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The imaging formation process in halos for some dark matter profiles is studied. Ap-

proaching these models on a small scale, we analyze the images generated on the lens
plane by obtaining the analytical surface mass densities Σ(x) and their corresponding

deflection angles α(x). We identify the presence of Einstein rings, by mapping fringes

that represent possible sources (such as other galaxies), placed on the source plane. We
approach the simplest case, where lines parallel to the x axis are mapped onto the lens

plane, to find out how are the solutions of the X vector field, which is in this case, the

geometrical equivalent to the usual lens mapping.
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1. Introduction

The dynamics of galaxies is a topic of great interest in cosmology. In recent years,

this dynamic has been studied with the observation and analysis of the rotation

curves of several samples of galaxies. From these observations an acceleration has

been measured, and the presence of Dark Matter (DM) is necessary to explain their

dynamics1,2.

The restrictions belonging to the central surface density of the halo, determine

the value of the quantity µDM which is always a constant, that it seems to be

an universal invariant, and there are evidences of this restriction in spiral, dwarf

irregulars and ellipticals galaxies to name some types3-6. It is important to observe

that µDM is constructed as the product of the characteristic length rs and the

central density value ρs of each galaxy, and this is related with the soliton region

(the core of the galaxy). This is an important zone, because the extra galactic

components do not alter this region and the invariant objects present there, are

very helpful to understand the complete behavior of the galaxy7. In fact, certain

models for Scalar Field Dark Matter (SFDM) have predicted that the total mass of

these systems is MDM (300pc) ∼ 107M⊙ with a characteristic size rs = 300pc;

that is, the soliton region is perfectly delimited for its analysis, and it is very

important for eventual tests that improves the physics interpretation of the data.

Therefore, to study the dynamical process for translating this information to the

imaging information, this soliton zone must be analyzed, with the corresponding

considerations for that region.

In fact, the universal DM profile (the Navarro-Frenk-White profile NFW) has been

exhaustively studied, because it fits properly with observational data8,9; however,

it presents problems on a small scale, which implicates that there must be another
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models, that explain the core zone.

For the above reasons, a complete optical analysis of this region is in order, using the

proper data that comprehends all the physical information encoded in each model,

but at the same time with a simplification of the studied equations. Hence, we

use the usual gravitational lensing formalism10, that contains all the mathematical

restrictions to fully understand such optical processes. Hence, we compute the

images on the lens plane, as functions of the positions of the sources, the source

plane and the redshift, which is encoded into the critical surface mass density Σcr,

that appears in the volumetric density ρ(r) (and thus, into the deflection angle α(r)

generated in each physical situation). Therefore, the principal goal for using this

approach, is to describe the images generated for recent models of DM, and test

which of them behave like the observed data. In this stage of the work, we only

study the images generated by objects (fringes) very near to the observation axis,

by finding the roots of the equation that represents the mapping in that zone (see

Eq. 13 below). This eventually means to translate the optical information obtained

from the corresponding images, and link it with the information of the galactic

dynamics.

This work is organized as follows. In section 2 we set the basic equations for

gravitational lensing, and we obtain the surface mass density and the deflection

angle analytically for each profile. In section 3, we establish the X vector field that

describes the ray tracing of the optical process; later we use the method provided

in11, to study the images that will appear on the lens plane. Finally in section 4,we

present the conclusions of this work.

2. Basics equations for gravitational lensing

The configuration for gravitational lensing is as usual10 , where the source plane,

the lens plane and the observer are shown. Ds, Dl and Dls are the distances

between observer and source, observer and lens and between lens and source planes,

respectively10. Now, assume that the DM density profile is given in the form ρ(x) =

ρsf(x), with ρs, rs and x = r/rs are the characteristic density, the characteristic

radius and the scale radius, respectively; f(x) is any given function of its argument2.

