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Using a generalized Madelung transformation, we derive the hydrodynamic representa-

tion of the Dirac equation in arbitrary curved space-times coupled to an electromagnetic

field. We obtain Dirac-Euler equations for fermions involving a continuity equation and
a first integral of the Bernoulli equation. Using the comparison of the Dirac and Klein-

Gordon equations we obtain the balance equation for fermion particles. We also use the

correspondence between fermions and bosons to derive the hydrodynamic representation
of the Weyl equation which is a chiral form of the Dirac equation.
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1. Introduction

The Standard Model of elementary particles establishes that there exist two kinds of

particles, fermions and bosons. In previous works,1,2 the energy balance for bosons

was derived starting from the general relativistic Klein-Gordon (KG) equation. In

the present work, we study a system of fermions described by the Dirac equation in

arbitrary curved space-times taking into account electromagnetic effects. We also

use the Weyl equation which is a chiral form of the Dirac equation due to the

relationship between the Lie algebras of the symmetry groups for both systems of

particles. We give the hydrodynamic representation of the Dirac and Weyl equations

for fermions using previous results obtained for boson particles.

Many examples of fermion particles in strong gravitational fields can be found

in nature. Indeed, the curvature of space-time plays an important role in a neutron

star, in the early Universe, or in a fermion cloud (e.g. a dark matter halo) in the

vicinity of a black hole. We need to develop a general framework to identify what

are the different energy contributions in such systems. In this work we use the

geometrical decomposition of the metric in 3+1 slices and the tetrad formalism to

study the particle spin in an arbitrary space-time. We define the gamma matrices

in curved space-times and derive the generalized Dirac and Weyl equations. Then,

using the Madelung transformation, we introduce a hydrodynamic representation

of the Dirac and Weyl spinors. This hydrodynamic representation can help us to

describe the fermionic system in a general framework.
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2. Field Equations

We use the tetrad formalism for the space-time geometry, and the canonical expan-

sion of the space-time in a 3+1 ADM decomposition,3–8 such that the coordinate t

is the parameter of evolution. The 3+1 metric reads

ds2 = N2c2dt2 − hij
(
dxi +N icdt

) (
dxj +N jcdt

)
, (1)

where N represents the lapse function which measures the proper time of the ob-

servers traveling along the world line, N i is the shift vector that measures the dis-

placement of the observers between the spatial slices and hij is the 3-dimensional

slice-metric. In what follows i, j, k, l = 1, 2, 3; a, b, c = 0, 1, 2, 3 are the internal

indices and µ, ν, α = 0, 1, 2, 3 the space-time indices. We write eq. (1) in the

tetrad formalism as ds2 = ηabe
a
µe

b
νdx

µdxν , where ηab = diag(1,−1,−1,−1). Here

ea = eaµdx
µ is the set of one-forms base of the cotangent space at the space-time

manifold given by

e0 = Ndt,

ek = êki
(
dxi +N icdt

)
, (2)

with inverse

e0 =
1

N

(
∂

c ∂t
−N j ∂

∂xj

)
,

ek = ê j
k

∂

∂xj
, (3)

where êk = êkidx
i are the one-form base to the three-dimensional slice of the cotan-

gent manifold, such that hij = δklê
k
iê

l
j . We can also define the set of vectors base of

the tangent-space to the space-time as ea = e µ
a ∂µ, such that eaeb = δab. We will use

the tetrad formalism3,6–10 to describe the space-time geometry where the fermion

particles are located.

The action of a fermion system in curved space-time coupled to an electro-

magnetic field Aµ is given by S [ψ, ∂µψ] =
∫
L (ψ, ∂µψ(xµ)) d4x, where L =

L (ψ, ∂µψ(xµ)) is the Lagrangian density11–13

L =
√
−g iℏc

2

[
ψ†Bγµ (Dµψ)− (Dµψ)

†
Bγµψ +

2imc

ℏ
ψ†Bψ

]
. (4)

Here Dµ = ∇µ +
iq

ℏc
Aµ is the total covariant derivative accounting for elec-

tromagnetic effects. The covariant derivative of a spinor ψ = (ψν̇) is given by

∇µ(ψν̇) = ∂µ(ψν̇) + Γα̇
µν̇(ψα̇), where Γα̇

µν̇ is the spin connection.3,14 Using the least

action principle it is possible to obtain from eq. (4) the corresponding Dirac equa-

tion. This equation is given by

[iℏγµ(∇µ + iqAµ )−mc]ψ = 0, (5)

where ℏ, c are the Planck constant and the speed of light respectively, while q,m

are the charge and mass of the fermion particle and ψ is its spinor. Besides, the
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gamma matrices γµ are related to the spin and space-time geometry. They can be

written as γµ = eµaγ̃
a, where γ̃a are the gamma matrices in flat space-time, which

are well-know from Quantum Field Theory (QFT).15–17 Therefore,

γ0 = Nγ̃0,

γk = êkj(γ̃
j +N j γ̃0). (6)

In general, these matrices fulfill the following anti-commutation relation3,18

{γµ, γν} = γµγν + γνγµ = 2gµν , (7)

where gµν represents the metric that describes the space-time geometry. Further-

more, as we know, the gamma matrices in flat space-time are related to the Pauli

matrices, which describe the spin of the fermion particles. In general, the gamma

matrices obey the following relation11–13,19

(γµ)† = BγµB−1, (8)

where B is a hermitian matrix, i.e. B† = B, that is uniquely determined by the

gamma matrices γµ. As usual, we denote by B† the conjugate (or Hermitian) trans-

pose of B. We note that in QFT the relation (8) is fulfilled when B = γ̃0 and the

gamma matrices are in flat space-time. From the action (4) of the fermion system

we can find the equation for the transpose conjugated spinor by making an infinites-

imal variation of this action with respect to ψ. Another way of getting this equation

of motion is to take the transpose conjugate of the Dirac equation (5) and using

(8). In this manner we find that the transpose conjugated Dirac equation in curved

space-time is given by

i
(
∇µψ̄

)
γµ − iψ†∇µ (Bγ

µ) + iψ̄∇µγ
µ + ψ̄Aµγ

µ +mψ̄ = 0. (9)

