lépez 2003, 2006; Bernal & Guzman 2006).
One of the most promising and physically interesting features
of SFDM resides on the hypothesis that it describes cosmolog-
ical Bose—FEinstein condensates (BEC; see, for example, Woo
& Chiueh 2009; Urefia 2009). For that reason it is important
to provide a thermodynamic understanding of scalar particles,
putting aside for the moment the classical field description.

In the SFDM model, the mass is constrained by phenomenol-
ogy to an extremely low value (~1072* V). This ultra light
scalar field mass fits the observed amount of substructure (Matos
& Urefia 2001), the critical mass of galaxies (Alcubierre et al.
2003), the rotation curves of galaxies (Bohmer & Harko 2007),
the central density profile of LSB galaxies (Bernal et al. 2008),
the evolution of the cosmological densities (Matos et al. 2009),
etc. Furthermore, SFDM forms galaxies earlier than CDM; thus,
if SFDM is correct, we expect to see big galaxies at high red-
shifts.

If this scalar field could be considered as a system of indi-
vidual light bosonic particles (with zero spin) and, moreover, if
there are some of these scalar particles in thermal equilibrium
forming an ideal gas, then they should obey the Bose—Einstein
statistics. From this perspective, ultra light bosonic dark mat-
ter (ULBDM) seems to have some properties close to those of
neutrinos. In fact, neutrinos constitute a subdominant compo-
nent of DM in the universe. For this reason, it is interesting to
mention some of the most remarkable features of the neutrino
cosmology.
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At very early times of the universe, the neutrinos were in
thermal equilibrium with the primeval fireball (see, for example,
Dodelson 2003, p. 440). Due to its low mass compared with its
temperature in this epoch, they behaved exactly as radiation
at the moment of its decoupling. This means that neutrinos
fall under the classification of hot dark matter (HDM).* After
decoupling, neutrinos still keep the relativistic distribution,
while they relax only with the expansion of the universe; this is
called the freeze out. Thus, the temperature of neutrinos evolves
simply as T, o« a~! and eventually could reduce to values
lower than its mass. This epoch is known as the non-relativistic
transition (NRT) of the neutrino. Since this epoch, gravitational
attraction is sufficient to contribute to structure formation.
Once decoupled and after electron—positron annihilations, the
temperature of neutrinos remains well determined in terms
of the temperature of the photons as T, = (4/11)!/3T,,; this
fixes the neutrino number density today at n% ~ 100 cm=3. It
is now clear that if NRT occurs earlier, then neutrinos can form
more bounded structures and vice versa. However, in most of
the typical scenarios, this transition occurs too late, thus making
the neutrino contribution subdominant (see an excellent review
in Lesgourgues & Pastor 2006).

Neutrinos and ULBDM are similar in that they are assumed
to be in thermal equilibrium but with negligible couplings with
other types of matter. The value of the mass also ensures that both
decouple when still relativistic and also that their distribution
freezes out. They differ, however, in many aspects; an important
intrinsic part of the nature of the neutrino is that it is a fermion
and therefore its density has an upper bound. Thus, the content
of neutrinos Q, is entirely parameterized by its mass, i.e.,
Q, ~ m,/51.01 eV (see Kolb 1990, p. 547). In the case of
ULBDM, the mass and abundance are not correlated. Another
difference is that couplings of neutrinos are well known from
weak interactions and their thermal decoupling is predicted at
T ~ 1 MeV. However, in the case of ULBDM the energy
scales of interactions are unknown; we shall then assume that
decoupling occurs well before neutrino decoupling and that
temperature 7T is a free parameter.

In the present work, inspired by the neutrino cosmology and
the SFDM model, we assume that the universe contains two
components of DM, that is, ULBDM and standard CDM. We
focus on the question of whether the dominant contribution
of ULBDM to matter at the present epoch could mimic the
effects of CDM on the CMB spectrum of anisotropies. Of
course, there is important previous research in this context.
For example, Amendola & Barbieri (2006) treat an ultra-light
pseudo-Goldstone boson ¢ as part of DM and use the CMB
data to constrain the density fraction Q/€Q,,. This provides a
simple and very useful description of free streaming effects.
In the context of that work, if ULBDM is assumed to be
thermalized, the sound speed is cef ~ T;‘”a-l /mp defined

under the condition of NRT, i.e., a = Tl(;o) /mpg. Another very
interesting approach was taken by Ferrer & Grifols (2004),
who analyzed the effects of couplings between baryons and
scalar mediator particles. In fact, scalar particles in a BEC
serve as a thermal bath for baryons until a time close to the
recombination epoch. One of the most important consequences
of these interactions is a modification in the expression for the
speed of sound, which in turns shifts the position of the acoustic
peaks in the CMB.

