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Outline

What is wrong with the ADM form of equations?

Analogy: rewriting E&M equations

Hyperbolic formulations

BSSN formulation

Next lectures (tentative plan)

Harmonic formulations (?)

Initial data (August 3rd, 17th and 31st)
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ADM Formalism

Adopt the point of view of the Cauchy Problem: (Classical) 4D gravitational field is the
time history of the geometry of a spacelike 3-hypersurface.

To construct solutions, solve the initial-value problem, and integrate the dynamical
eqns. along the prescribed coordinate system.

If matter is present, its initial value/evolution eqns. must also be taken into account.

3+1 line element is written as

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt)

where γij is the 3-metric of the hypersurface and α and βi are the lapse and shift
functions respectively.

Define the Extrinsic curvature, along the normal vector, nµ = −α∇µt,

Kij = −
1

2
Lnγij

Take {γij , Kij} as dynamical variables.

Via various projections, Einstein field eqns (in 4D) becomes 4 elliptic (constraint)
equations plus 12 hyperbolic (evolution) equations.
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ADM Formalism in vacuum

Constraint equations

R + K2 − KijKij = 0

Dj(K
ij − γijK) = 0

where R is 3-dim Ricci scalar, Di the covariant derivatives associated with the 3-dim
metric, γij , and K is trace of Kij .

Evolution equations

(∂t −Lβ)γij = −2αKij

(∂t −Lβ)Kij = −DiDjα + α(Rij + KKij − 2KikKk
j)

Free evolution. (Cf. (partially) constrained evol.)

Solve constraints at t = 0.

Solve evolution equations for t > 0. Monitor (violations on) constraint equations to
assess the quality of simulations.
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ADM: Why is it not working?

Most popular formalism used in 3D NR simulations in the ’70 through ’90s.

Note that there are a number of exmaples in lower-D, e.g., 1D (spherical symm) or 2D
(axi-symm) where the ADM form of equatoins has been successfully used especially
when (partially) constrained evolution strategy was used.

However, there haven’t been serious attempts made with constrained evolutions in 3D
yet. Probably this is due to the fact that computational cost (at the moment) is too
expensive for 3D simulations.

When used in the context of free evolutions, 3D simulations using the ADM form of
equations frequently crashed the code. One asks if the instability due to numerical
issues in the code or some inherent problems at the continuum level?

Need to obtain long term stable simulations forced people to look for alternative
formulations of Einstein equations. There are several directions taken.
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Fully first order hyperbolic formulations:

Attractive in the sense that various mathematical theorems on well-posedness,
existence, and uniqueness has been studied.

KST system, etc. but there is no successful simulations to date in 3D that match
the success of BSSN and GH formualtions.

Modifications on the ADM system.

BSSN formulations
Promote e.g. conformal connection function, γ̃ij Γ̃k

ij , to an independent
variables and use momentum constraint equation to achieve stability.
Separating out conformal and traceless components fo the ADM system.

Adding constraint enforcing terms into the ADM eqn.

Partially constrained evolutions.

Fully second order system

First used in the context of generalized harmonic formulation.
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ADM system: linear analysis

To see how the ADM system of equations could manifest instability, let us carry out
linear perturbative analysis.

Starting from the ADM system of equations (in vacuum),

(∂t −Lβ)γij = −2αKij

(∂t −Lβ)Kij = −DiDjα + α(Rij + KKij − 2KikKk
j)

R + K2 − KijKij = 0

Dj(K
ij − γijK) = 0

To make the analysis as simple as possible, let us take geodesic slicing,
{α = 1, βi = 0}. Then equations become

∂tγij = −2Kij

∂tKij = Rij + KKij − 2KikKk
j

R + K2 − KijKij = 0

Dj(K
ij − γijK) = 0
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Consider a linear perturbation of flat space,

γij = δij + hij

with hij << 1.