To simplify the notations, here and in the following we use mc/ℏ → m in natural

units (c = ℏ = 1). We consider that (∇µψ)
† = ∇µψ

†, and we denote the adjoint

spinor as ψ̄ = ψ†B. Using the gamma matrices in flat space-time and the fact that

B = γ̃0 we recover the definition of ψ̄ in QFT and the transpose conjugated Dirac

equation. However, in an arbitrary space-time ∇µγ
µ is distinct from zero, since

γµ = eµaγ̃
a, so in general ∇µe

µ
a is non-zero.

We can get the conserved charge from the Noether theorem.20 The Dirac current

is

Jµ = ψ̄γµψ = ψ†Bγµψ. (10)

To obtain the continuity equation

∇µJ
µ = 0 (11)

for the Dirac current, we take the covariant derivative of eq. (10). This gives

∇µJ
µ = (∇µψ̄)γ

µψ + ψ̄ (∇µγ
µ)ψ + ψ̄γµ∇µψ. (12)
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If we multiply the Dirac equation (5) by ψ̄ and its transpose conjugate (9) by ψ

and sum both equations, it follows that

∇µJ
µ = ψ†∇µ (Bγ

µ)ψ. (13)

If we require that the continuity equation (11) is fulfilled, i.e., that the number of

particles is conserved, then we need ∇µ (Bγ
µ) = 0, or equivalently

(∇µB)γµ = −B∇µγ
µ. (14)

At this point, we want to emphasize the consistency conditions for the continuity

equation (11). Some authors21 impose ∇µγ
ν = 0 while others22 impose ∇µB = 0.

These conditions are independent of each other, i.e., in general the condition of

Ref.21 is not fulfilled in Ref.22 and vice versa. In Refs.12,13 the authors conclude

that the condition ∇µ(Bγ
ν) = 0 is the most convenient because it is implied by

∇µγ
ν = 0 and ∇µB = 0.

In addition, we can note that the matrix B can be obtained for a general metric

(1) by solving the differential equation(
∇0(BN) +∇j(Bê

j
iN

i)
)
γ̃0 −∇j(Bê

j
i )γ̃

i = 0, (15)

which follows from eq. (14). Using the condition (14), it is possible to rewrite the

transpose conjugated Dirac equation (9) as

i
(
∇µψ̄

)
γµ + iψ̄∇µγ

µ + ψ̄Aµγ
µ +mψ̄ = 0. (16)

In order to find the conserved quantity resulting from the continuity equation, we

take an arbitrary surface S enclosing the volume V which contains the whole system.

Let kj be an orthonormal vector to S such that∫
V
∇µJ

µdV =

∫
V
∇0J

0dV +

∫
S
kjJ

jdS = 0. (17)

We assume that far away from the source, Jµ is negligible. Then, the surface integral

in eq. (17) vanishes, and we obtain

dQ

dt
=

∫
V
∇0J

0dV = 0, (18)

where Q =
∫
V J

0dV is the conserved charge and dV is the curved volume element

dV =
√
−gd4x. In QFT this charge is identified with the number of fermions or

with the electric charge of the system. In flat space-time we have B = γ̃0, so that

J0 = ψ†ψ = n represents the number density of fermion particles. In curved space-

time J0 (which is determined by γ0 and by the generalized gamma matrices) has a

different interpretation. The form of B given by eqs. (8) and (14) for each metric is

related to the gamma matrices and to the tetrad formalism.

With the Maxwell four-potential we can define the Faraday tensor

Fµν = ∇µAν −∇νAµ. (19)
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In the electromagnetic theory, the Faraday tensor Fµν satisfies the Maxwell field

equations

∇νF
νµ = JEµ, (20)

where JEµ is the four-electromagnetic current.

The problem of the Energy Balance for boson particles in a curved space-time

is studied in Ref.1, where the conserved 4-current associated with the KG equation

describing the evolution of a complex scalar field Φ(xµ) is defined. We can generalize

this idea by defining a new 4-current JKG
µ , changing the scalar field by a spinor and

the complex conjugate scalar field by the conjugate transpose of the spinor. Namely,

the KG current is redefined as

JKG
µ = i

q

2m2

[
ψ (∇µ − iqAµ)ψ

† − ψ† (∇µ + iqAµ)ψ
]
. (21)

3. Dirac Hydrodynamic Representation

Analogously to the hydrodynamic representation of the Schrödinger equation, which

was introduced by Madelung,23 we derive the hydrodynamic representation of the

Dirac equation. We carry out the following generalized Madelung transformation

for each component of the spinor ψ = ψ(xµ) as follows

ψ = exp(iθ)R, (22)

where R is a spinor and θ is a function. For the case where we consider a Dirac

electron-like fermion, θ = θ(xµ), the spinor ψ reads

ψ =


R1̇

R2̇

R3̇

R4̇

 exp(iθ) = R exp(iθ), (23)

where we use the notation µ̇, ν̇, ...= 1̇, · · · , 4̇ for the spinor indices such that

R =


R1̇

R2̇

R3̇

R4̇

 =


√
n1̇√
n2̇√
n3̇√
n4̇

 . (24)

In the appendix we show some exact solutions of the Dirac equation with this ansatz

in flat space-time. Here the dot indices represent elements of each component and

we do not use the sum convention when the indices are up and down. On the

other hand, we assume this notation Rµ̇ =
√
nµ̇ to (24), where nµ̇ is the number

density, represents the modulus of ψµ̇ and θ is its phase (both are real variables).

