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Departamento de Fı́sica, Centro de Investigación y de Estudios Avanzados del IPN, AP 14-740,
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Abstract. Continuing on from previous works, we present a cosmological model in which dark
matter and dark energy are modelled by scalar fields � and �, respectively, endowed with the

scalar potentialsV (�) = Vo
[
cosh (λ

√
κo�)− 1

]
and Ṽ (�) = Ṽo

[
sinh (α

√
κo�)

]β
. This model

contains a 95% scalar field. We obtain that the scalar dark matter mass is m� ∼ 10−26 eV. The
solution obtained allows us to recover the success of standard cold dark matter. The implications
on the formation of structure are reviewed. We obtain that the minimal cut-off radio for this model
is rc ∼ 1.2 kpc.

PACS numbers: 9880, 9535

Over many years there has been much evidence found about the missing matter in the Universe.
It is known that the components of the Universe are radiation, baryons, neutrinos, etc, but
observations show that their contribution is less than 5% of the total mass of the Cosmos, in
agreement with big-bang nucleosynthesis predictions. This suggests that there must exist a
non-baryonic type of matter in galaxies and clusters of galaxies [1, 2]. Recently, observations of
type-Ia supernovae [3, 4] have shown that there must exist another component that accelerates
the expansion of the Universe. This new component must have a negative equation of state
ω < − 1

3 , where p = ωρ [5]. The observations point to a flat Universe filled with radiation,
plus baryons, neutrinos, etc contributing ∼ 5%, a dark matter component ∼ 25% and so-called
dark energy contributing ∼ 70% to the total mass of the Cosmos [6]. One of the most successful
models up to now has been the � cold dark matter (�CDM) model, where the dark energy
is a cosmological constant [7]. However, some of the problems with this model have not yet
been solved. First of all, if a cosmological constant exists, why is its contribution to the total
matter of the same order of magnitude as baryons and cold dark matter? This is the cosmic
coincidence problem. Also, the suggested value for the cosmological constant appears to be
well below the values predicted by particle physics. On the other hand, the existence of a
cosmological constant leads to a strong fine tuning problem over the initial conditions of the
Universe.

These latter facts open the possibility of scalar fields as strong candidates for the missing
matter of the Universe [9–12]. A reliable model for dark energy is a fluctuating, inhomogeneous
scalar field, rolling down a scalar potential, called quintessence (Q) [13]. For this case, great
efforts have been made to determine the appropriate scalar potential that could explain current
cosmological observations [10, 11, 14]. One example is the pure exponential potential [10, 14].
It has the advantages that it mimics the dominant density background and it appears naturally
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as a solution for a completely scalar-dominated Universe [15]. However, nucleosynthesis
constraints require that the scalar field contribution be�� � 0.2, which indicates that the scalar
field would never dominate the Universe [10]. However, a special group of scalar potentials
has been proposed in order to avoid the fine tuning and coincidence problem, namely tracker
solutions [11], where the cosmology at late times is extremely insensitive to initial conditions.
A typical potential is the pure inverse power-law one,V (�) ∼ �−α (α > 0) [11, 16]. Although
it reduces the fine tuning and the cosmic coincidence problem, the predicted value for the
current equation of state for the quintessence is not in good agreement with supernovae results
[11]. The same problem arises with the inverse power-law-like potentials. Another example
are the potentials proposed in [17]. They efficiently avoid the troubles stated above, but it is
not possible to determine their free parameters unambiguously.

In this letter we use a cosh potential, in order to mimic a standard cold dark matter with
a quintessential dark energy. Then we will investigate the scalar field fluctuations and the
implications for structure formation in directions suggested by some authors. We find that the
scalar field is an ultra-light particle which behaves just like cold dark matter. Using previous
works [9, 18, 19], it is then possible that a scalar field fluctuation could explain the formation
of the galaxy halos.

In a recent paper [12], we showed that the potential

Ṽ (�) = Ṽo
[
sinh (α

√
κo�)

]β
=
{
Ṽo
(
α

√
κo�

)β |α√
κo�| � 1

(Ṽo/2β) exp
(
αβ

√
κo�

) |α√
κo�| � 1;

(1)

is a good candidate for the dark energy. Its asymptotic behaviour at early (late) times is the
attractive inverse power-law (exponential) one. Its parameters are given by

α = −3ω�

2
√

3(1 + ω�)
,

β = 2 (1 + ω�)

ω�

,

ρo� =
(

2 Ṽo
1 − ω�

ρ
−β/2
oCDM

) 1
1−β/2

,

(2)

where ρoCDM and ρo� are the current energy densities of cold dark matter and dark energy,
respectively, and ω� is the current equation of state for the dark energy. It eliminates the
fine tuning problem and dominates only at late times, driving the Universe to a power-law
inflationary stage (for which the scale factor a ∼ tp, with p > 1). Thus, again, we will take it
as our model for the dark energy.