4 The term HDM is applied to particles which behave relativistically at the
moment of its decoupling. However, HDM could be non-relativistic today.
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We stress that in our treatment ULBDM has a phase-space
description, prescribed by the relativistic kinetic theory, i.e., the
evolution of ULBDM is dictated by the Boltzmann equation
coupled to Einstein equations. This is a novel approach to the
scalar DM paradigm. Concretely, the object of treatment in our
scheme is neither a classical nor a quantum field, but rather the
phase-space distribution function of an ideal gas of individual
noninteracting particles. The scalar particles are thought to be
initially thermalized but decoupled from the rest of the universe.
Even if a priori we do not restrict ourselves to the case in which
all the particles reside in a coherent phase, it is found that
Bose-Einstein condensation has a central role in the model. The
BEC formation is assumed to take place before its decoupling
during the radiation epoch. The motivation to work in this
scheme is to explore the contribution to the CMB anisotropies
from possible thermal particles filling different energy states
in the ULBDM gas. This is precisely the reason why the name
ULBDM rather than SFDM is more descriptive in this approach.

In the following, we consider a flat, homogenous, and
isotropic universe. We take as fixed parameters the current
temperature of the CMB photons Tcyp = 2.726 K, the current
Hubble’s constant Hy = 75.0 km s~ ! Mpc’l, and the current
baryon density parameter Q. = 0.04. Also, we assume, just for
simplicity, that the dark energy in the universe is a cosmological
constant A with a current density value Q, = 0.74. We choose
units in whichc =% = kg = 1, then 1 K = 8.617 x 1073 eV.

This paper is organized as follows. Section 2 states the key
equations of this calculation. First, we discuss the Bose—FEinstein
statistics and some concepts of interest, followed by a brief
description of kinetic theory applied to cosmology. The physical
implications of ULBDM in the CMB anisotropies spectrum
are discussed in Section 3. Concluding remarks are given in
Section 4.

All the analysis was done using the public code CMB-
FAST (Seljak & Zaldarriaga 1996). The calculated curves
were compared to the five-year WMAP satellite data (five-year
WMAP; Hinshaw et al. 2009). (It is available at http://lambda.
gsfc.nasa.gov/product/map/current)

2. ULTRALIGHT BOSONS AS DARK MATTER
2.1. Bose—Einstein Condensation

As stated in the introduction, we want to explore the hypothe-
sis of the existence of a kind of DM in the universe composed by
scalar particles with an extremely low mass mz = 10722 eV. We
assume that ULBDM was in local thermodynamic equilibrium
(LTE) with the primeval fireball at least in some very early stage
of the universe. Accordingly, it can be defined as a temperature
Tp of the ULBDM, and the dynamics of these particles may
be described by the Bose—Einstein statistics with a phase-space
distribution function

Sfo(p) = 8

NP =Ty _ 1

where g, is the number of relativistic degrees of freedom
(gs = 1 in the case of scalar particles) and p is the chemical
potential. One immediately finds the condition © < mp in
order to keep the positive value of the distribution function.
In fact, Bose—Einstein condensation occurs when the value of
the chemical potential approaches the mass of particles. This
phenomenon appears for temperatures below a critical value
named the critical temperature of condensation 7. and consists
in a considerable occupation of the state of minimal energy.

)]
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We can calculate the number density n'") of particles from the
relativistic kinetic theory of gases (RKT):

d? 1 (E* = m%)\2E dE
n'V = p; folp) =55 — ,
Q) 27 eE-/Ts —

where E? = p?+m? is the energy of each individual particle. It
is natural to assume that the mass-to-temperature ratio was very
small at the moment of decoupling of ULBDM; thus, we can
solve the integral by taking the ultrarelativistic limit (imp << Tg)
which yields nV = (¢(3)/7%) T3 with ¢(3) ~ 1.2, the Riemann
function. The critical temperature in the ultrarelativistic regime

is then defined as
g 1/3
T. = . 3
(&) ®

In this equation, np is the total number density of particles per
unit volume; for T > T,, np is just nV. Quantum statistical
mechanics predicts that the occupation of the lower energy state
rapidly increases when the temperature of the Bose gas falls
below T.. In this case the total number density is

@

ng =no+32T5, Ty <T, )
where ng is the particle number density of the BEC. We can
say that ULBDM falls in the classification of HDM in the
sense that it behaves as radiation at its decoupling epoch. After
this moment, fj is said to be frozen out until today. It means
that the particles maintain their relativistic distribution with a
temperature scaling as Tz o< a~'. However, relativistic behavior
does not necessarily prevent BEC formation (see, for example,
Cercignani & Medeiros 2002, p. 384). Moreover, because of the
expansion of universe, ULBDM cools down and the temperature
could be under the value necessary for an NRT. We want to
investigate if this could happen and at times early enough to
form large-scale structure.