In general, nµ̇ is different for each component of the spinor. Note that the covariant

derivative of the spinor ψ in terms of its decomposition (23) is∇µ(ψν̇) = ∂µ(Rν̇e
iθ)+

Γα̇
µν̇(Rα̇e

iθ) = (∂µRν̇)e
iθ + i(∂µθ)Rν̇e

iθ + Γα̇
µν̇(Rα̇e

iθ), implying that ∇µθ = ∂µθ.
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Using the transformation (23) in eq. (5), the Dirac equation in terms of the

variables R and θ reads

exp(iθ)γµ
(
i∇µR− (∇µθ)R− qAµR−

m

4
γµR

)
= 0. (25)

To get the last term, we used the property of the gamma matrices that γµγ
µ = 4I,

where I is the 4×4 identity matrix. This property results from the anti-commutation

relation of the gamma matrices. Similarly, the continuity equation (11) with (10)

can be written with these new variables as(
∇µR

T
)
KµR+RTKµ (∇µR) = 0, (26)

where RT denotes the transpose of R and Kµ = Bγµ. Observe that Kµ is hermitian

(Kµ† = Kµ).

In conclusion, we have introduced the hydrodynamic representation of the Dirac

equation (25) and its conjugate transpose equation by making the change of vari-

ables from eq. (22).

4. Dirac-Euler Equation

As for the Klein-Gordon equation,1,2 we define the 4-velocity vµ by

mvµν̇ = ∇µSν̇ + qAµ. (27)

Here, S(xµ) is a phase with components Sα̇ = θν̇δ
ν̇
α̇−ων̇δ

ν̇
α̇t where ων̇ are constants

that can be related to the mass of the fermion particle by ων̇ = mc2/ℏ and θν̇ = θ.

In this manner we can write

∇µθα̇δ
α̇
ν̇ = (mvµα̇ − ωα̇δ

0
µ)δ

α̇
ν̇ − qAµ. (28)

We interpret nν̇ as the density number of fermions and vµν̇ as its velocity. Actually,

eq. (25) can be interpreted as the first integral of the Bernoulli equation for fermions

in an arbitrary space-time. To see this, we apply the operator iγµDµ = iγµ∇µ −
qγµAµ to the Dirac equation (5) written under the form iγµ∇µψ = qγµAµψ−mψ.
This yields

−γµγν
(
∇µ∇νψ + iq(∇µAν)ψ + iqAν(∇µψ) + iqAµ(∇νψ)− q2AµAνψ

)
−

m2ψ − γµ(∇µγ
ν)(∇νψ + iqAνψ) = 0. (29)

Using the relation (7) in eq. (29) we obtain

□Eψ +m2ψ +
i

2
qγµγνFµνψ + γµ(∇µγ

ν)(Dνψ) = 0, (30)

where we have defined the D’Alambertian operator in the presence of an electro-

magnetic field by □E = (∇µ + iqAµ)(∇µ + iqAµ) and the anti-symmetric Faraday

tensor by Fµν = ∇µAν − ∇νAµ. Eq. (30) is similar to the Klein-Gordon equation

with an electromagnetic source except that here ψ is a spinor instead of a complex

SF. The last term of eq. (30) contains the covariant derivative of γµ which vanishes
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in a flat space-time. According to Refs.1,2 if we apply the transformation (22) to

eq. (30), we could expect to obtain the continuity equation for the imaginary part

and the Bernoulli equation for the real part. However, in the case of the Dirac equa-

tion the four components are mixed by the presence of the four dimensional spinor

ψ. Hence, we obtain the following expression

i [2(mvµ − ωδµ0 )∇µR− qAµ + q∇µ(A
µR) +∇µ(mv

µ − ωδµ0 − qAµ)R] +(
m2vµv

µ + 2mωv0 +
ω2

N2
+m2

)
R−□R +

i

2
qγµγνFµνR+ γµ(∇µγ

ν)(i(mvν + ω∇νt)R+DνR) = 0. (31)

Here, we have defined □ = ∇ν∇ν and we have introduced the diagonal matrices

vµ = vµν̇δ
ν̇
α̇ and ω = ων̇δ

ν̇
α̇. For bosons, the real and imaginary parts separate

into two independent equations, namely, the continuity equation and the Bernoulli

equation.1,2 But in the spinor case, the last line of equation (31) mixes both the

imaginary and real parts and there is no natural separation into real and imaginary

parts. The system remains coupled.

5. Weyl Representation

The Dirac equation for 1/2-spin particles is associated with the SO(1, 3) symmetry

group. Nevertheless, we can introduce a new representation as in standard QFT,

since there exists a surjective homomorphism between the SO(1, 3) and SU(2) ⊗
SU(2) Lie groups.

In terms of the Pauli matrices the 4 × 4 gamma matrices γµ can be written as

two 2× 2 block matrices

γ0 = Nγ̃0 = N

(
0 I
I 0

)
, (32)

γj = êji(γ̃
i +N iγ̃0) =

(
0 −êji(σ̃i −N iI)

êji(σ̃
i +N iI) 0

)
, (33)

where σ̃i are the 2× 2 Pauli matrices in flat space-time and I is the 2× 2 identity

matrix. The γµ matrices satisfy
(
γ0
)†

= γ0 and
(
γj
)†

= −γj + 2N jγ0/N .

