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Abstract. We present a model for the dark matter in spiral galaxies, which is a result of a static
and axial symmetric exact solution of the Einstein–dilaton theory. We suppose that dark matter is
a scalar field endowed with a scalar potential. We obtain that (a) the effective energy density goes
like 1/(r2 + r2

c ) and (b) the resulting circular velocity profile of test particles is in good agreement
with the observed one.

PACS numbers: 9530S, 0450, 9535

One of the greatest puzzles of physics at the moment is without doubt the existence of dark
matter in the cosmos. The experimental fact that the galaxy masses measured with dynamical
methods do not coincide with their luminous galaxy masses gives rise to the existence of a
great amount of dark matter in galaxies, galaxy clusters and superclusters. At the present time,
cosmological observations indicate that the universe is filled out with about 90% dark matter,
whose nature until now remains unexplained. Recently, some authors have proposed the
scalar field as a candidate for dark matter in the cosmos [1, 2], in some sense the inflationary
cosmological model proposes the scalar field as cosmological dark matter as well. These
models consider scalar–tensor theories of gravity where one is able to add mass terms to the total
energy density of the spacetime. All modern unifying field theories also contain scalar fields.
For example, scalar fields are fundamental fields in Kaluza–Klein and superstring theories,
because such fields appear in a natural way after dimensional reduction. In both theories the
scalar field could be endowed with an exponential scalar potential [3, 4], in particular, when we
deal with five-dimensional Kaluza–Klein theories, the Lagrangian density readsL5 = R5+35,
where35 is a five-dimensional cosmological constant. After dimensional reduction and a
conformal transformation one obtains the densityL4 = −R4 + 2(∇8)2 + e−2/

√
383, where8

is the scalar field which actually states that an exponential potential appears in a natural way
in this theory. An analogous procedure establishes that in the low-energy limit of superstring
theory one obtains a similar result [1, 3]. In general one obtains the Lagrangian from high-
dimensional theoriesL4 = −R4 + 2(∇8)2 + e−2α83, therefore here we will restrict ourselves
to an exponential scalar potential. In this letter we show a possible model for the dark matter
in spiral galaxies, supposing that such matter is of a scalar nature.

There is a common approach to explain the rotation curves in spiral galaxies called
modified Newtonian dynamics (MOND) [5, 6], which basically consists of modifying
Newton’s law of attraction for small accelerations by adding terms to the gravitational potential.
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In this way, by adjusting some free parameters for each galaxy, one can reproduce the
asymptotic behaviour of the rotation curves. However, it appears to be artificial because it
is nothing but a mere correction of Newton’s law, we are unable to know either where the
parameters and the correction terms come from, or why nature behaves like that and therefore
what Newton’s law is at a cosmological scale for instance.

A convincing phenomenological model for galactic dark matter is the so-called isothermal
halo model (IHM), which assumes the dark matter to be a self-gravitating ball of ideal gas
(made of any kind of particle) at a uniform temperaturekT = 1

2mdmvc, wheremdm is the mass
of each particle andvc is its velocity, which eventually produces a dark matter distribution
going as∼1/r2, implying in this way an increasing massM(r) ∼ r. Then, by assuming that
a galaxy is a system in equilibrium (GM/r2 = v2

c /r) the velocity of particles surrounding the
profile above should produce flat rotation curves into a region where the dark matter dominates,
i.e. at large radii when one considers an exponential distribution of luminous matter as usual
[7].

Observational data show that galaxies are composed of almost 90% dark matter [6–8].
This is so because the kinematics inside the dark-matter-dominated region is not consistent
with the predictions of Newtonian theory, which explains well the dynamics of the luminous
sector of the galaxy but predicts a Keplerian falling off for the rotation curve. The region of
the galaxy we are interested in is that in which the dark matter determines the kinematics of
test particles. So we can suppose that luminous matter does not contribute in a very important
way to the total energy density of the matter that determines the behaviour of particles in the
mentioned region, instead the scalar matter will be the main contributor to it. Thus, as a first
approximation we can neglect the baryonic matter contribution to the total energy density for
the explanation of asymptotic rotation curves.