2.2. Kinetic Theory in Expansion

The free evolution of ULBDM is described by the Vlasov
equation, also called the Liouville or collisionless Boltzmann
equation (see Bernstein 1988). On the other hand, the geometry
of the universe is described by the FLRW metric with scale
factor a(t), perturbed to first order. ULBDM particles can just
move along geodesics and the Vlasov equation translates this to
a differential equation for the phase-space distribution function
f of the ULBDM gas. In the conformal Newtonian gauge, the
perturbed metric reads

ds* = a* {—(1+2¢)d7* + (1 — 2¢)dx'dx;} , &)

where t is the proper time, and i and ¢ are the scalar modes
of the perturbation. In this gauge, the tensor and vector degrees
of freedom are eliminated from the beginning. Following the
same formalism developed for the fermionic sector (see Ma &
Bertschinger 1995), it is useful to define the corrected proper
momentum ¢g; = a p;, g; = q#;, where i is its direction
unit vector. The proper momentum p; is defined in terms of
the canonical conjugate momentum P; = a(l — ¥)p; of the
comoving coordinate x'. The comoving proper energy is given
by € = a(p® + m%)!/2. Due to the perturbed geometry, we shall
consider small deviations from LTE:

f& P = folg) [L+ W' g, 7, 1)], (6)
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where f; is the homogenous phase-space distribution function
in the ultrarelativistic limit

Jo(q) = . (M

e1/Ts — 1
Y is related to the temperature Ty of the ULBDM and its
perturbation 6 7 in the following way:

0l Y
Lfo(q)—B(X’, q. ij, 7). (8)

lIl ia ) AA, = —
Oqony ) == O

Equation (6) can be interpreted as a linear statistical perturbation
induced by linear metric perturbations. In Fourier space, the
Vlasov equation df/dt = 0 reads

an f,
dlng’

‘P—i%‘i‘:—((k-ﬁ)lﬁ+i2(k~ﬁ)¢) )
where k is the wave number of the Fourier mode. Note that
the dependence on the direction vector f arises only through
k - fi. This last equation gives the response of the phase-space
distribution function to the metric perturbations. The natural
way to proceed now is to expand the perturbation term ¥ in a
Legendre series:

W', g, A1) = (=) @I+ D¥ik, g, T)P(k-), (10)
1=0

where the Py(k - fi) are the Legendre polynomials whose
argument is the angle subtended between the wave number
vector and the direction vector. The problem involves solving
a hierarchical system of Boltzmann differential equations for
the many coefficients ¥; of the Legendre expansion, called the
multipole moments. This Boltzmann hierarchy can be solved in
any Boltzmann code together with the Boltzmann equations
of the rest of the matter of the universe. In the following
section, we analyze the CMB spectrum resulting from assuming
different contents of CDM and ULBDM. We carry out our
numerical computations with a modified version of the public
code CMBFAST.

3. TESTING WITH THE CMB

The first question is whether the CMB is effectively sensitive
to the nature of the statistics of the ULBDM. We define the
mass-to-temperature ratio of ULBDM as

xp = 2 (11)

evaluated today, with similar definition for the mass-to-
temperature ratio of some species of fermions as xz. We compute
the CMB spectra for fermions and bosons separately. All the pa-
rameters are kept constant, in order to observe only the effect
of the change of the statistics. In Figure 1, we show that for
bosons the amplitudes of the first and second peaks are reduced;
the third peak is increased with respect to the corresponding one
for fermions. We find that for this particular set of parameters,
the response of the CMB to the change of statistics is small albeit
perceptible; we will discuss more about this behavior below.
We recall that once ULBDM is decoupled, its phase-space
distribution function is frozen out and its temperature can only
relax with the expansion of the universe as Tz o a~!. After
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Figure 1. CMB spectra for Qr = Qp = 0.2, xp = xp = 63, 109, with a
reionization optical depth 7, = 0.13. All parameters are the same for both
curves. The continuous line corresponds to bosons and the dashed line to
fermions.