Hence, it is necessary to find the deflection angle in each case, and because the

systems considered here are axially symmetric, the surface mass density and the

deflection angle are given by10

Σ(ξ) =

∫ ∞

−∞
ρ(ξ, z)dz,

α(x) =
m(x)

x
,

(1)

where the radial coordinate r is related to cylindrical polar coordinates by r =√
ξ2 + z2 and m(x) is the dimensionless mass defined by

m(x) = 2

∫ x

0

κ(ξ)ξdξ. (2)
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Name f(x) Σ(x) α(x) = m(x)/x

(1) (2) (3) (4)

Burkert
1

(1 + x)(1 + x2)
βBF (x)B

σB

x
g(x)B

M-SFDM
sin2 x

x2
βMsTF (x)MSt σMsT

[
J1(2x) +

x3

3

]
PI

1

1 + x2

βPI√
1 + x2

σPI

x
(
√

x2 + 1− 1)

Spano
1

(1 + x2)3/2
βSp

1 + x2

σSp

x
ln(1 + x2)

Wave DM
1

(1 + x2)8
βW

(x2 + 1)15/2
σW

x

(
1− 1

(x2 + 1)13/2

)
NFW

1

x(1 + x)2
2µDM

x2 − 1
F (x)NFW

4κs

x

(
ln x

2 + 2√
1−x2

arctanh
√

1−x
1+x

)

The shear of the system is

κ(x) = Σ(x)/Σcr (3)

and Σcr = c2Ds/(4πGDlDls) is the critical surface mass density.

Using Eqs. (1) and (2), it is obtained the above table, by using the Burkert,

Multistate-SFDM, PI, Spano, Wave DM and NFW dark matter profiles given in2,7,

where β and σ are constants that determine the scaling of such core, and they

depend on the values of µDM and κs.

For the Burkert profile the F (x)B function for the surface mass density is given by

F (x)B =
1√

1 + x2

[
π

2
+ arctanh

(
1√

1 + x2

)]

−2



1√
1− x2

arctanh

√
1− x

1 + x
(x < 1),

1√
x2 − 1

arctan

√
x− 1

x+ 1
(x > 1),

=
1√
2

[
π

2
+ arctanh

(
1√
2

)]
− 1 (x = 1),

(4)
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and the gB(x) function for the deflection angle is

g(x)B =
1

2

[
x2

(
π

2
+ arctanh

(
1√

1 + x2

))
+

√
1 + x2

]
+ lnx

+2


√

1− x2 arctanh

√
1− x

1 + x
(x < 1),

−
√

x2 − 1 arctan

√
x− 1

x+ 1
(x > 1),

=
π

4
+

1√
2
+

1

2
arctanh

1√
2

(x = 1).

(5)

For the Multi-State profile, the FMSt function for the surface mass density is given

by

F (x)MSt = J0(2x) +
π

2
[J1(2x)H0(2x)− J0(2x)H1(2x)], (6)

where Jν are the Bessel functions of the first kind of ν-th order and Hµ the Struve

functions of µ-th order12,13; the FNFW function and the corresponding deflection

angle for the NFW profile are given in8,9.

3. Imaging formation

Knowing the deflection angle for each case, it is possible to develop the imaging

formation process. It will be helpful to express the quantities for describing the

optical process, in a cylindrical coordinate basis {ϱ̂, ϕ̂, ẑ}. From this information,

the imaging mapping is given by the vector field

X = r+ lR̂G, (7)

where R̂G is the gravitational refraction ray given by11

R̂G = cosαẑ − sinαϱ̂, (8)

and l is the length from the lens plane z = 0, to a point on a given deflected light

ray.

Using Eq. (7) the deflected light rays are

X = (ϱ− l sinα)ϱ̂+ l cosαẑ. (9)

Consider now a family of one dimensional sources in the region z > 0, locally

described by11

X = X(η, n), (10)
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Fig. 1. Plots of the mapping y = x− z0α for z0 = 1, 2, 3, 4 and n = 0. The solutions for x = 0 in

each profile denote the possible Einstein rings produced in each case. Notice that because in the
Burkert and the multistate profiles, the curves does not intersect the horizontal axis, these profiles

don’t have Einstein rings.

where n denotes the source and η labels the points on that source. From Eqs. (9)

and (10), the images that the observer sees on the lens plane z = 0, given by all the

points (x cosϕ, x sinϕ, 0), where x and ϕ are solutions to11

Xs(η, n) = [x− Zs(η, n)α(x)] cosϕ,

Ys(η, n) = [x− Zs(η, n)α(x)] sinϕ.
(11)

Taking the simplest case for line sources that coincide with the x axis, the equations

for obtaining the image for each fringe is determined by all the points in the lens

plane such that11

Xs = [x− z0α(x)] cosϕ, (12)

n = [x− z0α(x)] sinϕ, (13)

with −L ≤ Xs ≤ L.

Now, Eq. (7) encodes the information related with the imaging formation process

of the optical system, because describes how is the mapping of points from the lens

plane to the source plane; the X is related with the usual lens mapping.