Then with the quadratic and higher order terms all gone, the equations reduce to

∂thij = −2Kij

∂tKij = R
(1)
ij

R(1) = 0

∂j(K
ij − δijK) = 0

where

R
(1)
ij = −

1

2
(∇2

flathij − ∂jΓj − ∂jΓi)

Γi ≡ ∂khik −
1

2
∂ih, h ≡ δijhij

Pardon sloppiness with indices, which is ok in linear order.
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HCE:

R(1) = δijR
(1)
ij = −

1

2
(∇2

flath − 2∂iΓi) = −
1

2
(∂i∂ih − 2∂i(∂khik −

1

2
∂ih))

= −∂i∂ih + ∂i∂khik = −∂i(∂ih − ∂khik)

Define fi ≡ ∂khik − ∂ih. HCE becomes

∂ifi = 0

MCE:

∂j(K
ij − δijK) = ∂j(K

ij − δijδlkKlk) = ∂j(−
1

2
∂th

ij + δij 1

2
∂th)

= −
1

2
∂t(∂jhij − ∂ih) = −

1

2
∂tfi (1)

Therefore, constraints are

∂ifi = 0

∂tfi = 0
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Fourier analysis: Take the following form of a solution, (plane waves moving in the
x-direction)

hij = ĥijei(ωt−kx)

Kij = K̂ijei(ωt−kx)

Then we have, from ḣij eqn, K̂ij = − iω
2

ĥij .

Substituting the above equation to the K̇ij eqn, we obtain,

iωK̂ijei(ωt−kx) = R
(1)
ij

ω2

2
ĥijei(ωt−kx) = R

(1)
ij

= −
1

2
(∂l∂lhij − ∂iΓj − ∂jΓi)

=
1

2
(k2ĥijei(ωt−kx) + ∂iΓj + ∂jΓi)

=
1

2
(k2ĥijei(ωt−kx) + ∂i∂khjk + ∂j∂khik − ∂i∂jh)
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For the previous eqn, take, for example, {i = x, j = x} component.

ω2

2
ĥxxei(ωt−kx) =

1

2
(k2ĥxxei(ωt−kx) + ∂x∂khxk + ∂x∂khxk − ∂x∂xh)

=
1

2
(k2ĥxxei(ωt−kx) + 2∂2

xhxx − ∂2
xhxx − ∂2

xhyy − ∂2
xhzz)

=
1

2
(k2ĥyyei(ωt−kx) + k2ĥzzei(ωt−kx))

ω2ĥxx = k2(ĥyy + ĥzz)

We can calculate other terms in a similar way. We end up with

ω2
ĥ = k2M ĥ

where

ĥ ≡ (ĥxx, ĥxy , ĥxz , ĥyy , ĥyz , ĥzz)T

and
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the matrix M =

0

B

B

B

B

B

B

B

B

B

B

@

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

Calculate the eigenvalues, λ, and eigenvectors, v.

For λ = 0, corresponding eigenvectors

v1 = (1, 0, 0, 0, 0, 0)

v2 = (0, 0, 0, 1, 0, 0)

v3 = (0, 0, 0, 0, 1, 0)

For λ = 1, corresponding eigenvectors

v4 = (2, 1, 1, 0, 0, 0)

v5 = (0, 1,−1, 0, 0, 0)

v6 = (0, 0, 0, 0, 0, 1) Lectures on NR #3, JUL 20, 2007 – p. 12/29



What do these solutions mean? Since λ = ω2

k2
, λ = 1 corresponds to the solutions

that travel with speed of light and λ = 0 corresponds to the solutions that travel with
zero speed.

The presence of the zero speed modes (v1,v2,v3) is troublesome. Take v1. You can

easily check that all the R
(1)
ij components are zero. This means that extrinsic curvature

is constant, which also in turn means that metric components grow linearly. This
growth is likely lead to an instability. This is already true at the continuum level.

At the discrete level, zero speed modes are also problematic because numerical errors
once generated can pile up in place growing without limit, which can lead to
instabilities.
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Some concepts: briefly

Well-posed-ness: Quoting Gustafsson, Kreiss, & Oliger,
“Simply stated, the concept of well-posedness means that a well-posed problem
should have a solution, that this solution should be unique, and that it should depend
continuously on the problem’s (initial) data.”

For well-posed evolution systems, the growth of any linear perturbation δu(x, t) of a
(background) solution u0(x, t) can be bounded as

||δu(·, t)|| ≤ f(t)||δu(·, 0)|| (2)

where f(t) depends on u0 but not on δu(x, 0). In ill-posed system no such bound f(t)

exists. Solution depends continously on the initial data for well-posed systems.

There are different ways to define well-posed-ness. Often expressed as a unique
smooth solution that satisfies the estimate

||u(·, t)|| ≤ Keα(t−t0)||u(·, t0)|| (3)

In other words, solution u(x, t) is bounded by the above estimate where K and α do
not depend on initial data at t = t0.
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Ill-posed problem:

ut = −uxx

For initial data

u(x, 0) = eiωxf̂(x)

the solution is given by

u(x, t) = eiωx+ω2tf̂(x)

One cannot find α that is independent of ω.