On the other hand, the exact symmetry of the dark halo is still unknown, but it is reasonable
to suppose that it is symmetric with respect to the rotation axis of the galaxy. In this letter we
let the symmetry of the halo be as general as we can, so we choose it to be axial symmetric.
Furthermore, the rotation of the galaxy does not affect the motion of test particles around
the galaxy, dragging effects in the halo of the galaxy should be too small to affect the test
particles (stars) travelling around the galaxy. Hence, in our region of interest we can suppose
the spacetime to be static, given that the circular velocity of stars (like the Sun) of about
230 km s−1 seems not to be affected by the rotation of the galaxy and we can consider a
time-reversal symmetry of the spacetime. So, the model we are dealing with will be given
by the gravitational interaction modified by a scalar field and a scalar potential. The model
consists of the following action:

S =
∫

d4x
√−g

[
−R
κ0

+ 2(∇8)2 − V (8)
]
, (1)

which could be the four-dimensional action for the Kaluza–Klein or the low-energy superstings
theory without an electromagnetic field, and where we have added a term which contains the
scalar potential. In this actionR is the scalar curvature,8 is the scalar field,κ0 = 16πG/c3

and
√−g is the determinant of the metric. The most general static and axial symmetric line

element compatible with this action, written in the Papapetrou form, is

ds2 = 1

f

[
e2k(dz dz̄) +W 2 dφ2

]− f c2 dt2, (2)

wherez := ρ + iζ andz̄ := ρ− iζ and the functionsf,W andk depend only onρ andζ . This
metric represents the symmetries posted above. The application of the variational principle to
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(1) gives rise to the field equations

8
;µ
;µ +

1

4

dV

d8
= 0

Rµν = κ0
[
28,µ8,ν − 1

2gµνV (8)
]
,

(3)

which are the Klein–Gordon and Einstein field equations, respectively;µ, ν = 0, 1, 2, 3.
Using the harmonic maps ansatz [9–11] we find the following Poisson-like structure for the
above equations [12]:

1̂λ = −κ0
√−gV (8)

21̂8 = 1

4

√−gdV

d8
W,zz̄ = − 1

2κ0
√−g V (8)

k,z = W,zz

2W,z

+
1

4
W λ2

,zW,z + κ0W8
2
,zW,z,

(4)

and a similar equation fork,z̄, with z̄ instead ofz, where1̂ is the Laplace operator such that
for any functionh = h(z, z̄): 1̂h := (Wh,z),z̄ + (Wh,z̄),z. Moreover,λ = ln(f ) is interpreted
as the gravitational potential.

If one assumes thatλ and8 depend only onW(z, z̄), the set of equations (4) appears in a
more tractable form

2WW,zz̄Dλ = −κ0
√−g V (8) (5)

2WW,zz̄D8 = 1

4

√−g dV

d8
(6)

W,zz̄ = − 1
2κ0
√−g V (8) (7)

k,z = W,zz

2W,z

+
1

4
W λ′2W,z + κ0W8

′2W,z (8)

and the corresponding expression forkz̄, where now the operatorDmeansDh(W) = Wh′′+2h′

∀h = h(W), and′ denotes a derivative with respect toW . Equations (5)–(8) constitute a system
of coupled differential equations because

√−g = We2k−λ/2. However, it is evident that once
we have expressions forλ and8, k can be integrated by quadratures. Moreover, using the third
of these equationsλ and8 obey differential equations whereW is the independent variable.

In order to find an exact solution, we substituteκ0
√−g V (8) from (7) into (5) and (6),

(remember that dV /d8 = −2αV ) and obtain two decoupled differential equations, one forλ

and another for8. We solve these two differential equations and substitute the solution into
(8). We thus find that a solution of the system (5)–(8) is given by

λ = ln(M) + ln(f0)

8 = 80 +
1

2
√
κ0

ln(M)

V = 4f0

κ0M

k = 1
2(lnM,zz̄ + lnM)

(9)

wheref0 and80 are integration constants andW = M is a function restricted only by the
condition

MM,zz̄ = M,zM,z̄ (10)
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whose solutions areM = Z(z)Z̄(z̄), whereZ is an arbitrary function. The reader can check
that (9) is a solution of the field equations substituting the set (9) into (3) using the metric (2).