As we know, the special unitary group SU(2) is formed by the set of 2 × 2

complex matrices A, which satisfy det(A) = 1. Explicitly, we have

A =

(
a −b̄
b ā

)
, (34)

with det(A) = |a|2 + |b|2 = 1, where a and b are complex parameters. Equivalently,

we have the identity A† = A−1.

The Lie algebra su(2) associated to the SU(2) Lie group is given by the expo-

nential map

exp(su(2))→ SU(2). (35)
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For any element X of the Lie algebra, we have exp(X) exp(X)† = I, implying

that X + X† = 0. In what follows, we will indistinctly use exp(X) and eX as the

exponential map.

In the Weyl representation we can write a Dirac fermion as a four-spinor ψ made

of two spinors each of which having two components, for instance

ψ =

(
ψR

ψL

)
, (36)

where ψR and ψL are the right- and the left- handed Weyl spinors, respectively. If

we write the adjoint spinor ψ̄ and use the Weyl representation, it follows that

ψ̄ = ψ†B =
(
ψ†
R, ψ

†
L

)
B, (37)

where B is the matrix from eqs. (8) and (14). If we use the relation (8) it is straight-

forward to see that the matrix B must have the following form

B =

(
0 Bζ

Bζ 0

)
, (38)

where the 2×2 matrix Bζ is a diagonal matrix, Bζ = bI, with b = b(xµ). Therefore,

we get B = bγ̃0 and eq. (15) transforms into

∇0(Nb) +∇j(ê
j
iN

ib) = 0, (39)

∇j(ê
j
i b)σ̃

i = 0. (40)

Using the definition of the spinor and its adjoint we can write the Dirac quadricur-

rent Jµ from eq. (10) as

Jµ =
(
ψ†
R, ψ

†
L

)
Bγµ

(
ψR

ψL

)
, (41)

where the gamma matrices are defined by eqs. (32) and (33) and, in general, B is

given by the previously mentioned conditions. This yields

J0 = Nb(ψ†
RψR + ψ†

LψL) = Nbn, (42)

Jj = bêji(ψ
†
R(σ̃

i +N iI)ψR − ψ†
L(σ̃

i −N iI)ψL). (43)

In order to simplify the notation, we now define the vectors of 2 × 2 matrices

Sa = (I, σ̃j +N jI) and S̄a = (−I, σ̃j −N jI) in terms of the Pauli matrices. Sa and

S̄a are the (generalized) Pauli matrices in flat space-time. In terms of these new

definitions, the density currents read

Jj = bêji(ψ
†
RS

iψR − ψ†
LS̄

iψL)

= b(ψ†
Rσ

iψR − ψ†
Lσ̄

iψL), (44)

where we have defined the 2×2 Pauli matrices in a curved space-time by σµ = eµaSa
and σ̄µ = eµaS̄a. With this definition, the matrices γj read

γj =

(
0 −σ̄j

σj 0

)
. (45)
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Furthermore, observe that the σj matrices follow the same commutation relations as

the flat space-time Pauli matrices. This means that [σi, σ̄j ] = −êikê
j
l [σ̃

k, σ̃l]. For the

Weyl representation we have to obtain two equations for each Dirac fermion. Thus,

we need to redefine the covariant derivative ∇µ and the spinor affine connection

Γµ,
14,24 which can be written as ∇µ = ∂µ + Γµ and Γµ =

1

4
σ̄νσ

ν
;µ where σµ

;ν =

∂νσ
µ + Γµ

ανσ
α. Nevertheless, in this representation we need to introduce two other

notations due to the presence of σ̄µ. Let ∇̄µ and Γ̃µ be the bar covariant derivative

and the bar spinor affine connection, respectively, defined by ∇̄µ = ∂µ + Γ̃µ where

Γ̃µ =
1

4
σν σ̄

ν
;µ (we stress that we use the greek indices for denoting the objects in

curved space-time as the gamma and Pauli matrices).

We can now apply the Weyl representation to rewrite the Dirac equation (5) for

a spinor with four components as(
iσµ

(
∇̄µ + iqAµ

)
ψR −mψL

iσ̄µ (∇µ + iqAµ)ψL −mψR

)
=

(
0

0

)
. (46)

These are the Weyl equations for a spinor in a curved space-time coupled to an

electromagnetic field. If we apply the Weyl representation to the transpose conju-

gated Dirac equation (16), it is straightforward to obtain the Weyl equation for the

adjoint spinor (37). However, we shall not write the adjoint spinor equation explic-

itly because the results are analogous to the spinor equation as we have seen in the

previous sections.

If we set B = bγ̃0, the current density now reads

Jµ = b
(
ψ†
Rσ

µψR − ψ†
Lσ̄

µψL

)
. (47)

Explicitly, we have

J0 = Nbn, (48)

Jj = bêji

(
ψ†
Rσ̃

iψR − ψ†
Lσ̃

iψL +
N i

Nb2
J0

)
. (49)

On the other hand, the last line of eq. (31) can be obtained from the identities

γµγνFµνψ =

{
(2NNkF0k + iF̂ijϵ

ij
kσ̃

k)ψR

−(2NNkF0k − iF̂ijϵ
ij

kσ̃
k)ψL

, (50)

and using definition (45), we find that

γµ(∇µγ
ν)(Dνψ) =

{
−S̄aSb(∇̂aê

ν
b )(DνψR)

−SaS̄b(∇̂aê
ν
b )(DνψL)

=

{
(N(∇0N)− σ̄j(∇jN))(D0ψR) + (N(∇0σ

i)− σ̄j(∇jσ
i))(DiψR)

(N(∇0N) + σj(∇jN))(D0ψL)− (N(∇0σ̄
i)− σj(∇j σ̄

i))(DiψL)