In numerical simluations, we need well-posedness in order to prevent uncontrolable
growth of numerical errors. If the system of equations being used is not well-posed at
a continuum level, there is no way that the discretized system would magically fix the
instability problem.
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Hyperbolicity refers to algebraic conditions on the principal part of the equations which
imply well posedness for the Cauchy problem.

There are several different notions of hyperbolicity. Regarding quasilinear systems,
strong hyperbolicity is one of the more general notions of hyperbolicity that implies well
posedness of the Cauchy problem.

In the context of first-order systems with constant coefficients in one-space dim, let

A =

0

B

B

B

B

B

@

a11 ... a1m

a21 ... a2m

... ... ...

am1 ... amm

1

C

C

C

C

C

A

and u =

0

B

B

B

B

B

@

u1(x, t)

u2(x, t)

...

um(x, t)

1

C

C

C

C

C

A

Consider the initial value problem

∂tu = A∂xu

u(x, 0) = f(x)

Theorem: Well-posed iff the eigenvalues, λ of A are real and there is a complete
system of eigenvectors.
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Definition: Strongly hyperbolic if the eigenvalues are real and there exist a complete
system of eigenvectors; weakly hyperbolic if the eigenvalues are real.

Roughly, strong hyperbolicity ↔ well posedness.

Weakly hyperbolic system is ill-posed.

Note that well-posedness and hyperbolicity is necessary condition, not sufficient
condition for a stable numerical evolution. But certainly helps(!) to start with system of
equations that are well-posed.
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Is ADM system of equations well-posed?

Two theorems by Nagy, Ortiz, and Reula, roughly:

Theorem 1: For a fixed (densitized) lapse and shift, ADM system of equations is
weakly hyperbolic, i.e., ill-posed.

Theorem 2: For a fixed (densitized) lapse and shift, BSSN-type system of
equations, where (1) new variables, fµ ≡ γνσΓµ

ν σ are introduced and (2)
Momentum constraint equations are used in the evolution equatons of fµ, is
strongly hyperbolic, i.e., well-posed.

Q ≡ γbα, γ ≡ det(γij), b is constant.

Detailed proofs are involved and go beyond the scope of thie series.

However, note in general, dyanmic lapse and shift conditions are used in real-life
simulations.

Also, well-posedness does not in itself automatically gaurantee well-behaved
numerical simulations.
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Analogy with E&M

To help us to see how one might go about to find a system of equations that is
better-behaved, let us go back to the E&M case.

Remember Maxwell’s equations.

∂tAi = −Ei − DiΦ

∂tEi = −DjDjAi + DiD
jAj − 4πJi

DiEi = 4πρe

Take time derivative of the first equation above, we get

− ∂2
t Ai + DjDjAi − DiD

jAj = Di∂tΦ − 4πJi.

Note that the mixed derivative term, DiD
jAj prevents write the equation in a

manifestly hyperbolic form.

How to eliminate the mixed derivative term?
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First way to eliminate the mixed derivative term is by choosing a gauge condition
(Lorentz gauge).

∂tΦ = −DiAi

However, in GR, fixing the gauge a priori is not in general a good idea because one
doesn’t know if that fixed gauge is optimal for the problem at hand. It is more desirable
to have a freedom to choose gauge conditions that are dynamics-dependent.

Second way is bring Maxwell’s equation into an explicitly hyperbolic form by taking the
time derivative of Ė equation instead of Ȧ. We get,

∂2
t Ei = DiD

j(−Ej − DjΦ) − DjDj(−Ei − DiΦ) − ∂tJi

Using the constraint equations, we obtain,

− ∂2
t Ei + DjDjEi = ∂tJi + 4πDiρe

Some difficulties might arise in the situations where matter terms are not so smooth.

Lectures on NR #3, JUL 20, 2007 – p. 20/29



Third way to re-writing the Maxwell’s equation is by introducing an auxiliary variable

Γ = DiAi.

Then Ė equation becomes

∂tEi = −DjDjAi + DiΓ − 4πJi

We should consider evolution equation for Γ as well.

∂tΓ = ∂tD
iAi = Di∂tAi = −DiEi − DiD

iΦ = −DiD
iΦ − 4πρe
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First Order Hyperbolic Formulations

Back to GR and discussion on the ADM system of equations.

Ill-posedness of ADM system of equations (at least in the context where it has been
studied) combined with the painful empirical observations of many that using the ADM
system of evolutions in free evolution strategy produced countless code crashes and
unstable evolutions, forced people to look for better formulations.