In what follows we study the circular trajectories of a test particle on the equatorial plane
taking the spacetime (2) as the background. The motion equation of a test particle in the
spacetime (2) can be derived from the Lagrangian

L = 1

f

[
e2k

((
dρ

dτ

)2

+

(
dζ

dτ

)2)
+W 2

(
dφ

dτ

)2]
− f c2

(
dt

dτ

)2

. (11)

This Lagrangian contains two constants of motion, the angular momentum per unit of
mass

W 2

f

dφ

dτ
= B, (12)

and the total energy per unit of mass of the test particle

f c2 dt

dτ
= A, (13)

whereτ is the proper time of the test particle. An observer falling freely into the galaxy, with
coordinates(ρ, ζ, φ, t), will have a line element given by

ds2 =
{

1

f c2

[
e2k(ρ̇2 + ζ̇ 2) +W 2φ̇2

]− f}c2 dt2

=
(
v2

c2
− f

)
c2 dt2

= −c2 dτ 2. (14)

The velocityva = (ρ̇, ζ̇ , φ̇), is the 3-velocity of the test particle, where a dot denotes a derivative
with respect tot , the time measured by the free-falling observer. The squared velocityv2 is
then

v2 = gabvavb = e2k

f
(ρ̇2 + ζ̇ 2) +

W 2

f
φ̇2, (15)

wherea, b = 1, 2, 3. Substituting (14) into (13) we obtain an expression for the squared
energy

A2 = c4f 2

f − v2/c2
. (16)

We are interested in test particles (stars) moving on the equatorial planeζ̇ = 0 and the equation
of motion derived from the geodesics of metric (2) reads

1

f
e2k

(
dρ

dτ

)2

+
B2 f

W 2
− A2

c2f
= −c2, (17)

where we have used the conservation equations (12) and (13). Equation (17) determines
the trajectory of a test particle around the equator of the galaxy, in this trajectoryA andB
remain constant. If we change the test particle, we could have other constants of motionA

andB determining the trajectory of the new particle. A spiral galaxy is practically a disc of
stars travelling around the equatorial plane of the galaxy in circular trajectories in the period
of observation, although it had to be formed from enormous clouds of gas going around a
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symmetry axis with average values ofA andB. Thus for a circular trajectory ˙ρ = 0, the
equation of motion transforms into

B2f

W 2
− A2

c2f
= −c2. (18)

This last equation determines the circular trajectories of test particles travelling on the equator
of the galaxy. Using (18) and (16) we find an expression forB in terms ofv2,

B2 = v2

f − v2/c2

W 2

f

∼ v2W
2

f 2
, (19)

sincev2� c2. Now using (19) one concludes that for our solution (9)v2 = f 2
0B

2, i.e.

vDM = f0B, (20)

where we callv→ vDM the contribution of our dark matter to the circular velocity of a star.
WhenZ = z our solution in Boyer–Lindquist coordinatesρ = √r2 − 2ar + b2 sinθ ,

ζ = (r − a) cosθ reads

ds2 = (1− a/r)2 +K2 cos2 θ/r2

f0r0

(
dr2

1− 2a/r + b2/r2
+ r2 dθ2

)
+
(r − a)2 +K2 sin2 θ

f0r0
dφ2 − f0c

2 (r − a)2 +K2 sin2 θ

r0
dt2 (21)

whereK2 = b2 − a2 andr0 only scales. The effective energy densityµDM of (9) is given by
the expression

µDM = 1

2
V (8) = 2f0r0

κ0((r − a)2 +K2 sin2 θ)
(22)

and plays the role of our dark matter density profile.
Keeping in mind that this is only the contribution of dark matter to the energy density

we are in a condition to compare these results with those given by measurements. In order to
do so we recall the paper by Begemanet al [6] where an energy density profile of the IHM
µ(r) = ρ0r

2
c /(r

2 + r2
c ) for dark matter is used, whererc is a core radius. It is evident that this

profile is a particular case of the expression we present here, namely, for matter localized on
the equator of the galaxy. So, we can fit some of the free parameters of metric (21) comparing
these two profiles. We setb = rc, a = 0 and 2f0r0/κ0 = ρ0r

2
c .

Let us model the circular velocity profile due to the luminous matter of the disc in a spiral
galaxy by the function

v2
L = v2(Ropt )β

1.97x1.22

(x2 + 0.782)1.43
(23)

which is the approximate model for the universal rotation curves (URC) as was proposed by
Persicet al [8] for an exponential thin disc, valid for a sample of 967 galaxies; in this expression
x = r/Ropt , the parameterβ = vL(Ropt )/v(Ropt ) whereRopt is the radius within which the
83% of the observable mass of the galaxy is contained andv is the observed circular velocity.