=

{
(∇̂0N − S̄k(∇̂kN))(D0ψR) + (Sk∇̂0ê

i
k − S̄kSl∇̂k ê

i
l))(DiψR)

(∇̂0N + Sk(∇̂kN))(D0ψL)− (S̄k∇̂0ê
i
k − SkS̄l(∇̂k ê

i
l))(DiψL),

(51)
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where ϵijk is the usual Levi-Civita tensor, F̂ij = êliê
m
j Flm is the directional Maxwell

tensor F̂ij = (êli∇̂j − êlj∇̂i)Al, and ∇̂a = êαa∇α is the directional covariant deriva-

tive which defines the Cartan connection ∇̂cê
ν
b = Γa

bcê
ν
a. The Cartan connection

Γa
bc = êaν∇̂cê

ν
b determines the Cartan first fundamental form dêa + Γa

b ∧ êb for the

connections Γa
b = Γa

bdê
d with the property that Γab + Γba = 0, where Γab = ηadΓ

d
b .

6. Weyl Hydrodynamic Representation

We now have all the ingredients to propose a hydrodynamic representation for

the Weyl fermions, following the same procedure as the one developed for the

Schrödinger and KG equations in Refs.1,2.

We start to propose our Madelung transformation in the Weyl spinor, using the

exponential map, that is

Ψ =

(
ψR

ψL

)
=

(
RR

RL

)
eiθ. (52)

Since ψR and ψL are two spinors, we observe that RR and RL are two two-

dimensional vectors. The Weyl representation of the adjoint spinor Ψ̄ when B = bγ̃0

is

Ψ̄ = b
(
ψ†
R, ψ

†
L

)
γ̃0 =

(
R†

R, R
†
L

)
e−iθ. (53)

Since R is a real vector, the transposed conjugate is equal to the transposed, that

is R† = RT .

Using the Madelung transformation (52) in the Weyl equations (46) and applying

the Lie algebra and the Lie group, we can get the following expression(
−σµ

(
∇̄µθR

)
RR + iσµ

(
∇̄µRR

)
− qσµAµRR

−σ̄µ (∇µθL)RL + iσ̄µ (∇µRL)− qσ̄µAµRL

)
=

(
mRL

mRR

)
. (54)

These are the Weyl equations in curved space-time with the Madelung transforma-

tion. We can also apply the Madelung transformation (52) and (53) to the current

density (47), thereby obtaining

Jµ = b
(
RT

Rσ̄
µRR −RT

Lσ
µRL

)
. (55)

Its components are

J0 = Nb(RT
RRR +RT

LRL) = Nbn, (56)

Jj = b
(
êj3(n1̇ − n2̇ − n3̇ + n4̇) + 2êj1(

√
n1̇n2̇ −

√
n3̇n4̇) + êjiN

in
)
. (57)

We note that the zero component, where n =
∑4̇

ν̇=1̇ nν̇ is the density number of

fermions in the system, gives the number of both right- and left-handed particles.

We can write the following expressions |ψR|2 = ψ†
RψR = RT

RRR = nR and |ψL|2 =

ψ†
LψL = RT

LRL = nL for the right- and left-handed spinors, as in the Dirac case.

Thus, nR, nL are the right- and left- handed particle number and n = nR + nL is

the total density number.
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Furthermore, eq. (31) becomes

i [2(mvµR − ωRδ
µ
0 )∇µRR − qAµ + q∇µ(A

µRR) +∇µ(mv
µ
R − ωRδ

µ
0 − qAµ)RR] +(

m2vRµv
µ
R + 2mωRv

0
R +

ω2

N2
+m2

)
RR −□RR +

(2NNkF0k + iϵijkF̂ij σ̃
k)RR +

(N(∇0N)− σ̄j(∇jN))((mvR0 − ωR)RR +D0RR) +

(N(∇0σ
i)− σ̄j(∇jσ

i))(imvRiRR +DiRR) = 0.

(58)

A similar equation is obtained for the left-handed spinor RL with the substitution

R −→ L and S ←→ S̄ in eq. (58). Simplifying the first line in this equation for

ν̇ = 1, 2 corresponding to right-handed components, we get

i
m
√
nν̇

[
−ων̇

m
∇0nν̇ +∇µ(nν̇v

µ
ν̇ ) +

ων̇

m
□t
]
+

√
nν̇

[
m2vµRv

µ
ν̇ + 2mων̇v

0
ν̇ +

ω2
R

N2
+m2 −

□
√
nν̇√
nν̇

]
+

(2NNkF0k + iϵljkF̂lj σ̃
k)RR −

(∇̂aê
α
b )S̄aSb((mvRα − ων̇δ

0
α)RR +DαRR) = 0. (59)

The equation for the left-handed components ν̇ = 3, 4 is obtained by changing

RR −→ RL and S ←→ S̄. Here, we have introduced the two-dimensional vectors

vµ = (vRµ, vLµ) and ω = (ωR, ωL). Explicitly, they are given by

R =

(
RR

RL

)
=


R1̇

R2̇

R3̇

R4̇

 =


√
n1̇√
n2̇√
n3̇√
n4̇

 , (60)

vµ =

(
vRµ 0

0 vLµ

)
=


vµ1̇ 0 0 0

0 vµ2̇ 0 0

0 0 vµ3̇ 0

0 0 0 vµ4̇

 , (61)

ω =

(
ωR 0

0 ωL

)
=


ω1̇ 0 0 0

0 ω2̇ 0 0

0 0 ω3̇ 0

0 0 0 ω4̇

 . (62)

