Chapter 12. Fast Fourier Transform
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A very large class of important computational problems falls under the genera
rubric of “Fourier transform methods” or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we hav
problems for which the Fourier transform (or the related “power spectrum”) is itself
of intrinsic interest. These two kinds of problems share a common methodology.

Largely for historical reasons the literature on Fourier and spectral methods ha
been disjoint from the literature on “classical” numerical analysis. Nowadays there
is no justification for such a split. Fourier methods are commonplace in research a
we shall not treat them as specialized or arcane. At the same time, we realize th
many computer users have had relatively less experience with this field than with, sa
differential equations or numerical integration. Therefore our summary of analytical
results will be more complete. Numerical algorithms, per se, bedihar?. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either intitme domain, by the values of
some quantity: as a function of time, e.g.,h(t), or else in theérequency domain,
where the process is specified by giving its amplitude(generally a complex
number indicating phase also) as a function of frequeficyhat is H(f), with
—oo < f < oo. For many purposes it is useful to think ieft) and H (f) as being
two differentrepresentations of the same function. One goes back and forth between
these two representations by means ofRberier transform equations,
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If ¢ is measured in seconds, thémn equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units too. If
h is a function of position: (in meters),H will be a function of inverse wavelength
(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to usiaggular frequency w, which is given inradians per
sec. The relation betweenand f, H(w) andH(f) is

w=2nf H(w) = [H(f)]j—y/2n (12.0.2
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and equation (12.0.1) looks like this

H(w) = / h h(t)e™tdt
R (12.0.3

h(t) = % [ H(w)e— ™! dw

=

g

We were raised on the-convention, but we changed! There are fewer factors of %
27 to remember if you use thé-convention, especially when we get to discretely 3
sampled data ir§12.1. S
From equation (12.0.1) it is evident at once that Fourier transformation is a g
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linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same consta
times the transform of the function.

In the time domain, functiok(t) may happen to have one or more special
symmetries It might bepurely real or purely imaginary or it might be even,
h(t) = h(—t), orodd, h(t) = —h(—t). Inthe frequency domain, these symmetries
lead to relationships betweeki(f) and H(—f). The following table gives the
correspondence between symmetries in the two domains:

If... then. .

h(t) is real H(—f) = [H)

h(t) is imaginary H(~f)=—[H(f)*

h(t) is even H(—-f)=H(f) I[i.e.,H(f)Iiseven]
h(t) is odd H(-f)=—-H(f) [i.e., H(f)Iis odd]
h(t) is real and even H(f)is reaI and even

h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even  H(f) is imaginary and even

h(t) isimaginary and odd  H(f) is real and odd

oLBWINN JapJo o] "panqiyoid Apouis si ‘4emndwod Janias Aue 01 (auo siyl Buipnjour) sajiy ajqepeal

@AIBSISNOJ0BIIP O] [lEWS PUSS 10 ‘(AJUO ©OLBWY ULON) £21/-2.8-008-T

13

In subsequent sections we shall see how to use these symmetries to increa
computational efficiency.

8
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Here are some other elementary properties of the Fourier transform. (We'll us
the “«=-" symbol to indicate transform pairs.) If

h(t) <= H(f)

is such a pair, then other transform pairs are
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h(at) <= |1|H(f) “time scaling” (12.0.94

a
%h(%) <~ H(bf) “frequency scaling”  (12.0.5
h(t —to) <= H(f) e*™/t  “time shifting” (12.0.6

h(t) e 2ot — H(f — fo) “frequency shifting”  (12.0.7

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD
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With two functionsh(t) andg(t), and their corresponding Fourier transforms
H(f)andG(f), we can form two combinations of special interest. Thevolution
of the two functions, denoted x h, is defined by

gxh= /OO g(T)h(t — 1) dr (12.0.9

— 00

Note thatg x h is a function in the time domain and that h = h * g. It turns out
that the functiory x h is one member of a simple transform pair

gxh<= G(f)H(f) “Convolution Theorem” (12.0.9

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.
Thecorrelation of two functions, denoted Cdfy, %), is defined by

Corr(g, h) = /OO gt +t)h(r) dr (12.0.10

— 00

The correlation is a function a@f which is called theéag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr(g, h) < G(f)H*(f) “Correlation Theorem” (12.0.11

[More generally, the second member of the paf?{g) H (— f), but we are restricting
ourselvesto the usual case in whicandh are real functions, so we take the liberty of
settingH (— f) = H*(f).] This result shows that multiplying the Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of a function with itself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) < |G(f)I “Wiener-Khinchin Theorem” (12.0.12

The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is knowPaseval’s theorem:

oo

Total Power= /_OO (1)) dt:/ HP)I? df (12.0.13

— 00

Frequently one wants to know “how much power” is contained in the frequency
interval betweenf and f + df. In such circumstances one does not usually
distinguish between positive and negatjyebut rather regardg as varying from 0
(“zero frequency” or D.C.) te+oo. In such cases, one defines thre-sided power
spectral density (PSD) of the functionh as

Pu(f) = [H()P +H(-F)F  0<f<oo (12.0.14

so that the total power is just the integral®f( f) from f = 0to f = co. When the
functionh(t) is real, then the two terms in (12.0.14) are equaPg6f) = 2 | H (f)|°.
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Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, ().

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are called two-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will always use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the function h(t) goes endlessly from —oo < t < oo, then its total power
and power spectral density will, in general, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function A(¢), computing its PSD [that is, the PSD
of afunction that equals 4(t) in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signal h(t).

You might well worry about how the PSD-per-unit-time, which is a function of
frequency f, converges as one evaluatesit using longer and longer stretches of data.
Thisinteresting questionisthe content of the subject of “ power spectrum estimation,”
and will be considered below in §13.4-513.7. A crude answer for now is. The
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500 Chapter 12.  Fast Fourier Transform

PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean sguare amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, alist of measurements of h(¢;) for adiscrete set of ¢;'s. The profound
implications of this seemingly unimportant fact are the subject of the next section.
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12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(¢) is sampled (i.e, its vaue is
recorded) at evenly spaced intervalsintime. Let A denote thetimeinterval between
consecutive samples, so that the sequence of sampled values is

hp=h(nA)  n=..,-3,-2,-1,0,1,2,3,... (12.1.1)

The reciprocal of the timeinterval A is caled the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency f., called the
Nyquist critical frequency, given by

1
fe= 5A (12.1.2)
If asine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency isimportant for two related, but distinct, reasons.

Oneis good news, and the other bad news. First the good news. It is the remarkable
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