Many people started to look at the fully first order formulations and suggested a
number of either strongly or symmetric hyperbolic first-order reduction of the ADM
system that assure well-posedness of the systems.
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KST Formalism

Kidder, Scheel & Teukolsky, 2001 performed systematic investigation of impact of
constraint addition, definition of dyamical variables on hyperbolicity.

Introduce new variables:

dkij ≡ ∂kγij

This implies we get additional constraint equations to satisfy:

Ckij ≡ dkij − ∂kγij = 0

Taking derivatives of dkij ,

Cklij ≡ ∂[kdl]ij = 0

which implies

∂k∂lγij = ∂(kdl)ij (4)

which is used to replace second derivatives of 3-metric.
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Basic evolution equations become:

(∂t − L)γij ≡ −2αKij

(∂t −L)dkij ≡ −2α∂kKij − 2Kij∂kα

(∂t − L)Kij ≡ F [∂adbcd, ∂a∂α, ∂aα, ...]

Densitized lapse, Q, is introduced

Q ≡ ln(αγ−σ)

Starting from the above equations, KST considered two kinds of systems.

System 1: Adding multiples of constraints.

C ≡
1

2
(R − KijKij − K2) = 0

Ci ≡ ∇aKa
i −∇iK = 0
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New evolution system: (4 free parameters {γ, ζ, η, χ})

(∂t −Lβ)Kij = (...) + γαγijC + ζαγmnCm(ij)n

(∂t −Lβ)dkij = (...) + ηαγk(iCj) + χαγijCk

KST did hyperbolicity analysis computing characteristic speeds, eigenvectors of
principal part of evolution system as function of {σ, γ, ζ, η, χ}.

Found two cases that make the system strongly hyperbolic. In both cases, σ = 1
2

.

System 2: Start with System 1, but redefine dynamical variables Kij , dkij using 7
additional parameters {â, b̂, ĉ, d̂, ê, k̂, ẑ}.

Define generalized extrinsic curvature: Pij

Pij ≡ Kij + ẑγijK

Define generalized derivatives of metric: Mkij

Mkij ≡
1

2
{k̂dkij + êd(ij)k + γij [âdk + b̂bk] + γk(i[ĉdj) + d̂bj)]}

where dk ≡ γabdkab, bk ≡ γabdabk, Mk ≡ γabMKab, and Wk ≡ γabMabk.Lectures on NR #3, JUL 20, 2007 – p. 25/29



The redefinitions do change eigenvectors, characteristic fields, but not eigenvalues
and strong hyperbolicity of system.
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BSSN System of Equations

Shibata & Nakamura 1995, Baumgarte & Shapiro 1998.

Ideas: (1) eliminate mixed derivatives in Rij by introducing an auxiliary variable, Γ̃ (2)
Conformal, traceless (CT) split in the spirit of York initial value formalism.

Conformal decomposition of 3-metric: (introducing a new variable φ)

γ̃ij = e−4φγij

and impose γ̃ = 1.

Split Kij into trace of extrinsic curvature, K, and traceless part, Ãij .

Kij = Aij +
1

3
γijK

Ãij = e−4φAij

Note γ̃ij = e4φγij , Ãij = e4φAij

Introduce an auxiliary varible:

Γ̃i ≡ γjkΓ̃i
jk = −∂j γ̃ij

Lectures on NR #3, JUL 20, 2007 – p. 27/29



Note that Ricci tensor can now be written as

Rij = R
φ
ij + R̃ij

where

R̃ij = −
1

2
γ̃lmγ̃ij,lm + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm(2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj)

and

R
φ
ij = −2D̃iD̃jφ − 2γ̃ijD̃lD̃lφ + 4D̃iφD̃jφ − 4γ̃ijD̃lφD̃lφ

Note that the principar part is now hyperbolic with all the other derivatives (especially
mixed derivatives) absorbed into Γ̃ terms.

Cf. original ADM system

Rij =
1

2
γkl(γkj,il + γil,kj − γkl,ij − γij,kl) + (...)
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Baumgarte and Shapiro used weak gravitational field initial data to compare BSSN
formalism with ADM system of equations.

ADM evolution crashed very early while BSSN evolution remianed stable.

Due to superior stability property of BSSN for this case, a large number of groups
adopted this formalism quickly and now became a sort of standard formalism. BSSN is
being used by most groups doing binary black hole merger simulations.
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