(A color version of this figure is available in the online journal.)

photon decoupling and in a manner quite similar to neutrinos,
the temperature of the ULBDM can be just proportional to that
of photons:

Tg =aT,, (12)

where « is a constant free parameter to be determined and is
only a measurement of the kinetic energy of ULBDM particles.

The radiation behavior is defined when most of the particles in
the gas are ultrarelativistic; this happens in the limitmp /Tp < 1
and wpg = 1/3. Correspondingly, the dust behavior occurs in the
limit mg/Tp > 1 and wp = 0. Note that if the temperature is
close to that of photons, T ~ T,, xg < 1, it means that
ULBDM should be still ultrarelativistic today. The effect of
ULBDM on the total matter background with this value of xp
moves the entire CMB spectrum to the right and upward; this
is shown in Figure 2. For all values o > 1072 computation
of the power spectrum results in non-sensitivity to the change
of «. It is found then that the radiation behavior is maintained
for xz < 10*. In all the following figures, the crosses form the

~

curve of the mean value of the observed CMB spectrum.
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Figure 3. Response of the CMB spectrum to small changes of « in the interval
(0.6 x 1077, 0.8 x 10~27). For the three curves, Qp = 0.2 and Qcpy = 0.02.

(A color version of this figure is available in the online journal.)

Also in Figure 2, we show the prediction for o = 10728 (third
curve). In this case, ULBDM becomes non-relativistic very
early, causing a damping of the acoustic oscillations because
of an increase in gravitational potential wells. At the bottom of
the same figure there also appears the curve for o = 1073, in
which the same effect is enhanced. The plot shows that the order
of magnitude needed to fit the data is & ~ 107%7; this means
that the mass of ULBDM must be five orders of magnitude
greater than its temperature at the present epoch (xz ~ 10°). Of
course, this is a rough estimation of « appropriate for the case in
which ULBDM is the dominant component of DM today. The
sensitivity of the CMB power spectrum to small changes of «
is shown in Figure 3. The range shown is from « = 0.6 x 10~
to = 0.8 x 107%7 (from x5 = 73,367 to x5 = 40, 759).
It is noted that the first and second peaks are enhanced if the
ULBDM is more relativistic.

The above rough constraint on o depends of course on the
relative fractions of ULBDM and CDM. Nevertheless, quite
different values of Qg and Qcpy would modify « by less than

CMB anisotropies
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Figure 2. Response of the CMB spectrum to large changes of « in the interval (= 10726, 1073%), with Qp = 0.2 and Qcpy = 0.02. Here and in the following plots,

we compare the curves to the five-year WMAP data of the CMB spectrum.
(A color version of this figure is available in the online journal.)



No. 2,2010 ULBDM AND CMB 1513

CMB anisotropies

7000 S— -
Q 0.20, Q WI\(,)UE\)Z
DM = M.el B = V-
6000 F QgDM =010, Qg=0.12 R
Qcpy=0.02, Qg=0.20 -
5000 T T T T T |
~_ 4000 F _
X 2000 & L
= I :
(—)— 3000 | 1500 :‘:{ i
gl 1000 ﬂf
. &
= 2000 F = éba_ 500 60 700 800 90 1000 T:,'i" -
= j‘
N T . J
1000 R D e
0 L B -
-1000 ; . . :
1 10 100 1000 10000
Multipole |

Figure 4. CMB power spectra for different contents of ULBDM and CDM. For the three curves shown, a ~ 10727,
(A color version of this figure is available in the online journal.)
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Figure 5. CMB power spectra for different optical depths of reionization. The
range shown is from 7, = 0.05 to 7, = 0.19. Qp = 0.2, and Qcpym = 0.02,
with @ ~ 10727,

(A color version of this figure is available in the online journal.)

one order of magnitude. We then use a value of « pertinent for
ULBDM to be dominant.

We now investigate the content of ULBDM against the
content of CDM in two limiting cases. One is DM dominated by
ULBDM with an adequately low content of CDM and the other
is the opposite case. Figure 4 shows how the increase in CDM
diminishes the amplitude of oscillations. This is an effect of an
enhancement of gravitational potential wells of non-relativistic
matter.