We now write the last two lines of eq. (59) explicitly and separate them into

imaginary and real parts, respectively. Using the Pauli representation of the σ̃j

matrices

σ̃1 =

(
0 1

1 0

)
, σ̃2 =

(
0 −i
i 0

)
, σ̃3 =

(
1 0

0 −1

)
, (63)
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we obtain for ν̇ = 1̇:

m
√
n1̇

[
−ω1̇

m
∇0n1̇ +∇µ(n1̇v

µ

1̇
) +

ω1̇

m
□t
]
=

F12
√
n1̇ + F23

√
n2̇ − 2Γa

21((mv̂a1̇ − ω1̇δ̂
0
a)
√
n1̇ + D̂a

√
n1̇) −

2(Γa
21N

1 − Γa
32N

3 + Γa
20 + Γa

32)((mv̂a2̇ − ω2̇δ̂
0
a)
√
n2̇ + D̂a

√
n2̇),

√
n1̇

[
m2vµ1̇v

µ

1̇
+ 2mω1̇v

0
1̇
+
ω2
1̇

N2
+m2 −

□
√
n1̇√
n1̇

]
=

2N(F01N
1 + F02N

2 + F03N
3)
√
n1̇ − F13

√
n2̇ +[

Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2) +

2Γa
31N

1 + 2Γa
32N

2 − Γa
00 + 2Γa

30

]
((mv̂a1̇ − ω1̇δ̂

0
a)
√
n1̇ + D̂a

√
n1̇) +

(−2Γa
21N

2 − 2Γa
31N

3 + 2Γa
10 + 2Γa

31)((mv̂a2̇ − ω2̇δ̂
0
a)
√
n2̇ + D̂a

√
n2̇), (64)

for ν̇ = 2̇:

m
√
n2̇

[
−ω2̇

m
∇0n2̇ +∇µ(n2̇v

µ

2̇
) +

ω2̇

m
□t
]
=

−F12
√
n2̇ + F23

√
n1̇ + 2Γa

21((mv̂a2̇ − ω2̇δ̂
0
a)
√
n2̇ + D̂a

√
n2̇) +

2(Γa
21N

1 − Γa
32N

3 + Γa
20 − Γa

32)(mv̂a1̇ − ω1̇δ̂
0
a)
√
n1̇ + D̂a

√
n1̇),

√
n2̇

[
m2vµ2̇v

µ

2̇
+ 2mω2̇v

0
2̇
+
ω2
2̇

N2
+m2 −

□
√
n2̇√
n2̇

]
=

2N(F01N
1 + F02N

2 + F03N
3)
√
n2̇ + F13

√
n1̇ +[

Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2 ) +

−2Γa
31N

1 − 2Γa
32N

2 − Γa
00 − 2Γa

30

]
((mv̂a2̇ − ω2̇δ̂

0
a)
√
n2̇ + D̂a

√
n2̇) +

(−2Γa
21N

2 − 2Γa
31N

3 + 2Γa
10 − 2Γa

31)((mv̂a1̇ − ω1̇δ̂
0
a)
√
n1̇ + D̂a

√
n1̇), (65)

for ν̇ = 3̇:

m
√
n3̇

[
−ω3̇

m
∇0n3̇ +∇µ(n3̇v

µ

3̇
) +

ω3̇

m
□t
]
=

F12
√
n3̇ + F23

√
n4̇ − 2Γa

21((mv̂a3̇ − ω3̇δ̂
0
a)
√
n3̇ + D̂a

√
n3̇) +

2(Γa
21N

1 − Γa
32N

3 + Γa
20 − Γa

32)((mv̂a4̇ − ω4̇δ̂
0
a)
√
n4̇ + D̂a

√
n4̇),

√
n3̇

[
m2vµ3̇v

µ

3̇
+ 2mω3̇v

0
3̇
+
ω2
3̇

N2
+m2 −

□
√
n3̇√
n3̇

]
=

2N(F01N
1 + F02N

2 + F03N
3)
√
n3̇ − F13

√
n4̇ +[

Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2) +

−2Γa
31N

1 − 2Γa
32N

2 − Γa
00 − 2Γa

30

]
((mv̂a3̇ − ω3̇δ̂

0
a)
√
n3̇ + D̂a

√
n3̇) +

(2Γa
21N

2 + 2Γa
31N

3 − 2Γa
10 + 2Γa

31)((mv̂a4̇ − ω4̇δ̂
0
a)
√
n4̇ + D̂a

√
n4̇), (66)
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and for ν̇ = 4̇:

m
√
n4̇

[
−ω4̇

m
∇0n4̇ +∇µ(n4̇v

µ

4̇
) +

ω4̇

m
□t
]
=

−F12
√
n4̇ + F23

√
n3̇ + 2Γa

21((mv̂a4̇ − ω4̇δ̂
0
a)
√
n4̇ + D̂a

√
n4̇) −

2(Γa
21N

1 − Γa
32N

3 + Γa
20 + Γa

32)((mv̂a3̇ − ω3̇δ̂
0
a)
√
n3̇ + D̂a

√
n3̇),

√
n4̇

[
m2vµ4̇v

µ

4̇
+ 2mω4̇v

0
4̇
+
ω2
4̇

N2
+m2 −

□
√
n4̇√
n4̇

]
=

2N(F01N
1 + F02N

2 + F03N
3)
√
n4̇ + F13

√
n3̇ +[

Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2) +

2Γa
31N

1 + 2Γa
32N

2 − Γa
00 + 2Γa

30

]
((mv̂a4̇ − ω4̇δ̂

0
a)
√
n4̇ + D̂a

√
n4̇) +

(2Γa
21N

2 + 2Γa
31N

3 − 2Γa
10 − 2Γa

31)((mv̂a3̇ − ω3̇δ̂
0
a)
√
n3̇ + D̂a

√
n3̇), (67)

where we have used that Γab + Γba = 0 and defined the directional quantities

vaν̇ = vRαν̇ ê
α
a , δ̂

0
a = δ0αê

α
a = Nδ0a and D̂a = êαaDα.