Because of the axial symmetry of the optical system, the caustic generated by the

vector field (7), has a central branch (along the observation axis z). If this branch

has contact with the source plane, the observed image is a ring; these are the
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Fig. 2. Schematic of the surfaces representing the solutions of Eq. (13) for each profile on z0 = 1

and n = 1. The pink plane intersecting each surface is the P = 0 plane. Observe that although
the profiles present similar behaviour, the imaging formation process does not begin in the same

values of x (neither the values of ϕ are the same).

Einstein rings.

In fact, for n = 0 (a source aligned exactly with the observation axis), these rings

correspond to the roots of Eq. (13), and this is illustrated in Figs. 1. For example,

observe that for the Burkert and Multistate profiles, this function have no roots,

hence, they have no presence of Einstein rings for that positions of the source plane.

However, it is important to notice that these rings, are not the only images that

could appear in this process. There is another branch of the caustic: a surface of

revolution wrapped along the observation axis11, that also contributes to the images

present on the lens plane, because a change to the source position does not lead to

the change of the number of images unless a source moves along a caustic branch10,

and this situation will appear, if the source and the lens plane are close enough, or

in a position where this branch has contact with the source.

In this stage, we are only studying the simplest case, where we are not assuming

that the source and the lens are close.
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On the other hand, for n ̸= 0, notice that in general, the deflection angle α is

not an invertible function, therefore, it is necessary to find the solutions of Eq. (13)

numerically. The above means to analyze Eq. (13) as a family of surfaces labeled

by the n index, that are functions of x and ϕ (see Figs. 2).

By analyzing the intersections of these surfaces with the P = 0 plane, the image

multiplicity according to the deflection angle α (see Fig. 2) can be found. The

above means to be able of identifying the differences on the values of x where the

profile begins to generate images, or for the values of ϕ on each quadrant, where

the images appear.

An important observation is that it has been shown that the DM central surface

density µDM for all these profiles, is a constant (its values lie in the range µDM =

(575 − 648)M⊙pc
−2)2,7 and this fact will be very useful for eventual calculations

on imaging formation, because this means that the rs and ρs parameters are not

independent from each other, and hence by fixing the conditions for one of them,

we can establish the correct values for the β and σ parameters.

In fact, because the Navarro-Frenk-White (NFW) profile has been studied in several

works8,9, it will be important to compare it with the other profiles, and these

results must fit with the description of the physical behaviour in DM halos, for

later comparing such information with that obtained in the NFW case based on

experimental data, but only in the moment where all the profiles can be expressed

in a comparable scale.

4. Conclusions

In this work, the analysis for the imaging formation process for dark matter halos

has been performed. The goal is to understand if the optical information provided

by the lens mapping, gives information about the physical processes that lies in the

core of some types of galaxies.

The motivation behind this analysis, was to obtain the analytic equation for the

optical mapping from the source plane to the lens plane, and translate directly such

information into the images generated on the lens plane.

So far, we have find out that the formation of Einstein rings, depend on the solutions

of Eq. (13), that is a projection of the X vector field (the equivalent of the usual

lens mapping) on the lens plane. These calculations are helpful to differentiate the

behavior of each profile, and this was carried out by obtaining the deflection angle,

encoded in the X mapping, and later by analyzing the behavior of this function.

This was achieved by plotting the n surfaces that represent the solutions of Eq. (13)

to identify the values that correspond to the zones where the imaging formation

process begin.

An important observation is that, the ultimate goal for studying such process is to

eventually address the problems of the ΛCDM on a small scale, because the NFW

profile has problems in this region, and alternative models must be tested there.

This means to have at hand an observational tool for testing the possible wave
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nature of the DM or the species diversity, basing the calculations in the soliton

region, because it seems to be that this zone is established by means of an universal

invariant µDM (with the correct values of rs and ρs, that in turn determine our β

and σ constants).

Finally, as a future goal based in this work, we consider that we will be able to

“draw” the corresponding images mapped from sources (in this case lines) on the

lens plane, that represent galaxies or other kind of cosmological objects, by making

use of the X field. In fact, we already have used this process in the description of

a Schwarzschild lens, and the plots allowed us to explicitly identify the positions of

the images on the lens plane11, that is, by generating images to later compare them

with visual data. We believe that the above, can be used as an efficient geometrical

way to identify optical configurations, for later interpret the physical data encoded

in such images in a nimbly way.
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