At the same time, there exists strong evidence for the scalar fields to be the dark matter at a
galactic level. If the dark matter component is the scalar field, then it was demonstrated in [9]
that a scalar field fluctuation could behave in exactly the same way as the halo of a galaxy. The
halos of galaxies (the scalar field fluctuations) could be axially symmetric [18] or spherically
symmetric [19], in both cases the geodesics of exact solutions of the Einstein equations with
an exponential potential fit the rotation curves of galaxies quite well. In addition, the �CDM
model over-predicts subgalactic structure and singular cores of the halos of galaxies [20]. In
order to solve these problems, some authors have proposed power-law and power-law-like
scalar potentials [17, 21–23] to be the dark matter in the Universe, and it is worth mentioning
that some of them could be tracker solutions themselves [23]. Much attention has been put
on the quadratic potential �2, because of the well known fact that it behaves as pressureless
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matter due to its oscillations [24], implying that ω� 
 0, for 〈p�〉 = ω�〈ρ�〉. A reliable
model for the dark matter can then be the potential (see [8, 17] and references therein)

V (�) = Vo
[
cosh (λ

√
κo�)− 1

]
=
{
(Vo/2)

(
λ
√
κo�

)2 |λ√
κo�| � 1

(Vo/2) exp
(
λ

√
κo�

) |λ√
κo�| � 1;

(3)

because this potential joins together the attractive properties of an exponential potential and
the already mentioned quadratic potential, as can be seen from its asymptotic behaviour.

We consider a flat, homogenous and isotropic Universe. Thus we use the flat Friedmann–
Robertson–Walker (FRW) metric

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 (φ) dφ2

)]
. (4)

The components of the Universe are baryons, radiation, three species of light neutrinos,
etc, and two minimally coupled and homogenous scalar fields � and �, which represent the
dark matter and the dark energy, respectively. Thus, the evolution equations for this Universe
are

H 2 ≡
(
ȧ

a

)2

= 1
3κo (ρ + ρ� + ρ�),

ρ̇ + 3H (ρ + p) = 0,

�̈ + 3Ḣ �̇ +
dV (�)

d�
= 0,

�̈ + 3Ḣ �̇ +
dṼ (�)

d�
= 0,

(5)

where κo ≡ 8πG and ρ are the energy density of radiation, plus baryons, plus neutrinos, etc,
ρ� = 1

2 �̇
2 + V (�) and ρ� = 1

2 �̇
2 + Ṽ (�).

We start the evolution of the Universe in the radiation-dominated era (RD), with large
(small) and negative (positive) values for the scalar field � (�). Taking the initial condition
ρi� < ρiγ , the energy density ρ� is subdominant and behaves as a cosmological constant.
The tracker solution (2) will be reached only until the matter-dominated era (MD), that is, until
the background equation of state becomes ωb = 0. After that, it will evolve with a constant
equation of state ω� and will dominate the current evolution of the Universe as an effective
exponential potential. The Universe would then be in a power-law inflationary stage. More
details can be found in [12]. Now, we will focus our attention on the potential (3).

During RD, the scalar field energy density ρ� tracks the radiation energy density. The
ratio of ρ� to the total energy density is constant and is equal to (see [10, 25] and references
therein)

ρ�

ργ + ρ�
= 4

λ2
, (6)

with ργ being the contribution due to radiation. In order to recover the success of the CDM
model, we will make the scalar energy follow standard cold dark matter at the epoch of its
oscillations. Thus, we investigate the behaviour of the scalar field� near to the transition point
|√κoλ�| = 1 (see equations (3)), i.e. the point when the scalar field is leaving the radiation
solution (exponential-like potential) and entering the dust solution (quadratic-like potential).
Taking a∗ as the value for the scale factor when this transition occurred (the scale factor has
been normalized to a = 1 today), we find that it can be approximately given by

a∗ ≈ 4

λ2 − 4

(
�oγ

�oCDM

)
. (7)
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Figure 1. Evolution of the dimensionless density parameters � versus the scale factor a with
�oM = 0.30: �CDM (solid curves) and �� DM for two values of λ = 6 (broken curves), λ = 8
(dotted curves). The equation of state for the dark energy is ω� = −0.8.

From this it can be shown that for potential (3) it follows that

κoVo(
λ2 − 4

)3 
 1.7

3

[(
�oCDM

�oγ

)3

�oCDM

]
H 2
o , (8)

where �oCDM and �oγ are the current measured values for the densities of dark matter
and radiation, respectively, and Ho is the current Hubble parameter. The restriction from
nucleosynthesis for the early exponential behaviour of the potential requires

ρ�

ργ
= 4

λ2 − 4
< 0.2 (9)

at the radiation-dominated era [10]. Then we have that λ > 2
√

6. A numerical solution for
the density parameters �X = (κoρX)/(3H 2) is shown in figure 1. The time when oscillations
start is given by equation (7), and with the values from equation (8) the solution mimics quite
well the standard CDM model until today (see, for example, [12]). Note that the change of
ρ� to a dust solution occurred before the radiation–matter equality for the values given by
equation (8). This allows the scalar field � to dominate the evolution of the Universe later,
and to provoke an MD era [26].