The first line of eq. (59) represents the continuity equation of the fermionic fluid.

The second line is the Bernoulli equation. In this respect, we note that eq. (25) is

the first integral of this equation. Finally, the last three lines of eq. (59) are the

source of the fermionic fluid, something that is not present in the case of bosons.

This is because the Dirac equation was introduced in Ref.25 in order to eliminate the

negative probability problem of the KG equation. As a result, the Dirac equation

involves only first derivatives while the KG equation is a second order equation.

Observe that the structure of equations (64)-(67) is

m
√
nν̇

[
−ων̇

m
∇0nν̇ +∇µ(nν̇v

µ
ν̇ ) +

ων̇

m
□t
]
=

e1ν̇F12
√
nν̇ + F23

√
nν̈ − 2e1ν̇Γ

a
21((mv̂aν̇ − ων̇ δ̂

0
a)
√
nν̇ + D̂a

√
nν̇) −

2(Γa
21N

1 − Γa
32N

3 + Γa
20 + e2ν̇Γ

a
32)((mv̂aν̈ − ων̈ δ̂

0
a)
√
nν̈ + D̂a

√
nν̈),

√
nν̇

[
m2vµν̇v

µ
ν̇ + 2mων̇v

0
ν̇ +

ω2
ν̇

N2
+m2 −

□
√
nν̇√
nν̇

]
=

2N(F01N
1 + F02N

2 + F03N
3)
√
nν̇ − e1ν̇F13

√
nν̈ +[

Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2) +

2e2ν̇(Γ
a
31N

1 + Γa
32N

2 + Γa
30)− Γa

00

]
((mv̂aν̇ − ων̇ δ̂

0
a)
√
nν̇ + D̂a

√
nν̇) +

(−2e3ν̇(Γa
21N

2 + Γa
31N

3 − Γa
10) + 2e1ν̇Γ

a
31)((mv̂aν̈ − ων̈ δ̂

0
a)
√
nν̈ + D̂a

√
nν̈), (68)

where the coefficients eiν̇ are ±1 with e1ν̇ = (+,−,+,−), e2ν̇ = (+,−,+,−) and

e3ν̇ = (+,+,−,−), and the sub-index ν̈ is the conjugate of the sub-index ν̇ such

that 1̈ = 2̇, 2̈ = 1̇, 3̈ = 4̇ and 4̈ = 3̇.
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7. Energy Balance

We can also write equation (30) as a Schrödinger-like equation. If we perform the

transformation ψ = Ψeiω0t, where Ψ is a four spinor that depends on all the variables

xµ, equation (30) becomes

i∇0Ψ− 1

2ω0
□EΨ+

m2

2ω0
Ψ+

(
− ω0

N2
− 2qA0 + i□t

)
Ψ +

1

2ω0

(
2NNkF0k + iF̂ijϵ

ij
kσ̃

k 0

0 −2NNkF0k + iF̂ijϵ
ij

kσ̃
k

)
Ψ −

1

2ω0

(
S̄aSb 0

0 SaS̄b

)
Γd
ba(D̂dΨ+ iω0Nδ

0
dΨ) = 0. (69)

Equation (69) is the generalization of the Schrödinger equation for fermions with

electromagnetic field interaction in an arbitrary space-time.

Finally, from equation (59) we can identify the different energy contributions

to the Fermi gas, and obtain an energy balance equation for fermions analogous to

the one obtained for bosons in Refs.1,2. In order to simplify the notations, we can

re-write equation (59) in terms of the ν̇ coefficients with the understanding that the

subindex R refers to each component R = 1̇, 2̇ individually. We get

i

[
−ων̇∇0 ln(nν̇) +

m∇µ(nν̇v
µ
ν̇ )

nν̇
+
ων̇

nν̇
□t

]
+

2m2

(
Kν̇ +

1

m
ων̇v

0
ν̇ +

1

2
UN
ν̇ + UQ

ν̇

)
+ Eν̇ + US

ν̇ = 0. (70)

This equation is valid for right handed fermions. The result is the same for left

handed fermions changing RR −→ RL in the first line, and S ←→ S̄ in the second

line.

The first line in eq. (70) describes the free density evolution of the fermions,

while the contribution of the different energy terms appears in the second line. The

first one is the kinetic energy Kν̇ defined as

Kν̇ =
1

2
vν̇µv

µ
ν̇ . (71)

The lapse potential UN
ν̇ is given by

UN
ν̇ =

ω2
ν̇

m2

1

N2
+ 1. (72)

It represents the energy contribution due to the chosen lapse function N . The quan-

tum potential UQ
ν̇ is defined as

UQ
ν̇ = − 1

2m2

□
√
nν̇√
nν̇

. (73)
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The contribution of the electromagnetic interaction Eν̇ is given by

Eν̇ = (2NNkF0k + iϵljkF̂lj σ̃
k)|ν̇ ,

= 2N(F01N
1 + F02N

2 + F03N
3)− e1ν̇F13

√
nν̈
nν̇

+ i

(
e1ν̇F12 + F23

√
nν̈
nν̇

)
.