We must also consider the effect of the fraction of reionized
baryonic matter. We fix all the parameters and then we vary the
reionization optical depth t,; in Figure 5, we show the values
between 0.05 and 0.19. It is found that a ULBDM-dominated
(Qp = 0.2) universe seems to be allowed for xz ~ 10° and
7, about 0.07-0.14. The constraints of 7, from the five-year
WMAP data for A-CDM parameters show a range between 0.05
and 0.15 (95%; Dunkley et al. 2009). We thus find that the mean
value of our prediction 7, = 0.13 is well within the range of the
standard prediction.

Let us now return to the curves shown in Figure 1. Note again
the reduction of the first and second peaks plus the increase
of the third peak in the CMB spectrum of the bosons compared
to that of fermions. Note that this effect is quite similar to the
increase of non-relativistic matter. Though small, it is a clear
manifestation of the Pauli exclusion principle. As is known,
the energy density of Bose particles is greater than that of
Fermi particles. This thus yields an additional effective damping
force on the acoustic oscillations, analogous to the gravitational
potential wells of the non-relativistic DM.

We now turn to interpret the thermodynamic variables. We
have found that the low mass-to-temperature ratio xz necessary
to be the dominant component of DM today enables us to take
the non-relativistic relationship:

mpgnp = Qppc, (13)

where p. is the critical density of the universe. As we have
fixed the mass of ULBDM (mp = 1072 eV), the content of
ULBDM Qg determines its number density ng. For Qp = 0.2 it
follows that nz ~ 10> cm™>. Such a large density would seem
odd in the case of fermions (for example, neutrinos) because
of the Pauli exclusion principle. Nevertheless for ULBDM,
its bosonic nature does not restrict the density of particles.
With this value of ng and Equation (3), the estimation of the
critical temperature is T, ~ 2.15 x 10® eV. From the value of
xg ~ 10°, or equivalently Tl(go) ~ 1077 eV, we find that the
condition T < T, is much fulfilled. This ensures that, under
the conditions needed to become the dominant component of
DM, ULBDM shall necessarily be found in a BEC state today.

The explicit process of Bose—Einstein condensation during
the evolution of the universe is necessary to understand the na-
ture and behavior of ULBDM. This suggests that the assumption
of some kind of interaction is necessary in order to study phase
transitions from a nondegenerate state to an almost completely
degenerate BEC.

It is noteworthy that our model curves bring important,
mostly qualitative, information. In order to provide completely
conclusive results with respect to the ability of ULBDM to
match the data, it is necessary to perform further quantitative
analyses.
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4. CONCLUSIONS

A universe dominated by ULBDM with mass ~1072? eV
could be possible only if the number density today is of the
order of ~10%> cm™3, which implies a critical temperature of
condensation T, about ~10% eV. Another condition is that the
mass-to-temperature ratio xz should be found to be about 109,
equivalent to a temperature of the order of ~107%?7 eV today.
These values indicate that under the above conditions, ULBDM
is present in a Bose—Einstein condensate state. Then, we can
conclude that ULBDM endowed with an appropriate BEC could
mimic the effects of the standard CDM model on the CMB
spectrum.

This value of the temperature might be falsified with more
direct information about (thermally efficient) interactions with
other particles. The energy of interaction should reveal the
temperature of decoupling; the CMB data might then provide
information about coupling constants.

We have shown that changing the type of statistics in the
distribution function has non-negligible effects on the CMB.
Evenif not surprising, it is interesting that the statistical nature of
these two kinds of particles is perceptible in the CMB spectrum.
The effect is analogous to the addition of non-relativistic
matter.

We find that the effect of reionization is necessary to reach
concordance between the ULBDM model and the five-year
WMAP data. We do not find a substantial difference from the
usual CDM prediction. Our mean predicted value 7, = 0.13 is
well inside the standard prediction (95%).

This work might be extensible to other massive Bose gases
by means of the value of the relativistic degrees of freedom, g,
of the particle (for scalars g, = 1, massive photons g, = 3,
etc.); of course, interactions should make the picture entirely
different. However, we restrict our discussion only to scalars in
this paper because a plausible intrinsic nature between SFDM
and cosmological BECs is found in the literature.

The next natural question is how the process of BEC for-
mation should happen, specifically the phase transition from
a relativistic, nondegenerate gas to a coherent classical state
on the cosmological scales. This process is expected to im-
ply non-trivial interactions before decoupling in the radiation
epoch (Dolgov et al. 2009). However, this is out of the scope
of the present paper and for that reason it is left for future
work.

We finally mention that the present work is an initial analysis
where we have explored only the response of the CMB to
ULBDM. It is necessary to implement a precise quantitative
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analysis to the fits of all the parameters involved in the model
by using independent sets of data from other observations.
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