Now we will investigate the fluctuations in the scalar dark matter component. Using an
amended version of CMBFAST [27] and taking adiabatic initial conditions [10], we observe
that the scalar fluctuations of � make the scalar density contrast δ� = (δρ�/ρ�) follow the
standard dark matter density contrast (see figure 2) [28]. We have then a kind of tracker
solution for the fluctuations of the scalar dark matter, too. This last fact makes the potential (3)
a reliable dark matter one.
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Figure 2. Evolution of the density contrasts δb (baryons), δCDM (standard cold dark matter) and δ�
(scalar dark matter) versus the scale factor a taking �oM = 0.30 for the models given in figure 1.
The modes shown are k = 0.1 Mpc−1 (top) and k = 1.0 × 10−5 Mpc−1 (bottom).

The mass for the scalar field � is m2
� = V ′′(0) = κoVoλ

2. Observe that from equation (9)
we have a minimal value for the mass of the field. Using equation (8) we obtain

m2
�,min 
 1.08 × 105

[(
�oCDM

�oγ

)3

�oCDM

]
H 2
o , (10)

implying that m� > 3 × 10−26 eV; thus, we are dealing with an ultra-light particle as dark
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matter. Since the Compton length is related to the mass by λC = m−1
� , there will be a maximum

value for λC given by

λC,max 
 3.0 × 10−3

[(
�oCDM

�oγ

)3

�oCDM

]−1/2

H−1
o , (11)

and then λC < 200 pc.
From equation (8), we can see that there is a degeneracy because of the infinite pairs

(Vo, λ) that are available for the same values of �oCDM and �oγ , and that we recover the
standard dark matter model if λ → ∞. In fact, observe that we have a one-parameter theory
where we can chose Vo, λ or m� as a free parameter. Then, we need another observational
constraint to fix completely the parameters of the potential. In [17] it was suggested that the
Compton length could be a cut-off for structure formation, but its value is not big enough to be
useful. In [22] a similar model is studied, but here the scalar particles behave like a relativistic
gas before the time of radiation–matter equality, where the gas is non-relativistic at the current
epoch. This last fact ensures that the minimal scale for dark matter halos is of the order of kpc.
The potential used in [22] is

V (�) = 1
2m

2
��

2 + κ�4, (12)

where κ is the dimensionless free parameter of the model. For the potential (3), κ is no longer
a free parameter, but κ = κoλ

2m2
�/4!. Then, in our case the minimal radius for compact

equilibrium now reads [22]

rc = 3
2 (κoVo)

−1/2 . (13)

Taking the minimal value forλ allowed by nucleosynthesis and using equation (8), the available
values for rc are

rc � 2 × 10−2

[(
�oCDM

�oγ

)3

�oCDM

]−1/2

H−1
o , (14)

thus rc � 6λC 
 1.2 kpc. This value can be useful in order to explain the suppression of
galactic substructure and could give us the new constraint we need to fix all the parameters of
the model.

Summarizing, a model for the Universe where 95% of the energy density is of scalar
nature can be possible. This would have strong consequences in structure formation, like the
suppression of subgalactic objects due to the dark matter composed of a ultra-light particle.

We would like to thank F Siddhartha Guzmán and Dario Nuñez for helpful discussions. This
work was partly supported by CONACyT, México 119259 (LAU).
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[19] Matos T, Guzmán F S and Nuñez D 2000 Preprint astro-ph/0003398 (Phys. Rev. D, at press)
[20] Navarro J F and Steinmetz M 2000 Astrophys. J. 528 607
[21] Peebles P J E and Vilenkin A 1999 Phys. Rev. D 60 103506

Peebles P J E 2000 Fluid dark matter Preprint astro-ph/0002495
[22] Goodman J 2000 Repulsive dark matter Preprint astro-ph/0003018
[23] Zlatev I and Steinhardt P J 1999 Phys. Lett. B 459 570–4

(Zlatev I and Steinhardt P J 1999 Preprint astro-ph/9906481)
[24] Turner M S 1983 Phys. Rev. D 28 1253

Ford L H 1987 Phys. Rev. D 35 2955
[25] Chimento L P and Jakubi A S 1996 Int. J. Mod. Phys. D 5 71
[26] de la Macorra A and Piccinelli G 2000 Phys. Rev. D 61 123503

(de la Macorra A and Piccinelli G 1999 Preprint astro-ph/9909459)
[27] Seljak U and Zaldarriaga M 1996 Astrophys. J. 469 437
[28] Ma C P and Berthshinger E 1995 Astrophys. J. 455 7