(74)

It depends on the Faraday tensor, shift vector and lapse function that are related

to the Pauli matrices. This relationship is due to the interaction between the elec-

tromagnetic field and the fermionic spin. Finally, the potential US
ν̇ describes the

interaction between the spin and the geometry of space-time. It is given by

US
ν̇ = −

(
(mv̂Rd − ων̇ δ̂

0
d) +

D̂α
√
nν̇√

nν̇

)
Γd
baS̄aSb|ν̇ ,

=
[
Γa
11(1− (N1)2) + Γa

22(1− (N2)2) + Γa
33(1− (N3)2)

+ 2e2ν̇(Γ
a
31N

1 + Γa
32N

2 + Γa
30)− Γa

00

](
(mv̂aν̇ − ων̇ δ̂

0
a) +

D̂a
√
nν̇√

nν̇

)

+(−2e3ν̇(Γa
21N

2 + Γa
31N

3 − Γa
10) + 2e1ν̇Γ

a
31)

(
(mv̂aν̈ − ων̈ δ̂

0
a)

√
nν̈
nν̇

+
D̂a
√
nν̈√

nν̇

)

+ i

[
−2e1ν̇Γa

21

(
(mv̂aν̇ − ων̇ δ̂

0
a) +

D̂a
√
nν̇√

nν̇

)

− 2(Γa
21N

1 − Γa
32N

3 + Γa
20 + e2ν̇Γ

a
32)

(
(mv̂aν̈ − ων̈ δ̂

0
a)

√
nν̈
nν̇

+
D̂a
√
nν̈√

nν̇

)]
(75)

for ν̇ = 1̇, 2̇, and by making the substitution S←→ S̄ for ν̇ = 3̇, 4̇. In the foregoing

equations, the notation |ν̇ means that we have to evaluate the quantity at the

corresponding ν̇. Note that US
ν̇ disappears if we assume a flat space-time or if we

consider particles without spin. Furthermore, US
ν̇ is constructed with the generalized

gamma matrices (45), which are related to the spin (the Pauli matrices) and to the

space-time geometry (tetrads).

8. Conclusions

The main difference between the hydrodynamic representation of bosons1,2 and

fermions concerns the form of the Bernoulli equation. For bosons, after making the

Madelung transformation, we can separate the KG equation into real and imaginary

parts. By contrast, for fermion particles we have to work with the complete equations

of motion because the real and imaginary parts cannot be separated easily. This is

related to the fact that the gamma matrices are a representation of the SO(1, 3)

group.
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The spin is a fundamental outcome of the Dirac equation25 which combines both

elements of special relativity and quantum mechanics and was introduced to solve

the problem of negative probability present in the KG equation – first proposed

as a relativistic generalization of the Schrödinger equation. Here, we observe that

the general relativistic Dirac equation involves an additional contribution due to

geometry and spin through the generalized gamma and Pauli matrices. These terms

arise from endowing a quantum field with a curvature (geometry) given by a metric

in General Relativity. Such a contribution is absent in a flat space-time and in a

system without spin as for a scalar field.

With this work we open the possibility of studying in detail the behavior of

fermions in different situations (such as massive stars or dark matter halos harboring

a central black hole) where general relativity effects may be important. We solved

the problem of energy balance for both bosons and fermions. In this manner, we can

compare the result of the hydrodynamic representation for classical and quantum

fluids in the various geometries mentioned above.
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Appendix A. Solutions to the Dirac equation in flat space-time

Equation (5) in flat space-time, using the Pauli matrices (63), reads



∂
∂tψy − ∂

∂xψz + i ∂
∂yψz − ∂

∂zψy −mψt

∂
∂tψz − ∂

∂xψy − i ∂
∂yψy +

∂
∂zψz −mψx

∂
∂tψt +

∂
∂xψx − i ∂

∂yψx + ∂
∂zψt −mψy

∂
∂tψx + ∂

∂xψt + i ∂
∂yψt − ∂

∂zψx −mψz

 = 0, (A.1)

where we have defined the spinor as ψ = (ψµ̇) = (ψx, ψy, ψz, ψt)
T . In order to find

an exact solution of the previous equation, we use the ansatz ψµ̇ = R0µ̇ exp(i(x0x+

y0y + z0z + t0t)), where x0 · · · t0 and R0µ̇ are constants. Here we have the simplest

solutions of the Dirac equation where the exponential is the same for all components.
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We obtain four linear equations

iR0zζ
∗
0 + iR0yη0 +mR0t = 0,

iR0yζ0 − iR0zξ0 +mR0x = 0,

R0xζ
∗
0 +R0tξ0 + imR0y = 0,

R0tζ0 −R0xη0 + imR0z = 0, (A.2)

where ζ0 = x0 + iy0, η0 = z0 − t0, and ξ0 = z0 + t0. The solution of these equations

is

R0t = −
1

m
(iR0yη0 + iR0zζ0),

R0x =
1

m
(iR0zξ0 − iR0yζ

∗
0 ), (A.3)

where x20 + y20 + z20 − t20 = m2.

Now we use the ansatz ψµ = R0µ exp(iθ), where θ is an arbitrary function of

the coordinates. Substituting this ansatz into (A.1) we obtain

iR0zZ
∗
0 + iR0yE0 +mR0t = 0,

iR0yZ0 − iR0zF0 +mR0x = 0,

R0xZ
∗
0 +R0tF0 + imR0y = 0,

R0tZ0 −R0xE0 + imR0z = 0, (A.4)

where Z0 = θ,x+ iθ,y, E0 = θ,z−θ,t, and F0 = θ,z+θ,t. The solution of the previous

system of differential equations is

θ = F (X)− it

+
m

2R0tR0z + 2R0xR0y

(
iζ∗0 (R

2
0x −R2

0z)− iζ0(R2
0y −R2

0t)
)
, (A.5)

where F (X) is an arbitrary function of

X =
R0t(−ζR0y − ζ∗R0x + ξR0y − ηR0z)

2R0tR0z + 2R0xR0y
. (A.6)
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