We can suppose that luminous matter near the centre of a galaxy behaves as in Newtonian
mechanics. Thus with the luminous velocity (23) it is now easy to calculate the angular
momentum (per unity of mass) of the test particle in the luminous matter-dominated region

B = vLD, (24)
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Figure 1. The circular velocity profiles of four spiral galaxies. Full curves, total circular
velocity (vC ); long-broken curves, contribution of the dark matter to the total velocity (vDM )
and short-broken curves, contribution of luminous matter (vL); finally, the full circles represent
the observational data. The units are in km s−1 on the vertical axis and in kpc on the horizontal
axis.

whereD is the distance between the centre of the galaxy and the test particle. For our metric,
D = ∫ ds, keepingθ, φ andt constant, we obtainD =

√
(r2 − 2ar + b2)/f0r0. Observe that

after we have determined the dark matter energy densityµDM,B is uniquely determined by
vL via (24); it is easy to show thatB in (24) equals that of equations (17)–(20) by including a
luminous Newtonian component in the radial geodesic equation [13]. Therefore, equations (20)
and (24) imply the total circular velocity

vC =
√
v2
L + v2

DM = vL
√

1 +f0(r2 − 2ar + b2) (25)

an expression that should fit the observed rotation curves. In order to do so, we present in
figure 1 the plots containing the fits of four spiral galaxies and in table 1 the values of the
parametersf0 andb keepinga = 0 and the scaler0 = 1. From this we see that the agreement
of the resulting circular velocity profiles given by the scalar field as dark matter and the observed
profiles is very good not only far away from the centre of the galaxy but inside the part of the
galaxy dominated by luminous matter as well.

The criterion used to choose the sample was the ratio of the dark to luminous mass inside
r25, which was selected to be∼1 in order to test our model by using ‘dark enough galaxies’.
The plots shown in figure 1 would not be enough to state that our model works, it is necessary
to be consistent with the phenomenological URC approach, i.e. the contribution of our dark
matter should be the same as that proposed by the URC frame which is strongly luminosity
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Table 1. Values of the fitting parametersf0 andb. Also shown are the values of the quantities
used.

f0 b Ropt

Galaxy (kpc−1) (kpc) (kpc) β

NGC1560 0.0726 2.119 4.6 0.344
NGC2403 0.0171 5.399 6.7 0.546
NGC3198 0.0038 12.88 11 0.547
NGC6503 0.0290 3.035 3.8 0.702

Figure 2. The contribution of dark matter to the circular velocity of test particles is shown. Full
curves emerge from the model described in this letter, broken curves correspond to the URC
approach. The discrepancies are of 8.3, 11, 23.3 and 5.2%, respectively.

dependent. A formula consistent with (23) is given by [8]

v2
urcDM = v2(Ropt )(1− β)(1 +γ 2)

x2

x2 + γ 2
(26)

whereβ = 0.72 + 0.44 logL/L∗ the same parameter as in (23) andγ = 1.5(L/L∗)1/5.
According to (20) and (24) the contribution of our dark matter is

v2
DM = f0(r

2 + b2)v2(Ropt )β
1.97x1.22

(x2 + 0.782)1.43
(27)

and after using the fitting parameters of table 1 both approaches are compared in figure 2, from
which it can be concluded that our dark matter model respects the luminous matter model we
have used.

Some remarks can be drawn. The energy density (22) coincides with that required for
a galaxy to explain the rotation curves of test particles in its halo, but in our model, this
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energy density is a product of the scalar field and the scalar field potential, that is, this dark
matter is produced by a8 particle. So we have shown that there is an exact solution which
describes the rotation curves of particles in a spiral galaxy. The crucial point for having the
circular velocityvDM = f0B is thatf ∼ W in the solution (9). However, this fact remains
unaltered after conformal transformations in the metric dŝ2 = A(8) ds2, so that the circular
velocityvDM remains the same for all theories and frames related with metric (2) by conformal
transformations.

What does our model look like in the cosmological context? When a density profile for
galactic dark matter goes as the inverse ofr2 and it is supposed that the halo of a galaxy ends
in the region where those of neighbouring galaxies start, the integrated amount of galactic
dark matter is close to that needed for the Universe to be flat for the observed average distance
between them [7], flatness being inferred from the cosmic background radiation [14] and thus
permitting our model to be inside the bounds. In fact, we have developed a cosmological
model that considers the same theory as here (1) with the same scalar potential [15], which has
been able to explain the redshifts of type Ia supernovae, and all the parameters for structure
formation lie within the ranges imposed by observations [14, 16], which make us put forward
the model presented in this letter.
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